Automated Image-Guided Robotic Needle Placement for Corneal Microsurgery

../../_images/dalk.png

Deep anterior lamellar keratoplasty (DALK) is an advantageous but technically challenging approach to superficial corneal transplantation. We developed a robotic workstation guided by optical coherence tomography (OCT) to assist surgeons in performing the difficult needle insertion step of DALK. Our workstation provides a cooperative mode, in which it stabilizes surgeons hands, and an automatic mode, in which it performs the needle insertion autonomously under surgeon hold-to-run control. The automatic mode implementation is able to meet or exceed the performance of corneal surgery fellows in terms of needle placement accuracy.

  • M. Draelos, G. Tang, B. Keller, A. Kuo, K. Hauser, and J. A. Izatt. Optical coherence tomography guided robotic needle insertion for deep anterior lamellar keratoplasty. IEEE Transactions on Biomedical Engineering, 67(7):2073–2083, 2020. doi:10.1109/TBME.2019.2954505.

  • M. Draelos, B. Keller, G. Tang, A. Kuo, K. Hauser, and J. Izatt. Real-time image-guided cooperative robotic assist device for deep anterior lamellar keratoplasty. In IEEE International Conference on Robotics and Automation (ICRA), 1–9. May 2018. 41% acceptance rate. doi:10.1109/ICRA.2018.8463153.

Videos

These videos demonstrate an early version of the DALK workstation, highlighting the cooperative mode and early feasibility studies.

References

  1. M. Draelos, K. Hauser, A. Kuo, B. Keller, and J. Izatt. Systems and methods for arbitrary viewpoint robotic manipulation and robotic surgical assistance. US Patent 10,888,389 B2. 2021

  2. M. Draelos, G. Tang, B. Keller, A. Kuo, K. Hauser, and J. A. Izatt. Optical coherence tomography guided robotic needle insertion for deep anterior lamellar keratoplasty. IEEE Transactions on Biomedical Engineering, 67(7):2073–2083, 2020. doi:10.1109/TBME.2019.2954505.

  3. B. Keller, M. Draelos, K. Zhou, A. Kuo, G. Konidaris, K. Hauser, and J. Izatt. OCT guided robotic ophthalmic microsurgery via reinforcement learning from demonstrations. IEEE Transactions on Robotics, 36(4):1207–1218, 2020. doi:10.1109/TRO.2020.2980158.

  4. Y. Tian, M. Draelos, G. Tang, R. Qian, A. Kuo, J. Izatt, and K. Hauser. Toward autonomous robotic micro-suturing using optical coherence tomography calibration and path planning. In IEEE International Conference on Robotics and Automation (ICRA), 5516–5522. May 2020. 42% acceptance rate. doi:10.1109/ICRA40945.2020.9196834.

  5. M. Draelos, G. Tang, B. Keller, K. Hauser, A. Kuo, and J. Izatt. Automating needle insertions for deep anterior lamellar keratoplasty. In Open Challenges and State-of-the-Art in Control System Design and Technology Development for Surgical Robotic Systems Workshop at IEEE International Conference on Robotics and Automation (ICRA). May 2019.

  6. M. Draelos, B. Keller, G. Tang, K. Hauser, A. N. Kuo, and J. A. Izatt. OCT-guided cooperative robotic deep anterior lamellar keratoplasty. In Investigative Ophthalmology & Visual Science, volume 59, 1318. July 2018.

  7. B. Keller, M. Draelos, G. Tang, S. Farsiu, A. N. Kuo, K. Hauser, and J. A. Izatt. Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT. Biomedical Optics Express, 9(6):2716–2732, Jun 2018. doi:10.1364/BOE.9.002716.

  8. M. Draelos, B. Keller, G. Tang, A. Kuo, K. Hauser, and J. Izatt. Real-time image-guided cooperative robotic assist device for deep anterior lamellar keratoplasty. In IEEE International Conference on Robotics and Automation (ICRA), 1–9. May 2018. 41% acceptance rate. doi:10.1109/ICRA.2018.8463153.