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Jörn M. Schmiedel, Juan Valcárcel,
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SUMMARY

Despite a wealth of molecular knowledge, quantita-
tive laws for accurate prediction of biological phe-
nomena remain rare. Alternative pre-mRNA splicing
is an important regulated step in gene expression
frequently perturbed in human disease. To under-
stand the combined effects of mutations during
evolution, we quantified the effects of all possible
combinations of exonic mutations accumulated dur-
ing the emergence of an alternatively spliced human
exon. This revealed that mutation effects scale non-
monotonically with the inclusion level of an exon,
with each mutation having maximum effect at a pre-
dictable intermediate inclusion level. This scaling is
observed genome-wide for cis and trans perturba-
tions of splicing, including for natural and disease-
associated variants. Mathematical modeling sug-
gests that competition between alternative splice
sites is sufficient to cause this non-linearity in the
genotype-phenotype map. Combining the global
scaling law with specific pairwise interactions be-
tweenneighboringmutations allows accuratepredic-
tion of the effects of complex genotype changes
involving >10 mutations.

INTRODUCTION

Accurate quantitative predictions about the behavior of biolog-

ical systems are still rare. For example, predicting changes in

phenotype from changes in genotype is a central challenge in

genetics, evolution, agriculture, and personalized medicine

(Lehner, 2013). However, predicting the effects of even single

mutations in very well-studied genes remains remarkably diffi-

cult (Shendure and Akey, 2015).

One reason for the difficulty of genetic prediction is that the

consequence of a mutation often changes depending on the

genetic background where it is made. This is true considering
the complete variation within a genome, but also when only

considering additional variation within an individual gene (Leh-

ner, 2011; Phillips, 2008). Comprehensive mutagenesis of indi-

vidual proteins (Diss and Lehner, 2018; Fowler et al., 2010; Ol-

son et al., 2014; Sarkisyan et al., 2016) and RNAs (Domingo

et al., 2018; Li et al., 2016; Puchta et al., 2016) has revealed

abundant pairwise interactions between mutations within

genes. Changes in phenotype also occur when more than

two mutations are combined that cannot be predicted from

the phenotypes of the constituent pairwise combinations (Dom-

ingo et al., 2018; Sailer and Harms, 2017; Weinreich et al.,

2013). These interactions between mutations are known as

genetic interactions or epistasis, with pairwise (2nd order) and

higher-order (3rd, 4th etc. order) interactions all important for

accurate genetic prediction in the few cases where this has

been systematically evaluated (Domingo et al., 2018; Phillips,

2008; Poelwijk et al., 2016; Sailer and Harms, 2017; Weinreich

et al., 2013).

Deep mutagenesis combined with selection for function and

deep sequencing has also been used to quantify the effects of

mutations on gene expression. This has included mutagenesis

of gene promoters (Kinney et al., 2010; Patwardhan et al.,

2009), transcriptional enhancers (Melnikov et al., 2012; Patward-

han et al., 2012), 50 and 30 UTRs (Dvir et al., 2013; Holmqvist et al.,

2013; Shalem et al., 2015), and intronic and exonic regions that

regulate splicing (Braun et al., 2018; Julien et al., 2016; Ke

et al., 2018; Rosenberg et al., 2015).

Alternative splicing is a key regulated step in gene expression

frequently perturbed in human disease (Daguenet et al., 2015)

with 10% of disease-causing exonic mutations altering

splicing (Soemedi et al., 2017), and it has been estimated that

up to 1/3 of all disease-associated alleles alter splicing (Havens

et al., 2013).

Quantifying the effects of all possible single-nucleotide (nt)

changes within a model alternatively spliced exon, exon 6 of

the FAS gene, we previously reported that over 60% of single

mutations alter inclusion of the exon. Moreover, testing double

mutants revealed frequent non-linear interactions between pairs

of mutations, making it difficult to predict the exact level of

splicing when mutations are combined (Julien et al., 2016).
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FAS exon 6 is alternatively spliced in humans, with inclusion

varying across cell types and conditions, and encodes the trans-

membrane domain of the FAS/CD95 death receptor. mRNAs

that skip exon 6 encode a secreted protein lacking the trans-

membrane domain that acts as a decoy receptor. The alternative

splicing of FAS therefore switches the protein from a pro- to an

anti-apoptotic molecule (Cascino et al., 1995).

Here, we use FAS exon 6 as a model system to investigate

how higher-order combinations of mutations interact to cause

phenotypic change and the extent to which it is possible to

make accurate genetic predictions about changes in genotype

involving multiple mutations. We show that FAS exon 6 became

alternatively spliced during the evolution of primates. Combining

the 12 substitutions that separate the sequence of the human

exon from the primate ancestor in all 3,072 possible combina-

tions and quantifying the effects on splicing, we reveal a

non-monotonic mathematical law for how mutations combine

to alter splicing. This non-intuitive scaling may simply be a

consequence of mutually exclusive splice-site competition.

Scaling is observed in other deepmutagenesis datasets, for nat-

ural genetic variants and for trans perturbations to the alternative

splicing of endogenous mRNAs. Finally, we show that, if this

general nonlinearity in the genotype-to-phenotype map is taken

into account, a small number of specific proximal pairwise inter-

actions are sufficient to accurately predict the effect of >10 mu-

tations when combined.

RESULTS

Reconstructing the Evolution of FAS Exon 6
In humans, FAS exon 6 is alternatively spliced such that skipping

of the exon switches the FAS protein from a membrane-bound

pro-apoptotic isoform to a soluble anti-apoptotic isoform of

the protein. Alternative splicing of this exon varies among tis-

sues, with percentage spliced-in (PSI) values ranging across

five human tissues from �70% in lung to �95% in kidney (Fig-

ure 1A; Table S1).

To investigate the evolution of FAS exon 6 alternative

splicing, we analyzed RNA sequencing data from 5 tissues in

different primates. Inclusion of the exon also changes across

tissues in chimpanzees and Old World monkeys (Figure 1A;

Table S1), but in New World monkeys and lemurs the exon

is nearly constitutive in all tissues (Figure 1A; Table S1), as is

also true in mice (Figure S1A; Table S2). This suggests that

variable skipping of this exon evolved within the primate

lineage.

The intronic sequences 50 and 30 of FAS exon 6 are largely

invariant across primates (Figure S1D). However, there have

been 12 nt substitutions at 11 positions since the last common

ancestor of primates (Figures 1A, 1B, and S1B). Parsimony as-

signs these substitutions to 6 nodes of the species tree (Fig-

ures 1A and S1B). We constructed these inferred evolutionary

intermediates and quantified their PSI in a minigene construct

containing FAS exons 5–7 and the intervening introns. While

the human exon was included at 60%, exons with the

sequence inferred for the ancestors of primates (at the root

of the phylogenetic tree in Figure 1A), haplorrhines (node 2)

and simians (node 3) were nearly constitutive, with PSIs of
550 Cell 176, 549–563, January 24, 2019
96%, 97%, and 96%, respectively (Figures 1A and S1C).

Exons with the sequences of more recent intermediates had

intermediate levels of inclusion: 57% and 79% for the com-

mon ancestors of catarrhines and great apes. The increase

in inclusion as more ancestral substitutions are added is

also consistent with the increase in average inclusion levels

in the RNA sequencing data from humans to chimpanzees to

New World monkeys (Figure 1A; Table S1), suggesting that

the decrease in exon 6 inclusion was mainly driven by nt

changes in the exon.

Combinatorially Complete Mapping of a
Genotype Space
The identification of substantial changes in exon inclusion asso-

ciated with only 12 mutations presents an opportunity to study

the extent to which mutations have independent effects. The

evolution of this exon occurred through one of millions of

possible evolutionary paths that connect the genotype of the pri-

mate ancestor with the current human FAS exon 6 genotype.

Would the effect of each mutation have been the same had it

occurred at a different step in evolution?

To quantify the extent to which each of these mutations has

effects on splicing that are either constant or context dependent,

we designed a library of exon 6 variants in which all 12 mutations

could randomly occur as single, double, triple, and higher-order

combinations, a total of 3,072 genotypes (= 2103 3; 10 positions

can have 2 different nt and one can have 3 different nt,

Figure 1B).

We cloned the library into a minigene cassette covering FAS

exons 5–7, transfected it into HEK293 cells, and quantified

how often each particular genotype was included in the final

mature mRNA relative to every other genotype in the library

by RT-PCR and deep sequencing (Figure 1C). The linear

relationship between enrichment scores (ESs) and PSI (r2 =

0.92, Figure S1F) allows a PSI value for each genotype to

be estimated (Table S3). ESs were generally well correlated

across 9 biological replicates (Pearson’s r between 0.57 and

0.74, Figure S1G). Correlations were much stronger for geno-

types with a standard deviation of <10 PSI units (r between

0.97 and 0.98, Figure S1G). We focus in the main text on

this high confidence subset of the data (n = 794 genotypes;

analyses of all 3,072 genotypes are shown in supplemental

figures with similar conclusions).

The PSI values of all genotypes range from 0% to 100%

and follow a bimodal distribution, with 48% of genotypes

having a PSI above 80% with a mode close to the PSI of

the ancestral exon (96%), and 20% of genotypes having a

PSI below 20% with a mode near 0% (Figures 1D, 1E, S1H,

and S1I).

Mutations Have Non-independent Effects on Splicing
We first tested whether mutations have the same effect irrespec-

tive of the starting genotype in which they occur (Figure 2A). For

example, the mutation T19G occurs in the ancestral genotype as

well as in 11 genotypes that differ by 1 nt from the ancestor, 54

genotypes that differ by 2 nt, and so on (Figure 2B).

All 12 mutations had effects that changed substantially in

different starting genotypes (Figures 2C and S2A). While
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Figure 1. Analyzing Mutation Effects in a Combinatorially Complete Subset of a Genotype Space

(A) Primate species tree. Inset heatmap shows the percent spliced-in (PSI) of FAS exon 6 and its orthologs in RNA-seq data from different tissues in different

species. % indicates the PSI of minigene transcripts with exon genotypes corresponding to each node.

(B) Mutations since the last common ancestor of primates. Nodes indicate inferred evolutionary intermediates. The sequence below the ancestral exon shows the

design of our library.

(C) Experimental protocol.

(D) Distribution of PSI values.

(E) Genotype network of the library. Genotypes (nodes) are connected when they differ by 1 nt. The distribution of PSI values for each Hamming distance away

from the ancestral sequence is shown as a vertical violin plot. PSI values estimated to be >100% are plotted at 100%.
mutations tended to display quantitatively different effects in the

same direction (e.g., toward more inclusion), some mutations

showed qualitatively different effects in different contexts:
T19G promotes skipping in 134 exon genotypes and inclusion

in 253 (one-sample Wilcoxon rank-sum test, false discovery

rate [FDR] <0.05, n = 1,536 tests).
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CA

B

D E

Figure 2. Mutations Have Non-independent Effects on Alternative Splicing

(A) T19G (red) can be introduced in genotypes containing different additional mutations (gray).

(B) Number of genotypes where T19G occurs for each Hamming distance away from the ancestral sequence.

(C) Distributions of mutation effects.

(D) Using the effect of mutations on the ancestral sequence to predict their effect in other contexts leads to poor prediction. Left: observed versus predicted PSI

values. Right: residual plot with loess trend line and 95% confidence band.

(E) Predictive model that uses the average effect of mutations in different genotypes. Plots as in D.
Consistent with mutations having effects that change in

different genotypes, quantifying the effect of each mutation in

the ancestral exon and combining these effects using a linear

model with 12 parameters (one parameter for each of the 12 mu-

tations in our dataset) gave very poor prediction of the inclusion

of the exons in the library, with a root-mean-square error (RMSE)

of 45.0 PSI units (Figure 2D). Including the restriction that PSI

values cannot be predicted to be above 100 or below 0 only

moderately improved the predictions (RMSE = 43.7 PSI units,

Figures S2B–S2D).

Considering the average effect of each mutation across all ge-

notypes substantially improved the predictions, but important

deviations from the real values remained (10-fold cross-valida-

tion RMSE= 17.8 PSI units; RMSE= 16.8 when bounding predic-

tions between 0% and 100%, Figures 2E and S2E–S2G). The ef-

fects of mutations on exon 6 inclusion are therefore context

dependent, with the effect of a mutation in a single genotype

providing limited prediction of its effects in other closely related

genotypes.
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Mutation Effects Scale Non-monotonically with Starting
Inclusion Levels
To investigate why the effects of individual mutations change

across the dataset, we studied the relationship between the in-

clusion level of an exon before (starting PSI) and after (final

PSI) a mutation is made (Figure 3A). Exon inclusion is a bounded

function ranging from 0% to 100%. Thus, one simple model is

that mutations have a constant effect on splicing that saturates

when 0% or 100% inclusion is obtained (model 1, Figures 3B

and 3C). Other models include: a fractional effects model where

the distance to 100% inclusion or skipping is always reduced by

a certain factor (model 2, Figures 3B and 3C), a diminishing re-

turns model where the effects of mutations progressively

decrease as they approach the limits of exon inclusion or skip-

ping (model 3, Figures 3B and 3C), or a model where mutations

push inclusion to the limits irrespective of the starting genotype

(model 4, Figures 3B and 3C).

Surprisingly, plotting the effect of each mutation against the

PSI of the genotype in which it occurs reveals that the
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Figure 3. Non-linear Scaling of Mutation Effects as a Function of the Starting PSI

(A)Mutation X can be introduced in different genetic backgrounds, whichmight change its effect. To visualize how the effect of themutation depends on the PSI of

the exon in which it is introduced, the final PSI of a genotype with X (or DPSI) is plotted as a function of the PSI of the same genotype without X (starting PSI).

(B and C) Models for how the PSI at which a mutation is introduced (starting PSI) affects the final PSI (B) or the change in PSI (C) upon introducing the mutation.

(D) Relationship between final and starting PSI for 2 splicing mutations. The effect of inclusion-promoting C41G is smaller at both low and high starting PSIs. The

effect of the skipping-promoting G44A is smaller at low and high starting PSIs, with the maximum effect size occurring at intermediate starting PSIs.

(E) Non-linear scaling for G44A in different genotypes in 3 cell lines.
relationship between the effect of the mutation and the starting

PSI is non-monotonic, first increasing to a maximum and then

decreasing again as the starting PSI changes from 0% to

100% (Figures 3D and S3). We confirmed this relationship in 3

different cell types for a mutation retested in 7 different exons

with different starting PSIs (Figures 3E and S4A–S4C; Table

S4). Thus, irrespective of the effect size or direction of effect of

the mutation, there is a global scaling of mutation effects that

involves the gradual reduction ofmutation effects when the start-

ing PSI is closer to either complete inclusion or skipping, with

maximum effects at specific intermediate starting PSI values.

This means that, as expected, an inclusion-promoting muta-

tion will have a small effect when introduced in an exon with a

PSI near 100%. However, that same mutation will also have a

small effect when introduced in an exon with a PSI near 0%,

even though such an exon could allow for large increases in

inclusion.

Moreover, mutations do not have their maximum effect at the

same starting PSI level (for example, always when starting from

50% inclusion). Rather, the starting PSI at which each mutation
has its maximum effect is a property of that mutation, with muta-

tions of smaller maximum effect having their strongest effect at

PSIs closer to 50% and mutations of larger maximum effect

having their strongest effects closer to full inclusion or skipping

(see below, Figure 4F).

Mathematical Modeling Suggests Competition as the
Origin of Non-monotonicity in the Effects of Mutations
To understand why the effects of mutations show this surprising

scaling behavior, we built a mathematical model for exon

inclusion. Although it ignores the molecular details, this model

captures one essential component of splicing decisions, which

is competition between splice sites. For example, the 30 splice
sites of introns 5 and 6 compete with each other for pairing

with the 50 splice site of intron 5. These competitions result in

mutually exclusive, unique outcomes for each individual mRNA

molecule.

In the model, the probability that a given exon is included at a

specific time t is the probability of first arrival in a Poisson pro-

cess (i.e., the probability that a splice site is recognized by the
Cell 176, 549–563, January 24, 2019 553
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Figure 4. Splice-Site Competition Leads to Non-monotonic Global Scaling of Mutation Effects

(A) Exon inclusion was modeled as a Poisson process, where the probability of inclusion remains constant at k per unit time while the exon is not spliced in.

(B) 30 and 50 splice sites compete. The PSI of exon 6 is given by the probability that it is included in the mature mRNA before exon 7. Modeling inclusion of both

exons as competing Poisson processes results in Equation 1.

(C) The relationship between exon 6 PSI and fold changes in its splicing efficiency parameter k6 is sigmoidal.

(D) Dependence of the final PSI and DPSI on the starting PSI, for different values of (A) (mutation effect), and fitting the model to the data (also Figure S3).

(E) Predicting PSI with a model that considers the scaling of mutation effects. Left: observed versus predicted PSI. Right: residual plot with loess trend line and

95% confidence band.

(legend continued on next page)
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splicing machinery remains constant over time, until it is eventu-

ally recognized) with parameter k (Figure 4A). Without splice-site

competition, the probability of exon 6 inclusion at a specific time

point therefore follows an exponential distribution with param-

eter k6 (orange curve in Figure 4B, see STAR Methods), and

the probability of exon 7 splicing to exon 5 follows an exponential

distributionwith parameter k7 (gray curve in Figure 4B). If exons 6

and 7 compete for splicing (Figure 4B), the PSI of exon 6 is

given by:

exon 6 PSI= 100$

�
1� k7

k7 + k6
e�k6t

�
(Equation 1)

where t is the time delay between the splice sites flanking exon

6 becoming available to the splicing machinery and the 30 splice
site preceding exon 7 (30 splice site of intron 6) becoming

available, when competition between alternative splice sites for

pairing to a common splice site takes place (full derivation in

Data S1).

Importantly, Equation 1 implies a sigmoidal relationship be-

tween exon 6 PSI and fold changes in k6 (Figures 4C and S5A),

so changes in k6 do not always result in the same PSI change

(DPSI). Instead, a mutation that alters k6 results in small DPSI if

that exon has very low levels of inclusion, larger DPSI if the

exon has intermediate levels of inclusion, and small DPSI when

the exon displays high levels of inclusion (middle panel in Fig-

ure 4C), thus providing a rationale for the observed non-monoto-

nicity in the effects of mutations.

If we fix k7 to 1 and t to 0, the relationship between the DPSI

caused by amutation and the PSI at which this effect is observed

is given by:

DPSI= 100$

�
A$Starting PSI

100� Starting PSI+A$Starting PSI

�
� Starting PSI

(Equation 2)

where the mutation introduces an A-fold change in k6 (i.e., A is a

parameter describing the molecular effect of a mutation; see

Data S1).

Equation 2 describes a relationship between the starting PSI

and the change in PSI (right panel in Figure 4C) very similar to

that observed for the empirical data (Figures 4D and S3). Intro-

ducing a time delay between exon 6 and exon 7 synthesis

changes the shape of these curves, but the non-monotonic

behavior remains (Figure S5C).

In summary, the seemingly non-intuitive scaling of mutation

effects may simply arise because the mutual exclusivity of

splice-site choice results in a sigmoidal relationship between

the change in the efficiency of exon 6 recognition and the final

PSI.
(F) Relationship between starting PSI at which the maximum effect of a mutation

(G) Scaling predicts the effect of reduced SF3B1 on the inclusion of FAS exon 6

(H) 14 genotypes were transfected in 3 cell lines and their PSIs determined usin

inclusion of these genotypes.
Global Scaling Contributes Substantially to Genetic
Prediction
We quantified the extent to which the global scaling law im-

proves genetic prediction across all genotypes in our dataset.

This model has the same number of parameters as the simple

model –one for each mutation representing its parameter A.

The cross-validation RMSE decreases from 17.8 to 15.7 PSI

units (Figures 2E and 4E), and the systematic biases in the

predictions observed with the simple linear model are reduced

(Figures 2E, 4E, and S5D).
The Starting PSI at which the Maximum Effect of a
Mutation Occurs Is Inversely Related to the Effect Size
of the Mutation
If the phenotypic effect of a mutation (DPSI) at a given starting

PSI is known, Equation 2 can be used to determine themolecular

effect A of that mutation. Its DPSI at any starting PSI can then be

calculated. The relationship between the maximum effect size of

a mutation and the starting PSI at which this effect size is

observed is expected to be (see Data S1):

Starting PSI where max effect occurs= 50� 1

2
$Max effect

(Equation 3)

in good agreement with the behavior of mutations in our dataset

(r2 = 0.93, Figure 4F). Thus, using a single parameter—the A

parameter in Equation 2—the global scaling law determines

both the starting PSI at which themutation will have its maximum

effect, as well as the DPSI for all other starting PSIs.
Trans Perturbations Also Cause Non-monotonic
Changes in Inclusion
The global scaling law predicts how the effect of a mutation on

splicing depends on the initial inclusion level, but the law should

also be valid for any other perturbation altering the efficiency of

exon 6 inclusion (k6). We reduced the expression of the splicing

factor SF3B1, resulting in reduced exon 6 inclusion (Figure S4D;

Tejedor et al., 2015). We used a library of human FAS exon 6 var-

iants containing all 189 single mutations (Julien et al., 2016) to

confirm that the consequence of SF3B1 depletion also scales

non-monotonically with the starting PSI (Figure 4G). Thus, the

scaling law applies not only to the effects of mutations within

the exon, but also to the consequences of reducing the activity

of a trans-acting factor.
Differences between Cell Types Also Display Global
Scaling
To test whether scaling is observed under other conditions that

induce differences in splicing patterns, we compared the PSI

of 14 exon 6 genotypes (Table S4) in 3 different cell lines.
occurs and the maximum DPSI effect. Top: model behavior. Bottom: dataset.

variants.

g RT-PCR assays. Scaling predicts the effect of changing the cell type on the
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Comparing exon PSI between pairs of cell lines (where the PSI in

one cell line is the starting PSI and in the other the final PSI) also

displayed a scaling effect (Figure 4H). The scaling law can there-

fore be used to predict how variants of an exon differentially

respond to a complex perturbation.

Additional Specific Interactions Are Sparse and Occur
between Proximal Mutations
After considering global scaling, the PSI values still show sub-

stantial deviance from our predictions (Figures 4E and S4D), sug-

gesting that specific interactions may occur between mutations.

We testedwhether the behavior of eachmutation was different in

the presence and absence of every other mutation and identified

7 interactions (Figures 5A and 5B), which can be classified into

different qualitative types (Figure 5C; Weinreich et al., 2005).

Magnitude epistasis happens when the magnitude (but not the

direction) of the effect changes in a given genetic background.

Sign epistasis occurs when the direction of a mutation effect

changes. Masking epistasis takes place when the effect of a mu-

tation disappears. We found 1 example of sign epistasis (C18G-

T19G), 2 of masking epistasis (C32T-G35T and T49C-G51C),

and 4 of magnitude epistasis (C18T-T19G, T24G-G26T, C39T-

G41C, and C39T-G44A). These epistatic effects were consistent

across a large number of genotypes (Figures 5D and S6A).

We validated the C18G-T19G interaction by transfecting mini-

genes containing these mutations into HEK293 and COS-7 cells

(Figures S6B and S6C). As in our library, T19G promotes inclu-

sion in the absence of C18G but skipping in its presence, also

when integrated at a single locus in the genome (Figure S6E).

The 7 pairwise interactions were all between mutations within

6 nt of each other (7 out of 12 [58.3%] pairs within a hexamer

interact compared to 0 of the other 53 pairs [0%], p = 1.138 3

10�6, Fisher’s exact test). This is likely due to effects on binding

of a trans-acting splicing factor (4–7 nt being the common bind-

ing site size for typical RNA-binding domains, Daubner et al.,

2013), or 2 trans-acting factors with adjacent or overlapping

binding sites.

Both Global Scaling and Specific Interactions Are
Important for Accurate Genetic Prediction
After building a model considering both global scaling and the 7

pairwise interactions, the 10-fold cross-validation RMSE

decreased to 8.0 PSI units (Figures 6A and 6B), less than half

the RMSE of the models that did not consider either global

scaling or specific interactions (Figures 2E and 4E). Moreover

the prediction error when considering both global scaling and

specific interactions does not increase with the number of muta-

tions in the genotypes whose PSI is being predicted (Figure 6C).

Thus, when both global scaling and specific interactions are

considered, we can accurately predict the combined effect of

up to 10 mutations.

Scaling of Mutation Effects in the Alternative Splicing of
WT1 Exon 5
To test whether global scaling applies to other exons, we

analyzed data from a mutant library of WT1 exon 5 (Ke et al.,

2018). The inclusion levels of 141 single and 414 double mutants

were varied by introducing 10 different exon splicing regulatory
556 Cell 176, 549–563, January 24, 2019
sequences (ESRs) in exon positions 5–10 (Figure 7A). We

compared the ESs of mutants in the presence of the WT ESR

(starting ES) and in the presence of other ESRs (final ES). The ef-

fect of changing an ESR inside WT1 exon 5 scales as predicted

by the scaling law (Figure 7B).

Evidence for Global Scaling in Exons throughout the
Genome
Changes in FAS exon 6 PSI due to differences in the levels and

activities of splicing factors between cell types undergo scaling

(Figure 4H). To test whether other exons follow this behavior,

we compared the inclusion of all exons in the genome across

4 pairs of conditions: 2 tissues (brain and skin), 2 cell lines

(HepG2 and human umbilical vein endothelial cell [HUVEC]),

the presence or absence of mutations in SF3B1, and 2 different

developmental states (Figure 7C). The PSI of exons with high or

low inclusion levels in one condition (e.g., the first tissue) tend

to be similar in the other condition (the second tissue), whereas

larger DPSIs are observed for exons with intermediate inclusion

levels, consistent with global scaling.

Scaling of the Effects of sQTLs
To globally study the effect of changes in cis on the inclusion of

exons across the genome, we performed a splicing quantitative

trait locus (sQTL) analysis to find variants in a gene associated

with altered inclusion of one of its exons (see STAR Methods).

We compared the effects of 193,812 putative sQTLs (defined

with Bonferroni-corrected p < 0.05) in different tissues across

635 humans (Battle et al., 2017). Since exon PSI often changes

across tissues (Pan et al., 2008), this allowed us to compare

the effect on inclusion of the same genetic variants at different

PSIs for 4,418 alternative cassette exons. sQTLs had smaller ef-

fects in tissues with low or high PSI and larger effects in tissues

with intermediate PSI (Figure 7D). For example, the PSI of ASPH

exon 3 increases in the presence of SNP rs2350919. While the

increase could in principle be more readily detected in tissues

where the exon is mostly skipped, the PSI increase is more

evident in tissues with an intermediate PSI (Figure 7E). Likewise,

the PSI of PPA2 exon 6 decreases in the presence of SNP

rs7672469, but this decrease is greater in tissues with more in-

termediate PSI levels (Figure 7E).

Global Scaling in Alternative 50 and 30 Splice-Site Choice
Although the mathematical model was built to describe the

behavior of alternative exons, it should apply to any molecular

process involving a mutually exclusive competition, like alterna-

tive splice-site selection. Indeed, the effect of mutations on an

alternative 50 splice-site choice (Rosenberg et al., 2015) depends

on the starting splice-site usage (PSU) levels (Figures 7F, 7G,

and S7A). To more globally assess this, we compared the PSU

of thousands of alternative 30 and 50 splice sites in the genome

across the same four pairs of conditions shown in Figure 7B,

confirming that differences in PSU also scale non-monotonically

(Figures 7H and S7B).

Taken together, therefore, global scaling is seen in many

different datasets, for different types of splice-site choices,

and for both cis and trans perturbations, including endoge-

nous genes.
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Figure 5. Specific Pairwise Interactions between Proximal Mutations

(A) Interacting mutations are proximal in the linear sequence of the exon.

For every pair of mutations, X and Y, 2 tests were performed to confirm whether the parameter (A) (Equation 2) of X is influenced by the presence of Y, and vice

versa. An interaction was called if both tests were significant at an FDR <0.05. Left: bars spanning the two –log10 FDR values for each potential interaction. Yellow

bars indicate both FDR values <0.05. Jitter was added to the x axis so overlapping bars can be visualized separately. Right: violin plots showing the distribution of

distances between mutations that display a significant interaction (yellow) and between those that do not (black).

(B) The 7 interactions found. Colors indicate type of epistasis as in (C).

(C) Categories of epistasis.

(D) Behavior of mutations in the presence (yellow) or absence (black) of their interaction partner.
DISCUSSION

Exploring a Combinatorially Complete Genotype Space
for the Evolution of an Alternatively Spliced Exon
Mutation libraries containing a complete subset of genotype

space provide an opportunity to analyze the behavior of a muta-

tion in thousands of closely related genetic contexts. Here, we

have used this approach to systematically investigate how

exonicmutations that occurred in the evolution of an alternatively
spliced cassette exon—FAS exon 6—influence the inclusion of

that exon in an mRNA.

Although many sequence and structural features have been

shown to regulate alternative splicing (Barash et al., 2010; Cha-

sin, 2007; Ke et al., 2011), a full understanding of the splicing

code is far from being achieved (Xiong et al., 2015). Deep muta-

tional scans of alternative exons have revealed the high density

of information encoded in the sequence of individual exons

(Braun et al., 2018; Julien et al., 2016; Ke et al., 2018; Soemedi
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Figure 6. Combining Pairwise Interactions with Global Scaling to

Achieve Accurate Genetic Prediction

(A) Real versus predicted PSI for a model that only considers pairwise in-

teractions and one that also considers global scaling.

(B) Residuals plots with loess trend lines and 95% confidence bands, for the

models shown in (A).

(C) Mean absolute error of different model predictions versus the number of

mutations (relative to the ancestral sequence) in the genotype. Error bars

indicate the 95% confidence intervals of the mean absolute error.
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et al., 2017), and insights into the mechanisms behind the

behavior of mutations in these assays have provided insights

into how splicing regulatory information is decoded.

We found that the same mutation in closely related genetic

contexts consistently has different effects on exon inclusion.

However, these effects can be accurately predicted because

they (1) follow a mathematically defined scaling law, and (2)

display well-defined epistatic interactions with other proximal

mutations. Specifically, mutations alter exon inclusion in a way

that scales non-monotonically with the current level of exon in-

clusion. For any mutation, the impact on splicing is smallest

when the current inclusion level is close to 0% or 100%, and in-

creases progressively toward intermediate inclusion levels. In

addition, the inclusion level at which a particular mutation has

maximum effect is inversely and linearly related to the strength

of the mutation (Figure 4F).

Non-monotonic Scaling May Arise Because Splice-Site
Selection Is a Mutually Exclusive Molecular Event
Since the scaling law applies to mutations in different regions of

the exon, likely having different molecular effects, it must arise

from a general feature of splicing. We thus used a minimal

mathematical model that captures the essence of splicing as

an all-or-none molecular event at the level of individual mRNAs.

This suggests that non-monotonic scaling arises because

splice-site selection is a mutually exclusive molecular event

with the competition between splicing to competing splice sites

generating a sigmoidal relationship between the efficiency of one

splicing outcome (e.g., inclusion of an exon) and the final per-

centage of isoform production.

Implications of the Scaling Law for Splicing Regulation
The scaling law has a number of practical implications. First, the

evolution of a constitutive exon into an alternative exon will likely

require multiple nt substitutions to escape the ‘‘inertia’’ of the

scaling law that minimizes the effects of mutations when the

exon is near full inclusion. Second, the same trans-acting pertur-

bation can have different effects on different target exons, de-

pending on their PSI. Knocking down SF3B1 leads to effects

that scale non-monotonically with the starting exon inclusion

level, and an hnRNP H knockdown has also been reported to

have effects that scale according to the starting PSI (Braun

et al., 2018).

In addition, the recent approval of Nusinersen (Spinraza),

which corrects a splicing defect to treat spinal muscular atrophy

(Talbot and Tizzano, 2017), has revitalized efforts to target

splicing for therapeutic benefit. The scaling law can help to pre-

dict target splicing events or cellular states most sensitive to

treatments as well as dose-response curves.

Specific Interactions Occur between Proximal
Mutations
Pairwise interactions between mutations are sparse (7 out of 65

possible interactions), and all occur between mutations sepa-

rated by <6 nt. As the binding sites of common RNA binding

domains are 4–7 nt long (Daubner et al., 2013), this suggests

mutations are having non-independent effects on the binding

of individual or overlapping or adjacent trans factors. While our
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Figure 7. Generalizing the Scaling Law

(A) Mutant library of WT1 exon 5 in the presence of different splicing regulatory sequences (hexamers).

(B) Comparing the enrichment scores (ESs) ofWT1 exon 5 genotypes in the presence of a wild-type hexamer sequence A (starting ES) with those in the presence

of hexamer sequences B–J (final ES). To avoid epistatic effects, mutations within 6 nt from the hexamer andmutations in the region forming a secondary structure

were removed from this analysis. Inclusion-promoting hexamers are labeled in red, skipping-promoting hexamers in blue, and neutral hexamers in black.

(legend continued on next page)
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previous report (Julien et al., 2016) suggested long-distance

epistatic interactions, most of these are likely a consequence

of the general nonlinearity introduced into the landscape by the

scaling law (Figure S5E; see below).

Three of the strongest interactions can illustrate potential

mechanisms behind these epistatic effects. C32T and G35T

are found in a region of the exon that binds toPTB (polypyrimidine

tract-binding protein), which decreases FAS exon 6 inclusion

(Izquierdo et al., 2005). These mutations increase skipping and

each is predicted to increase the affinity for PTB binding (Fig-

ure S6F), but the double mutant results in less skipping than ex-

pected from the sumof the single-mutant effects (Figures 5D and

S6A). One potential explanation is that, while each mutation in-

creases PTB binding, binding affinity is no longer rate limiting

for splicing regulation by PTB beyond a certain threshold. Previ-

ously, it has been shown that PTB can bind to a site centered on

position 33 or to a site centered onposition 36 (Mickleburgh et al.,

2014). Whereas C32T is predicted to increase binding centered

on position 33, G35T is predicted to increase binding centered

on position 36 (Figure S6F). This suggests another model where

positive epistasis arises because both strengthened sites cannot

bind to PTB at the same time (Figure S6G). Such mechanisms

may represent general causes of diminishing returns or antago-

nistic epistasis between cis-regulatory mutations.

T19G promotes inclusion in the absence of C18G but pro-

motes skipping in the presence of C18G, an example of sign

epistasis. In contrast, C18G has no effect in the absence of

T19G but promotes skipping in the presence of T19G (Figures

5D and S6A). An explanation could be that T19G prevents the

binding of a repressor, C18G has no effect on the binding of

this repressor, and the double mutant creates a new binding

site for the same or a new repressor (Figure S6H).

Finally, in the T49C–G51C interaction (Figures 5D and S6A),

where each individual mutation promotes inclusion and the

double mutant does not increase exon inclusion further, either

mutation may be sufficient to prevent the binding of a regulatory

factor. Introducing the second mutation therefore has no further

effect (Figure S6I).

Global Scaling and Sparse Pairwise Interactions Are
Sufficient for Accurate Genetic Prediction
A long-standing goal of genetics has been to accurately predict

changes in phenotype from changes in genotype (Lehner, 2013).

In particular, the extent to which pairwise and higher-order com-

binations of mutations are important for genetic prediction is not

clear (Sailer and Harms, 2017; Weinreich et al., 2013). Here, we

found that for the alternative splicing of a model exon, a relatively

simple model can provide accurate genetic prediction for geno-
(C) Boxplots showing how genome-wide exon inclusion levels compare across

splicing regulators. Notches display the confidence interval around themedian, ca

data points. Upper whiskers extend from the 75th percentile to the largest value no

25th percentile to the lowest value no further than 1.5 3 IQR from the 25th perce

(D) How sQTL effects depend on the starting PSI.

(E) The effect of inclusion-promoting variant rs2350919 on ASPH exon 3 and that

starting PSI.

(F) Mutant library of an intron with alternative 50 splice sites (Rosenberg et al., 20

(G) Scaling of mutation effects in alternative splice-site choice. Scatterplots show

(H) Boxplots showing how genome-wide alternative 30 splice-site usage levels co
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types with up to 10 mutations. The model only contains a small

number of specific second-order interactions but scales the ef-

fects of the individual mutations according to a global scaling

law. If not explicitly accounted for, this global scaling will result

in more complicated models with ‘‘phantom’’ pairwise and

higher-order epistasis terms (Figure S5E). For example, a

cross-validation RMSE of 11.0 PSI units can be achieved using

a Lasso regression model with 98 parameters including 35/65

(53.8%) second- and 53/210 (25.2%) third-order interactions

(STAR Methods).

Non-monotonic Scaling of Mutation Effects May Occur
Quite Widely Because of Mutually Exclusive Molecular
Events
Our mathematical model was built with alternative splicing in

mind, but it can be used to simulate any other process involving

a competition between mutually exclusive molecular events.

Such competitions are common in biology, for example, be-

tween transcription factors binding to the same site (Darieva

et al., 2010) or between 2 alternative protein interaction partners

in a signal transduction cascade (Kiel et al., 2013). Moreover,

sigmoidal relationships between molecular parameters and

cellular phenotypes can be generated bymany additional molec-

ular mechanisms, for example, by cooperativity in molecular

recruitment (Ackers et al., 1982) and in the folding (Tokuriki and

Tawfik, 2009) and allostery (Ackers and Holt, 2006) of individual

proteins. The scaling of mutation effects identified here could

therefore be a widespread occurrence.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-SF3B1 Abcam Catalogue #: ab39578

Mouse monoclonal anti-GAPDH Abcam Catalogue #: ab8245

Rabbit ECL IgG, HRP-Linked Whole Ab GE Healthcare Catalogue #: NA9340

Mouse ECL IgG, HRP-Linked Whole Ab GE Healthcare Catalogue #: NA931

Bacterial and Virus Strains

Stellar competent cells (E. coli HST08 strain) Clontech Catalogue #: 636766

Chemicals, Peptides, and Recombinant Proteins

Accuprime Pfx DNA polymerase ThermoFisher Scientific Catalogue #: 12344024

GoTaq flexi DNA polymerase Promega Catalogue #: M7806

Lipofectamine 2000 ThermoFisher Scientific Catalogue #: 11668027

Opti-MEM I reduced serum medium ThermoFisher Scientific Catalogue #: 31985-047

DMEM Glutamax ThermoFisher Scientific Catalogue #: 61965059

Foetal bovine serum ThermoFisher Scientific Catalogue #: 10270

Penicillin-Streptomycin ThermoFisher Scientific Catalogue #: 15070063

SYBR safe DNA gel stain ThermoFisher Scientific Catalogue #: S33102

Opti-MEM ThermoFisher Scientific Catalogue #: 13778150

DMEM F12 ThermoFisher Scientific Catalogue #: 31330038

complete protease inhibitor Roche Catalogue #: 11697498001

Western Lightning Plus ECL chemiluminescence reagent PerkinElmer Catalogue #: NEL105001EA

Opti-MEM I reduced serum medium without phenol red ThermoFisher Scientific Catalogue #: 11058021

DMEM + GlutaMAX ThermoFisher Scientific Catalogue #: 61965-059

Hygromycin B ThermoFisher Scientific Catalogue #: 10687-010

Blasticidin ThermoFisher Scientific Catalogue #: A1113903

Doxycycline CONDA Catalogue #: 631311

Critical Commercial Assays

In-Fusion HD cloning kit Clontech Catalogue #: 639649

Plasmid DNA purification maxi kit Quiagen Catalogue #: 50912163

Gel extraction kit Quiagen Catalogue #: 50928704

Maxwell LEV 16 simplyRNA tissue kit Promega Catalogue #: AS1280

Whatman Protran 0.2 um nitrocellulose GE Healthcare Catalogue #: 106000001

Kodak BioMax MR film Sigma-Aldrich Catalogue #: Z353949

Deposited Data

Raw sequencing reads for combinatorially complete

mutant library

This paper GEO: GSE111316 (replicates

split into different fastq files)

ENA: PRJEB24588 (replicates

in the same fastq file)

Raw sequencing reads for doped mutant library in the

presence of siRNA against SF3B1 or control siRNA

This paper GEO: GSE111316 (replicates

split into different fastq files)

ENA: PRJEB24588 (replicates

in the same fastq file)

Tissue-specific RNA-Seq data from nonhuman primates Peng et al., 2015 http://www.nhprtr.org/

Human Protein Atlas tissue-specific RNA-Seq data Uhlen et al., 2015 http://www.proteinatlas.org/
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human Illumina Body Map tissue-specific RNA-Seq data Illumina https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-513/

Mus musculus tissue-specific RNA-Seq data Merkin et al., 2012 GEO: GSE41637

Homo sapiens (GRCh38) genome sequence Ensembl ftp://ftp.ensembl.org/pub/release-84/

fasta/homo_sapiens/dna/Homo_

sapiens.GRCh38.dna.toplevel.fa.gz

Pan troglodytes genome sequence Ensembl ftp://ftp.ensembl.org/pub/release-84/

fasta/pan_troglodytes/dna/Pan_

troglodytes.CHIMP2.1.4.dna.toplevel.fa.gz

Papio anubis genome sequence Ensembl ftp://ftp.ensembl.org/pub/release-84/fasta/

papio_anubis/dna/Papio_anubis.PapAnu2.

0.dna.toplevel.fa.gz

Macaca mulatta genome sequence Ensembl ftp://ftp.ensembl.org/pub/release-84/fasta/

macaca_mulatta/dna/Macaca_mulatta.

MMUL_1.dna.toplevel.fa.gz

Callithrix jacchus genome sequence Ensembl ftp://ftp.ensembl.org/pub/release-84/fasta/

callithrix_jacchus/dna/Callithrix_jacchus.C_

jacchus3.2.1.dna.toplevel.fa.gz

Microcebus murinus genome sequence Ensembl ftp://ftp.ensembl.org/pub/release-84/fasta/

microcebus_murinus/dna/Microcebus_

murinus.micMur1.dna.toplevel.fa.gz

Mus musculus genome sequence Ensembl ftp://ftp.ensembl.org/pub/release-84/fasta/

mus_musculus/dna/Mus_musculus.

GRCm38.dna.toplevel.fa.gz

Homo sapiens (GRCh38) genome annotations Ensembl ftp://ftp.ensembl.org/pub/release-84/gtf/

homo_sapiens/Homo_sapiens.GRCh38.

84.gtf.gz

Pan troglodytes genome annotations Ensembl ftp://ftp.ensembl.org/pub/release-84/gtf/

pan_troglodytes/Pan_troglodytes.

CHIMP2.1.4.84.gtf.gz

Papio anubis genome annotations Ensembl ftp://ftp.ensembl.org/pub/release-84/gtf/

papio_anubis/Papio_anubis.PapAnu2.0.

84.gtf.gz

Macaca mulatta genome annotations Ensembl ftp://ftp.ensembl.org/pub/release-84/gtf/

macaca_mulatta/Macaca_mulatta.

MMUL_1.84.gtf.gz

Callithrix jacchus genome annotations Ensembl ftp://ftp.ensembl.org/pub/release-84/gtf/

callithrix_jacchus/Callithrix_jacchus.C_

jacchus3.2.1.84.gtf.gz

Microcebus murinus genome annotations Ensembl ftp://ftp.ensembl.org/pub/release-84/gtf/

microcebus_murinus/Microcebus_murinus.

micMur1.84.gtf.gz

Mus musculus genome annotations Ensembl ftp://ftp.ensembl.org/pub/release-84/gtf/

mus_musculus/Mus_musculus.GRCm38.

84.gtf.gz

M227 and M228 position weight matrices Ray et al., 2013 http://cisbp-rna.ccbr.utoronto.ca/

WT1 exon 5 mutant enrichment scores table Ke et al., 2018 https://genome.cshlp.org/content/suppl/

2017/12/14/gr.219683.116.DC1/

Supplemental_Table_S2.xlsx

GTEx junction read counts file Battle et al., 2017 https://gtexportal.org/home/datasets

RNA-Seq data from HepG2 cells ENCODE Project

Consortium, 2012

GEO: GSM2308416 and GSM2308417

RNA-Seq data from Huvec cells ENCODE Project

Consortium, 2012

GEO: GSM2072423 and GSM2072424
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RNA-Seq data from myelodysplastic syndrome Dolatshad et al., 2015 GEO: GSE63569

Single-cell RNA-Seq data from human embryos as different

developmental stages

Yan et al., 2013 GEO: GSE36552

GTEx genotype matrix file Battle et al., 2017 dbGap: phs000424.v7.p2

Homo sapiens (GRCh37) genome annotations for sQTL

analysis with GTEx data

GENCODE ftp://ftp.ebi.ac.uk/pub/databases/

gencode/Gencode_human/release_19/

gencode.v19.annotation.gff3.gz

Processed read counts file for an alternative 50

splice site mutant library

Rosenberg et al., 2015 https://www.ncbi.nlm.nih.gov/geo/

download/?acc=GSE74070&format=file

Experimental Models: Cell Lines

HEK293 ATCC ATCC CRL-1573

HeLa ATCC ATCC CCL-2

COS-7 ATCC ATCC CRL-1651

HEK293 Flp-In T-Rex cells ThermoFisher Scientific Catalogue #: R780-07

Oligonucleotides

Combinatorially complete library of FAS exon 6 mutants:

TGTCCAATGTTCCAACCTACAGGATCCAGATCTAACT

TGBKGTGGYTKTGTCTYCTKCTTYTSCCRATTCYAST

AATTGTTTGGGGTAAGTTCTTGCTTTGTTCAAACTGC

AGATTGAAATAACTTGGGAAGTAG

IBA Gmbh N/A

Forward primer for library amplification FAS_i5_GC_F:

TGTCCAATGTTCCAACCTACAG

This paper N/A

Rverse primer for library amplification FAS_i6_GC_R:

CTACTTCCCAAGTTATTTCAATCTG

This paper N/A

Forward primer for ampliseq sequencing of input

library FAS_i5_TR_F: AAAATGTCCAATGTTCCAACC

This paper N/A

Forward primer for ampliseq sequencing of input

library FAS_i5_TR_R: TGCAGTTTGAACAAAGCAAGA

This paper N/A

Forward primer for ampliseq sequencing of output

library FAS_e5_BR_F: CAGCAACACCAAGTGCAAAG

This paper N/A

Reverse primer for ampliseq sequencing of output

library FAS_e5_BR_R: TGCATGTTTTCTGTACTTCCTTTC

This paper N/A

Primers used for RT-PCR (PT1): GTCGACGACACTTGCTCAAC This paper N/A

Primers used for RT-PCR (PT2): AAGCTTGCATCGAATCAGTAG This paper N/A

Mixture of siRNA oligonucleotides against SF3B1

(On-TARGETplus SMARTpool siRNA against SF3B1)

Dharmacon Catalogue #: L-020061-0005

siRNA control oligonucleotide AAGGUCCGGCUCCCCCAAAUG Sigma-Aldrich N/A

Recombinant DNA

pCMV FAS wt minigene exon 5-6-7 This paper N/A

Doped library of FAS exon 6 single/double mutants Julien et al., 2016 N/A

Software and Algorithms

Blastn Johnson et al., 2008 https://blast.ncbi.nlm.nih.gov/Blast.cgi

Seaview Gouy et al., 2010 http://doua.prabi.fr/software/seaview

Clustal Omega http://doua.prabi.fr/software/seaview

PAGAN Veidenberg et al., 2016 http://wasabiapp.org/software/pagan/

TimeTree Kumar et al., 2017 http://www.timetree.org/

STAR v2.5.2a Dobin et al., 2013 https://github.com/alexdobin/STAR/

releasesh

SAMtools v1.3.1 Li et al., 2009 https://sourceforge.net/projects/

samtools/files/samtools/1.3.1/
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PSI.sh script Schafer et al., 2015 https://github.com/pablo-baeza/

Baeza_et_al_2018/blob/master/001_

Exon_inclusion_levels_in_different_

animals/PSI.sh

ImageJ v1.47 NIH https://imagej.nih.gov/ij/download.html

SABRE demultiplexer github/najoshi https://github.com/najoshi/sabre

PEAR merger Zhang et al., 2014 https://cme.h-its.org/exelixis/web/

software/pear

Seqtk Heng Li https://github.com/lh3/seqtk

FASTX-toolkit Hannon lab http://hannonlab.cshl.edu/fastx_toolkit

PrimerX Carlo Lapid and Yimin Gao http://www.bioinformatics.org/primerx/

VAST-TOOLS Tapial et al., 2017 https://github.com/vastgroup/vast-tools

BCFTools Genome Research Limited http://www.htslib.org/

R v3.3.3 The R Foundation https://www.r-project.org/

Analog package in R CRAN https://cran.r-project.org/package=analogue

Caret package in R CRAN https://cran.r-project.org/package=caret

Glmnet package in R CRAN https://cran.r-project.org/package=glmnet

GGplot2 package in R CRAN https://cran.r-project.org/package=ggplot2

Psichomics package in R Bioconductor https://bioconductor.org/packages/release/

bioc/html/psichomics.html

Lmtest package in R CRAN https://cran.r-project.org/package=lmtest

Other

Resource web page with all the scripts needed to

reproduce the computational analyses

This paper https://github.com/lehner-lab/Scaling_Law
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ben Leh-

ner (ben.lehner@crg.eu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli strain for library subcloning
E. coli cells used to build the combinatorially-complete library (see Library subcloning subsection in the METHOD DETAILS) were

Stellar competent cells (636766, Clontech) and grown for 18 hours in LB medium containing ampicillin. Cells were cultured at 37�C.

HEK293, HeLa and COS-7 cells for transfection
Mycoplasma-free tested HEK293 cells (CRL-1573, ATCC), HeLa cells (CCL-2, ATCC) or COS-7 (CRL-1651, ATCC) cells were grown

in Lipofectamine 2000 (11668027, ThermoFisher Scientific) and Opti-MEM I Reduced Serum Medium (31985-047, ThermoFisher

Scientific). Six hours post-transfection, the cell culture medium was replaced with DMEM Glutamax (61965059, ThermoFisher

Scientific) containing 10% FBS and Pen/Strep antibiotics, and cells were allowed to grow for 48 hours. HEK293 and HeLa cells

are female, COS-7 cells are male. All cells were grown at 37�C. After receiving the cells from ATCC, they were not authenticated.

HEK293 FlpIn cells
HEK293 Flp-In T-Rex cells (ThermoFisher Scientific, R780-07) were grown in 6-well plates using Lipofectamine 2000with Opti-MEM I

reduced serummediumwithout phenol red (ThermoFisher Scientific, 11058021). After 6 hours, themediumwas changed to DMEM+

GlutaMAX (ThermoFisher Scientific, 61965-059) in the presence of 10% fetal bovine serum and pre-strep antibiotics. Stable

transfectants were selected with 100 mg/ml hygromycin B (ThermoFisher Scientific, 10687-010) and 5 mg/ml blasticidin

(ThermoFisher Scientific A1113903). Polyclonal populations were grown in the presence of 5 mg/ml blasticidin for 10 days. For

each genotype, six individual clones were picked with a pipette tip andmoved to wells in a 6-well plate. They were grown in the pres-

ence of 5 mg/ml blasticidin and 100 mg/ml hygromycin B. HEK293 Flp-In T-Rex cells are female. Cells were grown at 37�C. Cells were

not authenticated.
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METHOD DETAILS

Phylogenetic analysis and ancestral sequence reconstruction
The sequence corresponding to the human genomic region covering FAS exon 5 to FAS exon 7 was downloaded from the UCSC

genome browser and Blastn (Johnson et al., 2008) was employed to identify the orthologous sequences in primates, colugos and

treeshrews. By aligning each genomic sequence (containing exons and introns) to its corresponding mRNA sequence (containing

only exons), the orthologs of exon 6 in different species were identified and their limits defined. A multiple sequence alignment of

all the exon sequences was built with the Seaview software (Gouy et al., 2010) implementation of the Clustal Omega algorithm.

The sequences of the FAS exon 6 evolutionary intermediates were inferred using a maximum-likelihood algorithm implemented by

the PAGAN software from the Wasabi suite (Veidenberg et al., 2016). This program requires a guide tree that can be provided by the

user. For this, a phylogenetic tree containing all the species in our multiple sequence alignment was downloaded from TimeTree (Ku-

mar et al., 2017). Tarsier and lemur sequences contain insertions and deletions (indels) not found in primates more closely related to

humans (Figure S1A). The reconstructed evolutionary intermediates ancestral to tarsiers and lemurs contained these insertions and

deletions. However, these indels are not present in mammals more distantly related to humans such as colugos and treeshrews (Fig-

ure S1A). Therefore, these indels were manually removed from the reconstructed sequences.

Analysis of FAS exon 6 inclusion across species
Tissue-specific RNA-Seq data from nonhuman primates was downloaded from the Nonhuman Primate Reference Transcriptome

Resource (www.nhprtr.org, Peng et al., 2015). Tissue-specific RNA-Seq data from humanswas downloaded from the Human Protein

Atlas (www.proteinatlas.org, Uhlen et al., 2015) and the Human Illumina Body Map (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-513/). The PSI.sh pipeline described by Schafer et al. (2015) was used with the RNA-Seq aligner STAR

v2.5.2a (Dobin et al., 2013) and SAMTools (Li et al., 2009) to measure the inclusion levels of FAS exon 6 in each sample (for more

details, see the QUANTIFICATION AND STATISTICAL ANALYSIS section).

Combinatorially-complete library design and synthesis
A sequence library was designed to include the 63-nucleotide-long ancestral exon sequence, with 10 positions allowing for any of the

two nucleotides observed at those specific sites throughout evolution, and one position allowing for the three nucleotides observed

at that position, flanked by 22 nucleotides of the 30 end of the human intron 5 and 50 nucleotides of the 50 end of the human intron 6:

50-TGT CCA ATG TTC CAA CCT ACA GGA TCC AGA TCT AAC TTG BKG TGG YTK TGT CTY CTK CTT YTS CCR ATT CYA STA

ATT GTT TGG GGT AAG TTC TTG CTT TGT TCA AAC TGC AGA TTG AAA TAA CTT GGG AAG TAG �30

Letters in bold indicate the varied positions. B stands for either of C, G or T; K stands for either of T or G; Y stands for either of C or T;

S stands for either of G or C; R stands for either of A or G. The library was synthesized and purified by Reverse Phase HPLC by IBA

Gmbh, and ordered on the 0.2 mmol scale.

Library amplification
Accuprime Pfx (12344024, ThermoFisher Scientific) was used following the manufacturer’s instructions to amplify 20 ng of single-

stranded library DNA for 25 cycles with the following flanking intronic primers: FAS_i5_GC_F and FAS_i6_GC_R (‘‘Primers used

for library amplification’’ in Table S5).

Library subcloning
The amplified library was recombined with pCMV FAS wt minigene exon 5-6-7 (Förch et al., 2000) using the In-Fusion HD Cloning kit

(639649, Clontech) in a 1:8 vector:insert optimized ratio and transformed into Stellar competent cells (636766, Clontech) to maximize

the number of individual transformants, which was around 800,000 individual clones per library. The library was amplified by growing

for 18 hours in LB medium containing ampicillin and the final plasmid library was purified using the Quiagen plasmid maxi kit

(50912163, Quiagen) and quantified with a NanoDrop spectrophotometer.

Input library
20 ng of the library was amplified in triplicates using GoTaq flexi DNA polymerase (M7806, Promega) for 25 cycles with three pairs of

intronic primers FAS_i5_BR_F and FAS_i5_BR_R (‘‘Primers used for Ampliseq sequencing’’ in Table S5), leading to a 135 nucleotide

PCRband that was gel-purified and sequenced. Each pair of primers had a distinct 8-mer barcode sequence to discriminate between

technical replicates (‘‘Primers used for Ampliseq sequencing’’ in Table S5).

Cell transfection and generation of output libraries
For each of the nine experimental replicates, 10 ng of the library were transfected into 250 000 HEK293 cells in one well of a 6-well

plate using Lipofectamine 2000 (11668027, ThermoFisher Scientific) and OPTIMEM I Reduced Serum Medium (31985-047,

ThermoFisher Scientific). Six hours post-transfection, the cell culture medium was replaced with DMEM Glutamax (61965059,
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ThermoFisher Scientific) containing 10%FBS and Pen/Strep antibiotics. 48 hours post-transfection, total RNAwas isolated using the

automatedMaxwell LEV 16 simplyRNA tissue kit (AS1280, Promega). cDNAwas synthetized from 500 ng total RNA using Superscript

III (18080085, Life Technologies), and amplified with one of the nine pairs of barcoded FAS_e5_BR_F and FAS_e5_BR_R primers

(‘‘Primers used for Ampliseq sequencing’’ in Table S5) and GoTaq flexi DNA polymerase (M7806, Promega). Each pair of primers

had a distinct 8-mer barcode sequence to distinguish the nine experimental replicates (‘‘Primers used for Ampliseq sequencing’’

in Table S5). PCR products were run on a 2% agarose gel and the band corresponding in size to the amplification product of

exon inclusion was excised, purified using the Quiaquick Gel extraction kit (Quiagen, 50928704) and quantified with a NanoDrop

spectrophotometer.

Sequencing
Equimolar quantities of three independent amplifications of the input library and equimolar quantities of the purified inclusion band

(output library) of each of the nine replicates were pooled and sequenced at the EMBL Genomics Core Facility where Illumina

Ampliseq PCR-free libraries were prepared and run on a single lane of an Illumina HiSeq3000. In total, 191.6 million paired-end reads

were obtained. The median sequencing coverage for all 3072 genotypes in the input was between 657 and 2069 reads. In the output,

themedian sequencing coverage was between 389 and 1447 reads depending on the replicate. Raw sequencing data has been sub-

mitted to GEO with accession number GSE111316, and to the European Nucleotide Archive with accession number PRJEB24588.

Data processing and calculation of PSI values
The barcodes associated with each experimental replicate (Table S5) were used to demultiplex the raw sequencing files with the

SABRE software (https://github.com/najoshi/sabre). Paired-end reads from each replicate were then merged using PEAR (https://

cme.h-its.org/exelixis/web/software/pear, Zhang et al., 2014) with the following arguments for the input reads: -m 116 -n 116 -v

116; and the following arguments for the output reads: -m 119 -n 119 -v 115. When necessary, reads were reverse complemented

and trimmed using the Seqtk trim tool (https://github.com/lh3/seqtk) with parameters –b 26 and –e 27 for the input reads and –b 26 –e

30 for the output reads. Finally, the FASTQ/A Collapser from the FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit) was

employed along with a custom python script to count howmany times each genotype occurred in a sequencing file. Genotypes con-

taining amutation not included in the original library design (which allows for amaximumof 3072 different genotypes) was considered

a sequencing error and discarded in downstream analyses (this occurred with 14.2% of the reads in the input and 17.2% of the reads

in the output). The mean read count among the 3072 allowed genotypes was 1893 in the input and 1355 in the output. For all other

genotypes, the mean read counts was 6 in the input and 9 in the output without any one genotype being present more often than

expected by a Poisson-distributed random variable. Read counts were then used to calculate enrichment scores and PSI values

as described in the QUANTIFICATION AND STATISTICAL ANALYSIS section.

Cell culture and siRNA co-transfection
This section refers to the SF3B1 knock-down experiment (Figure 4G), where the doped library of FAS exon 6mutants was transfected

in the presence of a control siRNA or in the presence of an siRNA against SF3B1.Mycoplasma-free tested HEK293 cells (ATCC, CRL-

1573) were sub-cultured in DMEMGlutamax (ThermoFisher Scientific, 61965059) containing 2.5mM glutamine, 15mMHEPES, 10%

FBS (ThermoFisher Scientific, 10270) and Pen-Strep (ThermoFisher Scientific, 15070063). 250,000 HEK293 cells were plated in

6-well plates (NUNC, 140675). 10 ng of a FAS exon 6 doped library (Julien et al., 2016) were co-transfected in triplicates with

100nM On-TARGETplus SMARTpool siRNA against SF3B1 L-020061-0005 (Dharmacon) using 2 mL Lipofectamine 2000

(ThermoFisher Scientific, 11668027) per 1ml of total volume of transfection in OPTIMEM (ThermoFisher Scientific, 13778150).

Five hours after treatment, the medium was replaced with DMEM-F12 containing 10% FBS and Pen-Strep. 72 hours after transfec-

tion, total RNAwas extracted using theMaxwell LEV 16 simplyRNA Tissue kit (PROMEGA, AS1280). RNA quality was assessedwith a

NanoDrop spectrophotometre, and in parallel, protein extracts were prepared using RIPA buffer (1mM EDTA, 1.5mMMgCl2, 20mM

TrisHCl pH7.5, 150 mM NaCl, 1% NP40) with 1x Complete protease inhibitor (Roche, 11697498001). As a control, 10 ng of plasmid

DNA were co-transfected with 100nM control siRNA ordered from Sigma-Aldrich (sequence: AAGGUCCGGCUCCCCCAAAUG).

Generation of output libraries for the siRNA experiment
This section refers to the SF3B1 knock-down experiment (Figure 4G), where the doped library of FAS exon 6mutants was transfected

in the presence of a control siRNA or in the presence of an siRNA against SF3B1. 72 hours post-transfection, total RNA was isolated

using the automated Maxwell LEV 16 simplyRNA tissue kit (AS1280, Promega) as described above for the combinatorially-complete

library. cDNA was synthetized from 500 ng total RNA using Superscript III (18080085, Life Technologies), and amplified with one of

the three pairs of barcoded FAS_e5_BR_F and FAS_e5_BR_R primers (‘‘Primers used for Ampliseq sequencing – siRNA

Experiments’’ in Table S5) and GoTaq flexi DNA polymerase (M7806, Promega). Each pair of primers had a distinct 8-mer barcode

sequence to distinguish the nine experimental replicates (‘‘Primers used for Ampliseq sequencing – siRNA Experiments’’ in Table

S5). PCR products were run on a 2% agarose gel and the band corresponding in size to the amplification product of splicing

inclusion was excised, purified using the Quiaquick Gel extraction kit (Quiagen, 50928704) and quantified with a NanoDrop

spectrophotometre.
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Sequencing the siRNA experiment
This section refers to the SF3B1 knock-down experiment (Figure 4G), where the doped library of FAS exon 6mutants was transfected

in the presence of a control siRNA or in the presence of an siRNA against SF3B1. Equimolar quantities of the purified inclusion band of

each of the three control siRNA replicates, and equimolar quantities of the purified inclusion band of each of the three SF3B1 siRNA

replicates were pooled and sequenced at the EMBL Genomics Core Facility where Illumina Ampliseq PCR-free libraries were pre-

pared and run on one lane of an Illumina HiSeq2000. In total, 198.4 million paired-end reads were obtained. In the control siRNA

experiment, the median sequencing coverage was between 11204 and 17146 and between 20 and 33 reads for single and double

mutants, respectively. In the SF3B1 siRNA experiment, the median sequencing coverage was between 14036 and 16600 and be-

tween 28 and 41 reads for single and double mutants, respectively.

Western blots
This section refers to the SF3B1 knock-down experiment (Figure 4G), where the doped library of FAS exon 6mutants was transfected

in the presence of a control siRNA or in the presence of an siRNA against SF3B1. Protein extracts were fractionated by electropho-

resis in 10% native acrylamide:bisacrylamide (30:0.8%) gels, and semi-dry transferred onto a 0.45 mM nitrocellulose membrane

(Protran BA85 10401196, Whatman). The following primary antibodies were used for western blot analysis: rabbit polyclonal anti-

SF3B1 (Abcam, ab39578) and anti-GAPDH mouse monoclonal (6CS) (Abcam, ab8245). The following secondary antibodies were

then incubated with the membranes: ECL rabbit or mouse IgG, HRP-Linked Whole Ab (GEHealthcare, NA9340 or NA931). After

extensive washes the bound antibodies were detected using the Western Lightning Plus ECL chemiluminescence reagent (Perki-

nElmer, NEL105001EA) and exposed to Kodak BioMax MR film (Sigma-Aldrich, Z353949).

Experimental validation of the sign epistasis interaction between C18G and T19G
To validate the sign epistasis interaction, the PSI of 4 genotypes were quantified: (1) human FAS exon 6, (2) human FAS exon 6 with

the ancestral nucleotide at position 18, (3) human FAS exon 6 with the ancestral nucleotide at position 19, and (4) human FAS exon 6

with both ancestral nucleotides (‘‘ancestral-like’’ genotype). The four genotypes were also tested in the presence of mutation C48T,

which decreases inclusion levels and consequently facilitates quantification of genotypes displaying high levels of exon inclusion.

Inclusion levels were quantified in HEK293 and COS-7 cells following the protocol described in the ‘‘Experimental evaluation of

PSI values’’ subsection of the QUANTIFICATION AND STATISTICAL ANALYSIS section.

Assessment of the effects of mutants in HEK293 FlpIn cells
To validate the sign epistasis interaction between C18G and T19G in transcripts derived from reporters integrated in a single genomic

site, HEK293 Flp-In T-Rex cells (ThermoFisher Scientific, R780-07) were used following the manufacturer’s instructions. Minigenes

containing the genotypes described in the previous section were subcloned into the site-specific integration plasmid pcDNA/FRT/

TO. 100 ng of pcDNA/PRT/TO_minigenes were co-transfected with 900 ng of the Flp recombinase expression plasmid pOG44 into

cells grown in 6-well plates using Lipofectamine 2000 with Opti-MEM I reduced serum medium without phenol red (ThermoFisher

Scientific, 11058021). After 6 hours, the medium was changed to DMEM + GlutaMAX (ThermoFisher Scientific, 61965-059) in the

presence of 10% fetal bovine serum and pre-strep antibiotics. Stable transfectants were selected with 100 mg/ml hygromycin B

(ThermoFisher Scientific, 10687-010) and 5 mg/ml blasticidin (ThermoFisher Scientific A1113903). Polyclonal populationswere grown

in the presence of 5 mg/ml blasticidin for 10 days. For each genotype, six individual cloneswere pickedwith a pipette tip andmoved to

wells in a 6-well plate. Theywere grown in the presence of 5 mg/ml blasticidin and 100 mg/ml hygromycin B. Gene expression was then

induced using 1mg/ml of doxycycline (CONDA, 631311). Total RNA was extracted (as described below in the ‘‘Experimental evalu-

ation of PSI values’’ subsection of the QUANTIFICATION AND STATISTICAL ANALYSIS section) and RT-PCR assays were carried

out and the products analyzed on 6% acrylamide gels.

Genetic prediction of combined mutation effects
In order to predict the combined effect of different mutations on the inclusion of the exon, five different linear models were built using

the lm function in R:

1. Amodel assuming the 12mutations present independent linear effects, trained only on the 12 singlemutant genotypes (relative

to the ancestral sequence) as well as the ancestor (Figure 2D). Therefore, this model takes into account the effect of each of the

12 mutations in only one specific genetic background.

2. A model assuming the 12 mutations present independent linear effects, trained on the high-confidence subset of the dataset

(Figure 2E). Therefore, this model takes into account the averaged effect of each single mutation across many different genetic

contexts.

3. A model assuming the 12 mutations display independent effects that are nonlinear following the scaling law, trained on the

high-confidence subset of the data (Figure 4E).

4. A model allowing for the seven pairwise interactions observed but not allowing for nonlinearities arising from the scaling law,

trained on the high-confidence subset of the data (Figure 6A, left panel).

5. A model allowing for the seven pairwise interactions as well as the nonlinear behavior (Figure 6A, right panel).
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Models 1 and 2 predicts the PSI of a genotype by using dummy variables representing the presence or absence of each of the

12 mutations in that genotype. Model 3 predicts the mutation effect ln(A) (equation S9, see Data S1) of a genotype using the

same variables as model 1 or model 2. For this model, ln(A) was chosen instead of A because mutation effects are additive in logit

space (equation S9). For a given genotype, the mutation effect A is calculated setting the starting PSI to 96% (the PSI of the ancestral

exon) and the final PSI to that genotype’s estimated PSI. Model 4 was built like model 2, but fitting additional dummy variables for the

seven epistatic interactions identified. Model 5 was built like model 3, but allowing for the seven pairwise interactions.

When the starting PSI is set to 96%, final PSI values above 100% result in negative values of A (Equation 2). Since ln(A) is not

defined for negative numbers, genotypes with an estimated PSI above 100% could not be used to build models 3 and 5. For different

models to be adequately compared they should all be built using the same observations (genotypes). Therefore, models 2–5 (and the

model using mutation effects on the ancestral background) were built after removing any data points with an estimated PSI

above 100%.

Simulated biallelic genotype landscape and ‘‘phantom’’ interactions
This analysis was carried out to illustrate how the presence of global scaling can result in the detection of spurious epistatic interac-

tions (Figure S5E). A biallelic genotype-phenotype landscape with 10 loci (labeled A – J) was built where the allele at each locus could

either be 0 (the wild-type state) or 1 (the mutated state). The PSI of the wild-type exon was defined as 50% by setting its k6 value to 1,

fixing k7 to 1 and t to 0 (see Equation 1 and exon competition modeling section below).

Mutation at each locus introduced an additive effect x on the ln k6 parameter of the wild-type exon (Figure 4C middle panel):

new k6 = elnðold k6Þ+ x
Introducing two mutations with effects x and y:
new k6 = elnðold k6Þ+ x + y
The effects of mutation at each locus were:
Mutation Effect

A +2.5

B +2.0

C +1.5

D +1.0

E +0.5

F �0.5

G �1.0

H �1.5

I �2.0

J �2.5
Equation 1 was used to convert all these new k6 values into PSI scores and the PSI distribution of the simulated dataset is shown in

Figure S4F.

A Walsh-Hadamard transform was applied to a vector w containing all the PSI values in the simulated landscape:

e=H$w
where e is a vector containing the Wa
lsh coefficients, related to the epistatic effect of each genotype in the landscape averaged

across all genetic backgrounds (Domingo et al., 2018, Poelwijk et al., 2016). The Walsh-Hadamard transformation matrix H can

be built recursively with the following formula:

Hn+ 1 =

�
Hn Hn

Hn �Hn

�

with H0 = 1.
One can then use the inverse transformation H-1 on e to make predictions w’ about the PSI values in the landscape.

w
0
=H�1$e
In this example, w = w’ because e was
 originally built using w. To analyze the contribution of the 10th order epistatic terms to our

predictions we set their Walsh coefficients inside e to 0, and measured the RMSE between the real values (w) and the predicted
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values (w’). The contribution of the 9th order epistatic terms was analyzed by setting their coefficients and those of higher order terms

to 0, and so on. The results of this analysis are shown in Figure S5E.

Building a Lasso regression model with higher-order interactions and without global scaling
This section refers to the Lasso model described in the end of the Discussion section titled ‘‘Global scaling and sparse pairwise

interactions are sufficient for accurate genetic prediction.’’ To build a complex model of our combinatorially-complete dataset

(including third-order interactions – higher order combinations not calculated because they greatly increased the computational

burden of this analysis) without taking global scaling into account, the glmnet function of the glmnet package in R was used with

its default parameters to perform lasso regression including second- and third-order interactions. The chosen model was the

simplest model whose lambda fell within one standard error of the model with the smallest lambda value. This lambda was identified

using the cv.glmnet function with default parameters. The RMSE value reported for this model corresponds to its aggregated 10-fold

cross-validation RMSE score, calculated using the same procedure as above.

PTB-Binding Motif Analysis
To study howmutations in the URE6 region affect the strength of putative PTB binding sites (Figure S6F), motifsM227 andM228were

downloaded from the CISBP-RNA database (Ray et al., 2013). A Position Weight Matrix (PWM) score was calculated in different win-

dows along the exon and plotted in Figure S6F.

Scaling of splicing perturbation effects in WT1 exon 5
This analysis relates to Figures 7A and 7B, where we show how the effect of changing a silencer/enhancer sequence in WT1 exon

5 scales as predicted by the scaling law. Table S2 was downloaded from Ke et al., 2018. This table contains enrichment scores for

141 single and 414 double mutant variants ofWT1 exon 5 in the presence of 10 different exon splicing regulatory sequences (ESR),

which may act as exonic splicing enhancers or silencers. To compare the effect on exon inclusion of each ESR at different starting

PSIs, we plotted the enrichment scores of mutants in the presence of the WT ESR (starting PSI condition) against the enrichment

scores in the presence of all other ESRs (final PSI). To avoid epistatic interactions between a mutation and an ESR, we excluded mu-

tations within 6 nucleotides of the ESR, as well as mutations in positions 16-23, which form a secondary structure in the presence of

the WT ESR but not in the presence of the other ESRs.

Genome-wide comparison of exon inclusion levels in two different tissues
This analysis relates to Figure 7C,wherewe showhow complex perturbations in trans factors affect exon inclusion levels as predicted

by the scaling law. Genome-wide exon inclusion levels were quantified as described in the ‘‘Quantifying genome-wide exon inclusion

exon inclusion levels in two different tissues’’ subsection of the QUANTIFICATION AND STATISTICAL ANALYSIS section. To

compare exon inclusion levels across two different tissues, we chose brain and skin, as these are the tissues with the largest number

of samples (1671 and 1203, respectively).

Genome-wide comparison of exon inclusion levels in two different cell lines
This analysis relates to Figure 7C. Two cell lines representing different lineages were selected among the ENCODE common cell

types: HepG2 and Huvec (ENCODE Project Consortium, 2012). RNA-seq data from both cell lines were downloaded fromGEO using

accession numbers GSM2308416 and GSM2308417 (for HepG2), and GSM2072423 and GSM2072424 (for Huvec). Exon inclusion

levels were quantified as described in the ‘‘Quantifying genome-wide exon inclusion exon inclusion levels in two different cell lines’’

Subsection of the QUANTIFICATION AND STATISTICAL ANALYSIS section.

Genome-wide comparison of exon inclusion levels in the presence and absence of mutations in SF3B1
This analysis relates to Figure 7C. We downloaded RNA-seq data from eight myelodysplastic syndrome (MDS) patients with SF3B1

mutations and four MDS patients without mutations in this splicing factor (Dolatshad et al., 2015; GEO series record GSE63569).

Next, the data were processed with vast-tools as described in the QUANTIFICATION AND STATISTICAL ANALYSIS for the compar-

ison between two cell lines, with wild-type SF3B1 representing the ‘‘starting PSI’’ condition, and mutated SF3B1 representing the

‘‘final PSI’’ condition.

Genome-wide comparison of exon inclusion levels in two developmental stages
This analysis relates to Figure 7C. Single-cell RNA-seq data from two-cell stage and four-cell-stage human embryos were down-

loaded (Yan et al., 2013; accessible for download from GEO series record GSE36552) and processed with vast-tools as described

in the QUANTIFICATION AND STATISTICAL ANALYSIS for the comparison between two cell lines. Individual cells were not

sequenced deep enough for an accurate alternative splicing analysis. Therefore, before running vast-tools combine, vast-toolsmerge

was used to pull the vast-tools align outputs corresponding to different cells from the same embryo together into a new set of output

files which were processed as described above, with the 2-cell-stage representing the ‘‘starting PSI’’ condition, and the 4-cell-stage

representing the ‘‘final PSI’’ condition.
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sQTL analysis
This analysis refers to Figures 7D and 7E where we find evidence of scaling of sQTL effects. The BCFTools (http://www.htslib.org)

view command with the –min-af option set to 0.01:minor was used to filter the GTEx genotype matrix file (GTEx_Analysis_2016-01-

15_v7_WholeGenomeSeq_635Ind_PASS_AB02_GQ20_HETX_MISS15_PLINKQC.vcf.gz, provided via dbGap) for common variants

within the GTEx cohort (minimum allele frequencyR 1%). The file was then further filtered using linkage disequilibrium pruning (R2 <

0.2, a threshold often used to select for distinct loci, see Battle et al., 2017; BCFTools command +prunewith parameter –max-LD 0.2).

The GTEx junction read counts file was processed using the Psichomics library in R as described in the ‘‘Quantifying genome-wide

exon inclusion exon inclusion levels in two different tissues’’ subsection of the QUANTIFICATION AND STATISTICAL ANALYSIS for

the comparison of exon PSI levels in different tissues. The output of the quantifySplicing function was subset to include only samples

for which genotype information was also available. Splicing events that could not be quantified in any of the remaining samples were

removed from the dataset.

For each exon splicing event, each potential sQTL and each tissue, a generalized linear model was built to predict exon PSI

assuming a binomial distribution (glm function in R with the family parameter set to ‘‘binomial’’) and using the following variables

as predictors: genotype (the number of copies of the sQTL candidate), sex, age and ischemic time (the time after death before

the sample was processed). A second model was built without the genotype variable. The lrtest function from the lmtest package

in R was then employed to compare both models with a likelihood ratio test and confirm whether introducing the genotype variable

in the model significantly improves model predictions.

To focus on cis-sQTLs and to limit the computational burden of this analysis, we only tested variants inside the same gene as the

splicing event of interest. Gene boundaries were determined according to the Gencode Release 19 (GRCh37.p13) annotations of the

human genome (gencode.v19.annotation.gff3.gz, available for download at ftp://ftp.ebi.ac.uk/pub/databases/gencode/

Gencode_human/release_19/gencode.v19.annotation.gff3.gz). A total of 9 375 981 tests were performed and the resulting p values

were Bonferroni-corrected. sQTLs without a significant effect (Bonferroni-corrected p value < 0.05) in at least one tissue were

removed from the dataset. A list of splicing events with their associated significant sQTLs is shown in Table S6.

The effect size of an sQTL in each tissue was given by the slope of the genotype term in a simple linear model where genotypewas

the only predictor for PSI. The intercept term for this model was used as an estimate of the exon PSI in the absence of its sQTL (i.e.,

the ‘‘starting PSI’’ condition). Although one could simply take the average PSI among all samples that lack the sQTL, some sQTLs

were never absent (i.e., all samples had either one or two copies of the variant). Therefore, this method allows us to estimate (extrap-

olate) what the PSI would be in the absence of the sQTL, even if the data are not available. If the estimated PSI in the absence of the

sQTL was above 100 (or below 0), this was manually fixed to 100 (or 0).

Alternative splice site usage in a mutant library
This analysis relates to Figures 7F–7H and S7A. The processed read counts file for the alternative 50splice site mutant library (Rosen-

berg et al., 2015) was downloaded and extracted from GSE74070_RAW.tar (accessible from GEO series GSE74070). The file was

then filtered with a custom bash script to include only those sequences with 100 or more reads. Read counts supporting usage of

either the first splice site (SD1), the second splice (SD2), the cryptic splice site (SDC) or intron retention (SD0) were extracted for

each sequence and used to calculate the percent splice site usage (PSU) of the first and second splice sites, as follows:

PSU of first splice site= 100$

�
SD1

SD1 +SD2 +SDC +SD0

�

PSU of second splice site= 100$

�
SD2

SD1 +SD2 +SDC +SD0

�

Since the 25-nucleotide mutagenised regions in this library (Fig
ure 7E) are completely random and not based on any wild-type

sequence, the sequence corresponding to the median splice site 1 PSU was taken as the wild-type sequence:

50 TGCTTGGGGAGAAAGGGAAACACATTGCCGGGGGTCGACCCAGGTTCGTGAACGGGATCAAAGCCAACAAGTGCAGAGG

TATTCTTATCACCTTCGTGGCT 30

where the first 25 nucleotides correspond to the first 25-nucleotide-long random region and the last 25 nucleotides correspond to

the second randomized region. All mutations were labeled and reported (Figures 7G and S7A) relative to this sequence.

To plot final versus starting PSU as we did for our mutant library, one would ideally require a combinatorially-complete genotype

space. Such a space can be represented as a graphwhere edges connect genotypes (nodes) differing by one nucleotide substitution.

Each point in a final versus starting PSI scatterplot would therefore represent a pair of genotypes connected by an edge. However,

if our dataset can be represented by a dense graph with many edges, then the dataset from Rosenberg et al., 2015, would be

represented by a very sparse graph almost without edges. Therefore, we cannot plot final versus starting PSU using the samemethod

as previously.
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Instead, to study the dependence of the effect of mutation A on the starting PSU in which it occurs, we processed the data as

follows. The starting PSU was calculated as the median PSU values of all sequences containing every other individual mutation in

the absence of mutation A (i.e., the median PSU of all sequences containing mutation B but not mutation A, the median of all se-

quences containingmutation C but notmutation A, and so on). For the final PSU, we took themedian PSU of all sequences containing

those othermutations in addition tomutation A (i.e., themedian of all sequences containing both B and A, themedian of all sequences

containing both C and A, and so on).

Genome-wide alternative splice site usage across four pairs of conditions
This analysis relates to Figures 7H and S7B. To calculate genome-wide PSU levels in brain and skin, the Psichomics package in

R was used as described in the ‘‘Quantifying genome-wide exon inclusion exon inclusion levels in two different tissues’’ subsection

of the QUANTIFICATION AND STATISTICAL ANALYSIS section, but the eventType argument of the quantifySplicing function was

now set to ‘‘A5SS’’ (for alternative 50 splice site) or ‘‘A3SS’’ (for alternative 30 splice site) instead of ‘‘SE.’’ For the other three

comparisons, vast-tools was used as described in the ‘‘Quantifying genome-wide exon inclusion exon inclusion levels in two different

tissues’’ subsection of the QUANTIFICATION AND STATISTICAL ANALYSIS section for the analysis of exon inclusion levels. Only

splicing events whose IDs begin with HsaALTD (for alternative 50 splice sites) or HsaALTA (for alternative 30 splice sites) were consid-

ered for downstream analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of FAS exon 6 inclusion in different primate species
The PSI.sh pipeline described by Schafer et al. (2015) was used with the RNA-Seq aligner STAR v2.5.2a (Dobin et al., 2013) and

SAMTools (Li et al., 2009) tomeasure the inclusion levels of FAS exon 6 in each sample. If more than one sample for a specific species

and tissuewas available, a separate PSI value was estimated for each sample and themean from all samples was calculated (full data

is shown in Table S1). Whenever we had samples for more than one species within one of the clades from the phylogenetic tree

shown in Figure 1A, the mean of their PSI values was taken. To measure the inclusion of the orthologous exon in mice (Table S2),

tissue-specific RNA-Seq data generated by Merkin et al. (2012) was downloaded and processed using the same pipeline.

Quantification of PSI values in the combinatorially-complete library
An enrichment score (ES) for each genotype in the library was calculated as the ratio between its frequency in the output and the input

libraries:

ES=
Freqencyoutput
Frequencyinput
The PSI of the ancestral exon was experimentally determined to b
e 96% (Figure S1B). To calculate the PSI of a genotype, the ratio of

the genotype ES over the ancestral exon ES was multiplied by 96:

PSI= 96 � ESgenotype

ESancestral exon
Since the PSI estimate of the human wild-type sequence could ha
ve been affected by endogenous sequences amplified along with

the library, the PSI of this genotype was set to 53.4%, the experimentally-determined value for this genotype that was quantified as

described in the ‘‘Experimental evaluation of PSI values’’ section.

Experimental evaluation of PSI values
To confirm the accuracy of our PSI estimations, we quantified the inclusion of the 7 reconstructed evolutionary intermediates as well

as that of 2 additional genotypes. To obtain these intermediates, ancestral exon oligonucleotides were ordered from IBA Gmbh on

the 0.2 mmol scale. These oligonucleotides include the 63-nucleotide-long ancestral exon sequence flanked by 22 nucleotides of the

30 end of the human intron 5 and 50 nucleotides of the 50 end of the human intron 6:

50-TGT CCA ATG TTC CAA CCT ACA GGA TCC AGA TCT AAC TTG CTG TGG TTG TGT CTC CTG CTT CTC CCG ATT CTA

GTA ATT GTT TGG GGT AAG TTC TTG CTT TGT TCA AAC TGC AGA TTG AAA TAA CTT GGG AAG TAG �30

Letters in bold indicate the exonic region. As described above for the library, this sample was purified by Reverse Phase HPLC,

amplified and recombined with the pCMV FAS wt minigene exon 5-6-7 vector. Mutants were obtained using the Accuprime Pfx

DNA polymerase (ThermoFisher Scientific, 12344024), following the manufacturer’s instructions, and primers were designed with

PrimerX (http://www.bioinformatics.org/primerx/). Individual mutants were verified by Sanger sequencing and transfected into

Hek293 cells (or HeLa, or COS-7) in triplicates to quantify the ratio between exon 6 inclusion and skipping. For RT-PCR, mini-

gene-specific primers PT1 and PT2 were used (‘‘Primers used for RT-PCR’’ in Table S3). These primers are complementary to a

plasmid backbone sequence near the 30end of the minigene transcripts) in order to avoid amplification of endogenous FAS RNAs.
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RT-PCR products were fractioned by electrophoresis using 6% polyacrylamide gels in 1 x TBE and Sybr safe staining (ThermoFisher

Scientific, S33102). The bands corresponding to exon inclusion or skipping were quantified using ImageJ v1.47 (NIH, USA).

Estimating the maximum mutation effect size of each single mutation
This analysis relates to Figure 4F, where we show how the maximum effect of a mutation is inversely related to the starting PSI where

this maximum effect is observed. For each of the 12 single mutations, a Starting PSI – Final PSI dataset was built by matching

genotypes without the given mutation (Starting PSI) to the corresponding genotypes containing the mutation (Final PSI). Low-

complexity principal curves (Hastie and Stuetzle, 1989) were fitted to the Starting PSI – Final PSI datasets using the prcurve function

(with the complexity argument set to 4 and themethod argument set to ‘‘pca’’) from the analog package in R. These curves are a non-

parametric fit to the data that try to describe the trends observed. Only data points with estimated PSI values below 100%andwhose

enrichment scores had a standard deviation below 10 PSI units (low-noise data points) were considered when fitting these curves.

The maximum effect size predicted by a principal curve was used as an estimate of the corresponding mutation’s maximum effect

size (Figure 4F). Mutations C18G, T19G, C32T, T49C and G51C display two distinct behaviors that cannot be described with just one

principal curve. In these cases, a principal curve was fitted for each of the two behaviors. The maximum effect sizes estimated using

this non-parametric fit were in good agreement with the model behavior (Figure 4F).

Fitting the model to the Starting PSI – Final PSI datasets
Equation 2 can be rearranged such that the effect A of a mutation is described as:

A=
100$Final PSI� Final PSI$Starting PSI

100$Starting PSI� Final PSI$Starting PSI
The mean effect Â of each of the 12 mutations in our library was
 calculated taking into account only the low-noise data points from

each Starting PSI – Final PSI dataset. The A in Equation 2 was substituted by this estimated Â to generate curves that accurately

describe the behavior of the 12 different mutations (Figures S3A–S3D).

Data Processing and Calculation of Enrichment Scores in the siRNA Libraries
This section refers to the SF3B1 knock-down experiment (Figure 4G), where the doped library of FAS exon 6mutants was transfected

in the presence of a control siRNA or in the presence of an siRNA against SF3B1. The sequencing data were processed using the

pipeline described above for the combinatorially-complete library, with enrichment scores being calculated as the frequency in

the output library (the sequenced siRNA experiments) over the frequency in the input library (the sequenced doped library before

transfection; data taken from Julien et al., 2016).

Determining the PSI of Genotypes in the siRNA Libraries
This analysis refers to the SF3B1 knock-down experiment (Figure 4G), where the doped library of FAS exon 6 mutants was trans-

fected in the presence of a control siRNA or in the presence of an siRNA against SF3B1. In the presence of control siRNA, the

PSI of the WT human genotype was experimentally determined to be 53.4% (Figure S4D). The enrichment score of the human

WT genotype was estimated by taking the mode of all the single mutant enrichment scores, which are expected to form a distribution

around the WT enrichment score. This was done to achieve an accurate WT enrichment score estimate, which might be affected by

endogenous sequences that could have been amplified along with the library. To calculate the PSI of a genotype, the ratio of that

genotype’s enrichment score (ES) over the estimated human WT ES was multiplied by 53.4:

PSI= 53:4 � ESgenotype

Estimated ESWT human
In the presence of siRNA against SF3B1, the PSI of the WT hu
man genotype was experimentally determined to be 35.6% (Fig-

ure S4D). To calculate the PSI of a genotype, the ratio of that genotype’s ES over the estimated humanWT ESwasmultiplied by 35.6:

PSI= 35:6 � ESgenotype

Estimated ESWT human
To study the relationship between starting and final PSI, only gen
otypes one or two mutations away from the human WT sequence,

with an ES standard deviation below 0.1, and with more than 3000 reads in original input library (Julien et al., 2016) were considered

(a total of 448 different exon genotypes). The method of least-squares was used to fit Equation (7) to these points (Figure 4G).

Calculating RMSE values for the genetic prediction models
The RMSE value reported for each model in the ‘‘Genetic prediction of combined mutation effects’’ subsection of the METHOD

DETAILS corresponds to the aggregated 10-fold cross-validation RMSE score. The observations used to build eachmodel were split

into ten folds using the createFolds function (with the k argument set to 10) from the caret package in R. Each fold was treated as a
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validation set and themodel fit on the remaining nine folds. The error (RMSE) was then calculated on the held-out fold. This resulted in

ten different RMSE values that were then aggregated:

Aggregated RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2

1 +.+RMSE2
10

10

s

These RMSE values were then used to compare how the differen
t models explain our data. This process was repeated without se-

lecting for the low-variance genotypes and the result is shown in the supplementary figures (Figures S2B, S4G, and S7A).

Statistical tests
To determine the genotypes where T-19-G promotes inclusion or skipping, the DPSI after adding T-19-G in each background was

determined in all 9 biological replicates. For each background, a one-sample Wilcoxon rank sum test was used to compare the

observed DPSI against 0. P values were corrected for multiple testing using the Benjamini-Hochberg procedure. Backgrounds

with a positive DPSI and an FDR-corrected p value < 0.05 were considered to be backgrounds where T-19-G promotes inclusion.

A negative DPSI with an FDR-corrected p value < 0.05 was considered to indicate a background where T-19-G promotes skipping.

To test whether two mutations (X and Y) interact, we took the starting PSI – final PSI dataset corresponding to mutation X and

filtered it to include only low-variance genotypes. For each of the remaining starting-final PSI pairs, we estimated the mutation’

parameter A using equation S9 from the supplementary text. A two-sample t test was used to compare the mean parameter A in

those genotypes also containing mutation Y with the mean parameter A in genotypes without Y. This test was repeated across all

130 possible pairs of mutations such that every potential interaction was tested twice (i.e., a test for Y affecting the behavior of

X and another test for X affecting the behavior of Y). The resulting p values were FDR-corrected using the Benjamini-Hochberg pro-

cedure. An epistatic interactionwas called between a pair ofmutations X and Ywhenever X significantly affected the parameter A of Y

(at an FDR < 0.05) and vice versa, when Y significantly changed the parameter A of X (FDR < 0.05). Although an FDR of 0.05 was

chosen as the significance threshold, the same 7 epistatic interactions are identified when using a cut-off of 0.1 or 0.01.

In the sQTL analysis (see below) we tested the significance of genetic variants on the inclusion of an exon using a likelihood-ratio

test. A total of 9 375 981 tests were performed and Bonferroni-corrected, as described below in the ‘‘sQTL Analysis’’ section.

Quantifying genome-wide exon inclusion exon inclusion levels in two different tissues
This analysis relates to Figure 7C,wherewe showhow complex perturbations in trans factors affect exon inclusion levels as predicted

by the scaling law. The quantifySplicing function from the Psichomics package in R (Saraiva-Agostinho and Barbosa-Morais, 2018)

was used with the GTEx junction read counts file (GTEx_Analysis_2016-01-15_v7_STARv2.4.2a_junctions.gct.gz; available for

download at https://www.gtexportal.org/home/datasets) to estimate the PSI of all alternative exons in each GTEx sample (Battle

et al., 2017), based on the proportion of reads supporting exon inclusion over the reads supporting either inclusion or skipping.

All estimates were calculated based on the Psichomics hg19/GRCh37 alternative splicing annotations. The minReads argument

was set to 10 (such that a splicing event requires at least 10 reads for it to be quantified) and the eventType argument was set to

‘‘SE’’ (instructing the quantifySplicing function to quantify alternative exon events). The output of quantifySplicing was set to include

only samples originating from either brain or skin tissue. For each exon splicing event, the mean PSI was calculated in brain and in

skin. The difference in inclusion levels (DPSI) was determined as themean PSI in skin (the ‘‘final PSI’’) minus themean PSI in brain (the

‘‘starting PSI’’).

Quantifying genome-wide exon inclusion exon inclusion levels in two different cell lines
This analysis relates to Figure 7C. Vast-tools align and combine (Tapial et al., 2017) were used to quantify splicing events across the

genome and the output was filtered with a custom bash script to include only exon skipping events. For all exon skipping events (with

an ID starting with HsaEX) in each of the two cell lines compared, the mean PSI was taken across all samples with a vast-tools quality

score greater than or equal to ‘LOW’. If, for a given splicing event, either cell line had no samples above the quality threshold, the

splicing event was removed from the dataset and not considered in the analysis. The difference in inclusion levels (DPSI) was deter-

mined as the mean PSI in HUVEC (the ‘‘final PSI’’) minus the mean PSI in HepG2 (the ‘‘starting PSI’’).

DATA AND SOFTWARE AVAILABILITY

Raw sequencing data for (1) the phylogeny-based mutant library and (2) the doped library in the presence of siRNA against SF3B1 or

control siRNA have been submitted to GEO with accession number GSE111316 and to the European Nucleotide Archive with

accession number PRJEB24588. All scripts used in this study are available at https://github.com/lehner-lab/Scaling_Law
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Supplemental Figures
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Figure S1. Analyzing Mutation Effects in a Combinatorially Complete Subset of a Genotype Space, Related to Figure 1

A. Pattern of mouse FAS exon 6 inclusion in different mouse tissues. The exon was constitutively included in all tissues examined.

B. Multiple sequence alignment of FAS exon 6 from different primates and the reconstructed evolutionary intermediates (highlighted in yellow). Mutations ac-

quired throughout the course of evolution are shown surrounded by black squares.

C. Inclusion levels of human FAS exon 6 and the reconstructed evolutionary intermediates expressed from minigene constructs in HEK293 cells. Numbers

indicate PSI values and standard deviations as quantified using ImageJ (see STAR Methods).

D. Multiple sequence alignment of intronic sequences flanking FAS exon 6, including the 30 and 50 splice sites. The phylogenetic tree shown to the left of the

multiple sequence alignment is the same as in A.

E. Multiple sequence alignment of the 50 end of intron 5 showing how the 7-nucleotide stretch of uridines at the 50 end of FAS intron 5 (see Figure S6D) is shorter in

sequences from primates more distantly related to humans. Sequences are ordered by species as in A.

F. Linear relationship between PSI values from individual transfections and library ESs allows to build a linear model to predict PSI values from ESs.

G. Correlation between ESs across the nine replicates. Upper half of the heatmap shows correlation scores for all 3072 genotypes in the library. Lower half shows

correlation scores for low-variance (standard deviation < 10 PSI units) subset of the library.

H. Bar plot showing the number of genotypes for each Hamming distance away from the ancestral sequence. The fraction in blue represents those genotypes

with a standard deviation below 10 PSI units.

I. Alternative visualization of a combinatorially-complete subset of the genotype-phenotype landscape of FAS exon 6. Each node represents a genotype with

genotypes connected by an edge if they differ by 1 nt. The larger circles connected by yellow arrows represent the evolutionary intermediates. Nodes are colored

by PSI scores.
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Figure S2. Mutations Have Non-independent Effects on Splicing (including genotypes with a standard deviation above 10 PSI units), Related

to Figures 2 and 6

A. Distributions of mutation effects of all genotypes in the library.

B. Top: real versus predicted PSI for a model that uses the effect of individual mutations on the ancestral sequence to predict their effect in other contexts, and

which introduces the restriction that predicted PSI values cannot be greater than 100 or smaller than 0. Predictions made on the low-variance subset of the data.

Bottom: Residuals plot with loess trend line and 95% confidence band.

C. Top: real versus predicted PSI for a model that uses the effect of individual mutations on the ancestral sequence to predict their effect in other contexts.

Predictions also made on genotypes with high variance. Bottom: Residuals plot with loess trend line and 95% confidence band.

D. Top: real versus predicted PSI for a model that uses the effect of individual mutations on the ancestral sequence to predict their effect in other contexts, and

which introduces the restriction that predicted PSI values cannot be greater than 100 or smaller than 0. Predictions also made on genotypes with high variance.

Bottom: Residuals plot with loess trend line and 95% confidence band.

E. Top: predictive model that uses the average effect of mutations in different genotypes and which also introduces the restriction that predicted PSI values

cannot be above 100 or below 0. Model built on the low-variance subset of the data. Bottom: Residuals plot with loess trend line and 95% confidence band.

F. Top: real versus predicted PSI for amodel that considers the average effect of mutations in different contexts. Model built also on genotypeswith high variance.

Bottom: Residuals plot with loess trend line and 95% confidence band.

G. Top: real versus predicted PSI for a model that considers the average effect of mutations in different contexts, and which introduces the restriction that

predicted PSI values cannot be above 100 or below 0. Model built also on genotypes with high variance. Bottom: Residuals plot with loess trend line and 95%

confidence band.

H. Top: real versus predicted PSI for a model that considers the average effect of mutations in different contexts, includes seven pairwise epistatic terms and

introduces the restriction that predicted PSI values cannot be above 100 or below 0. Model built on the low-variance subset of the data. Bottom: Residuals plot

with loess trend line and 95% confidence band.

I. Top: real versus predicted PSI for a model that considers the average effect of mutations in different contexts and includes seven pairwise epistatic terms.

Model built also on genotypes with high variance. Bottom: Residuals plot with loess trend line and 95% confidence band.

J. Top: real versus predicted PSI for a model that considers the average effect of mutations in different contexts, includes seven pairwise epistatic terms and

introduces the restriction that predicted PSI values cannot be above 100 or below 0.Model built also on genotypeswith high variance. Bottom: Residuals plot with

loess trend line and 95% confidence band.



Figure S3. The Global Scaling Law Describes the Effects of All Mutations in Our Dataset, Related to Figure 3D

A. Final PSI versus starting PSI corresponding to the indicated mutations for high-confidence datapoints. Blue lines show the fit of our mathematical model to the

data. Two different curves were fitted to the data whenever a mutation displayed two distinct behaviors.

B. DPSI versus starting PSI corresponding to the indicated mutations for high-confidence datapoints. Blue lines calculated as in A.

C. Final PSI versus starting PSI corresponding to the indicated mutations for all datapoints. Blue lines are the same as those shown in A.

D. DPSI versus starting PSI corresponding to the indicated mutations for all datapoints. Blue lines are the same as those shown in B.

E. Cross-validation RMSE values for the fitted curves shown in A–D. Some mutations display two distinct behaviors (two different curves) in A-D. In these cases,

2 different RMSE values were calculated and labeled ‘‘Top’’ or ‘‘Bottom’’ depending on which curve they refer to.



Figure S4. RT-PCR Assays, Related to Figure 3E

A. RT-PCR analysis of FAS exon 6 inclusion or skipping for 14 individual FAS exon 6 genotypes expressed in HEK293 cells. RNA from cells transfected with the

corresponding constructs was purified and amplified by RT-PCR using primers corresponding to vector sequences. Products of amplification were separated by

electrophoresis, stained and PSI values estimated using the ImageJ software.

B. RT-PCR analysis of FAS exon 6 inclusion or skipping for 14 individual FAS exon 6 genotypes expressed in HeLa cells. Analyses were as in A.

C. RT-PCR analysis of FAS exon 6 inclusion or skipping for 14 individual FAS exon 6 genotypes expressed in COS-7 cells. Analyses were as in A.

D. RT-PCR analysis of human FAS exon 6 inclusion or skipping under conditions of siRNA-mediated knock down of the splicing factor SF3B1, or control siRNA.

Analyses were as in A.



Figure S5. Analysis of the Mathematical Model, Related to Figure 4

A. Relationship between exon 6 PSI and fold-change in k6 when fixing k7 (left, t = 0) and t (right, k7 = 1) to different values.

B. Relationship between exon 6 PSI and fold-changes in k7 when fixing k6 (left, t = 0) and t (right, k7 = 1) to different values.

C. Effect of t on the non-monotonic scaling of mutation effects when the mutation has a moderate inclusion-promoting effect.

D. Left: model considering the global scaling ofmutation effects built on genotypeswithout filtering by their PSI standard deviation. Right: residuals plot with loess

trend line and 95% confidence band.

E. Because of the global scaling law, a simulated biallelic landscape with 10 loci where all mutations behave additively in the underlying molecular space appears

non-additive in phenotypic (PSI) space. Since the landscape is purely additive, single mutant effects should explain all the variance in the data. However, if the

nonlinearlity in the landscape introduced by the global scaling law is not taken into account decomposing the effect of mutations on phenotype using the Walsh-

Hadamard transformation (Domingo et al., 2018; Poelwijk et al., 2016; see STAR Methods) reveals ‘‘phantom’’ specific pairwise and higher order interactions.



Figure S6. Pairwise Interactions, Related to Figure 5

A. Behavior of the indicated mutations (final versus starting PSI plots) as a function of the starting PSI in the presence (yellow) or absence (black) of its interaction

partner, for all genotypes, without filtering by standard deviation). Relevant to Figure 5D.

(legend continued on next page)



B. Validating the interaction between C18G and T19G in HEK293 cells. This interaction was tested in the context of a human exon (top) as well as in the context of

mutation C48T (bottom, which decreases the inclusion levels of FAS exon 6 and should therefore allow for a better assessment of mutation effects, bringing the

ancestral-like exon to more intermediate levels of exon inclusion). T19G promotes inclusion when position 18 contains a C, but promotes skipping when position

18 contains a G. Analysis carried out as in Figure S4. Plots on the right represent PSI values in the ancestral-like exon (human sequence plus a C in position 18 and

a T in position 19) or upon each mutation and gray error bars show the standard deviation.

C. Validating the interaction between C18G and T19G in COS-7 cells (fibroblast-like cell lines derived from African green monkey kidney tissue), in the context of

the human exon (top gel) and in the context of mutation C48T (bottom gel). Without mutation C48T, the ancestral-like exon is includedwith a PSI of 98.2% and the

effect of individual mutations could not be assessed accurately. However, the interaction becomes clear in the presence of C48T, when the ancestral-like exon is

included at lower levels. Analysis was carried out as in B.

D. To explore the evolutionary relevance of the sign epistasis interaction, we tested whether it is independent of co-evolving intronic changes. The 50 end of FAS

intron 5 contains a uridine-rich region that can bind to TIA-1 and promote FAS exon 6 inclusion (Förch et al., 2000). Phylogenetic analysis suggests that three

uridines were progressively gained in this region throughout the evolution of primates (Figure S1E). Top gel: Deleting 3Us does not affect FAS exon 6 inclusion.

Bottom gel: Validating the interaction between C18G and T19G in HEK293 cells, in the presence of a 3-nucleotide deletion within the 7-nucleotide-long stretch of

uridines found in the 30 end of intron 5. The interaction was tested in the presence of mutation C48T as described in B.

E. Validating the interaction between C18G and T19G in HEK293-FlpIn cells, where the minigene is integrated in the genome at a single specific recombina-

tion site.

F. Motif analyses of the likelihood of PTB binding to different windows within the URE6 region of FAS exon 6.

G. The interaction between C32T and G35T could involve each mutation creating overlapping - and so mutually exclusive - binding sites for PTB. G35T creates a

stronger PTB binding site and therefore, in the presence of G35T, C32T has no additional effect.

H. The interaction between C18G and T19G could be caused by T19G alone breaking the binding site of a splicing repressor protein, but creating a new repressor

binding site in the presence of C18G.

I. The interaction between T49C and G51C could be due to either mutation completely breaking a splicing silencer. These mutations have no additional effect in

the presence of the other mutation because the silencer is already lost.



Figure S7. Global Scaling in Alternative Splice Site Usage, Related to Figure 7

A. Effect of 24 mutations from the alternative 50 splice site library in Rosenberg et al., 2015, on splice site usage.

B. Boxplots showing how genome-wide alternative 50 splice site usage levels compare across the four pairs of conditions from Figure 7A.
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