STATS 413 PROBLEM SET 5

This problem set is due at noon ET on Oct 28, 2021. Please upload your solutions to Canvas in a PDF file. You are encouraged to collaborate on problem sets with your classmates, but the final write-up (including any code) must be your own.

1. Convergence in distribution vs convergence in probability.

(a) Let \mathbf{x} and \mathbf{y} be (scalar) random variables. Consider the sequence of random variables $\mathbf{z}_{n} \triangleq \mathbf{x}+\frac{1}{n} \mathbf{y}$. What is the limit of $\left(\mathbf{z}_{n}\right)$, and in what sense does $\left(\mathbf{z}_{n}\right)$ converge to this limit? (Does it converge in probability? Does in converge in distribution?)

Solution: (1) $\lim _{n \rightarrow \infty} P(|\mathbf{x}-\mathbf{x}|>\epsilon)=\lim _{n \rightarrow \infty} P(0>\epsilon)=0 \Rightarrow \mathbf{x} \xrightarrow{p} \mathbf{x}$
(2) $\lim _{n \rightarrow \infty} P\left(\left|\frac{1}{n} \mathbf{y}-0\right|>\epsilon\right)=\lim _{n \rightarrow \infty} P\left(\frac{1}{n} \mathbf{y}>\epsilon\right)+P\left(\frac{1}{n} \mathbf{y}<-\epsilon\right)$ $=\lim _{n \rightarrow \infty} 1-P(\mathbf{y} \leq n \epsilon)+P(\mathbf{y}<-n \epsilon)=1-1+0=0 \Rightarrow \frac{1}{n} \mathbf{y} \xrightarrow{p} 0$
(2) alternative: $\lim _{n \rightarrow \infty} P\left(\left|\frac{1}{n}-0\right|>\epsilon\right)=0 \Rightarrow \frac{1}{n} \xrightarrow{p} 0$ and $\mathbf{y} \xrightarrow{p} \mathbf{y}$, so by continuous mapping $\frac{1}{n} \mathbf{y} \xrightarrow{p} 0 * \mathbf{y}=0$
Using continuous mapping with (1) and (2): $\mathbf{x}+\frac{1}{n} \mathbf{y}=\mathbf{z}_{n} \xrightarrow{p} \mathbf{x}$
(b) Let (\mathbf{x}_{n}) and (\mathbf{y}_{n}) be IID sequences of (scalar) random variables. Consider the sequence of random variables $\mathbf{z}_{n} \triangleq \mathbf{x}_{n}+\frac{1}{n} \mathbf{y}_{n}$. What is the limit of $\left(\mathbf{z}_{n}\right)$, and in what sense does $\left(\mathbf{z}_{n}\right)$ converge to this limit?

Solution: Given \mathbf{x}_{n} is IID: \mathbf{x}_{n} has $F_{n}(x)=F(x)$. Thus, $\lim _{n \rightarrow \infty} F_{n}(x)=F(x) \Rightarrow \mathbf{x}_{n} \xrightarrow{d} \mathbf{x}$.
Take the case where $\mathbf{x}_{n} \stackrel{\text { i.i.d }}{\sim} \operatorname{Ber}\left(\frac{1}{2}\right)$ and $\mathbf{x} \sim \operatorname{Ber}\left(\frac{1}{2}\right)$, then $\mathbf{x}_{n} \xrightarrow{d} \mathbf{x}$. However, $\mathbf{x}_{n} \xrightarrow{p} \mathbf{x}$. $P\left(\left|\mathbf{x}_{n}-\mathbf{x}\right|>\epsilon\right)=\frac{1}{2}$, because $\mathbf{x}_{n}, \mathbf{x} \in\{0,1\}, p=\frac{1}{2}$. Thus $P\left(\mathbf{x}_{n}=1, \mathbf{x}=0\right)+P\left(\mathbf{x}_{n}=0, \mathbf{x}=1\right)$ $=\frac{1}{2}$.
Similarly to (2) above, we can see $\frac{1}{n} \mathbf{y}_{n} \xrightarrow{p} 0$. This implies $\frac{1}{n} \mathbf{y}_{n} \xrightarrow{d} 0$.
Using continuous mapping again: $\mathbf{x}+\frac{1}{n} \mathbf{y}=\mathbf{z}_{n} \xrightarrow{d} \mathbf{x}$
2. Chebyshev's inequality vs central limit theorem. Consider a sequence of n independent fair coin tosses $\left(p=\frac{1}{2}\right) \mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in\{0,1\}$ ($\mathbf{x}_{i}=1$ if the i-th toss comes up heads). Intuitively, the fraction of heads ($\overline{\mathbf{x}}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$) is tightly concentrated around $\frac{1}{2}$. In this problem, we consider two ways of approximating $\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)$.
(a) Use Chebyshev's inequality to obtain a (upper) bound on $\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)$.

Hint: Recall Chebyshev's inequality is $\mathbf{P}(|\mathbf{x}-\mu|>\epsilon) \leq \frac{\operatorname{var}[\mathbf{x}]}{\epsilon^{2}}$.
Solution: $\sum \mathbf{x}_{i} \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$, by Chebyshev's inequality we get $\mathbf{P}\left(\left|\overline{\mathbf{x}}-\frac{1}{2}\right|>.1\right) \leq \frac{\operatorname{var}[\overline{\mathrm{x}}]}{0.1^{2}}$ $=\frac{\frac{1}{n^{2}} n \frac{1}{4}}{0.1^{2}}=\frac{1}{n * 0.04}$
(b) Use the central limit theorem to approximate $\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)$. Compare this approximation with bound from (a).

Solution: $\left(\overline{\mathbf{x}}_{n}-\frac{1}{2}\right)$ is approx. $N\left(0, \sigma^{2} / n\right)$, where $\sigma^{2}=\frac{1}{2}\left(1-\frac{1}{2}\right)$, so $\left(\overline{\mathbf{x}}_{n}-\frac{1}{2}\right)$ is approx. $N\left(0, \frac{1}{n * 4}\right)$.
Also, $\sqrt{n} \frac{\overline{\mathbf{x}}_{n}-\frac{1}{2}}{.5}$ is approx. $N(0,1)$. This gives us: $\left.\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)=2\left(\mathbf{P}\left(\left(\overline{\mathbf{x}}_{n}-\frac{1}{2}\right)\right)>0.1\right)\right)$ $=2\left(1-\mathbf{P}\left(\left(\overline{\mathbf{x}}_{n}-\frac{1}{2}\right) \leq 0.1\right)\right)=2\left(1-\mathbf{P}\left(\sqrt{n} \frac{\overline{\mathbf{x}}_{n}-\frac{1}{2}}{.5} \leq \sqrt{n} \frac{0.1}{5}\right)\right) \approx 2\left(1-\Phi\left(\frac{\sqrt{n}}{5}\right)\right)$
Below we can see a graph where the red line is the CLT bound and the black is the Chebyshev's inequality bound. We can see the CLT converges at a faster rate.

Comparing Convergence of Bounds

n
(c) (1 extra pt) The main benefit of using Chebyshev's inequality is the resulting bound is valid non-asymptotically; i.e. you know that $\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)$ is at most something, and this bound is valid for any n. The central limit theorem provides a good approximation of $\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)$ that becomes more accurate as n grows, but you don't know whether the approximation is an over or under-estimate of $\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)$. Is it possible to get the best of both worlds; i.e. is it possible to obtaining a tighter bound on $\mathbf{P}\left(\left|\overline{\mathbf{x}}_{n}-\frac{1}{2}\right|>0.1\right)$ that is non-asymptotically valid?
Solution: Look into Hoeffding's inequality

