
ÉTALE COHOMOLOGY OF RINGS OF INTEGERS WITH COEFFICIENTS IN Gm

EIVIND OTTO HJELLE

Let K be a number field and OK the ring of integers in K. Following [Mil06, Chapter II.2] we will
describe how to compute the étale cohomology groups

Hr (SpecOK ,Gm) ,

or more generally Hr (U,Gm), where U ⊆ SpecOK is an open subscheme.

The computation is very similar to our computation of Hr (X,Gm) for X a complete nonsingular curve
over an algebraically closed field, and will serve to review the techniques involved. In fact, our source
treats both cases in parallel.

In Example 10 we will see that the groups Hr (SpecZ,Gm) are given by the following table.

r 0 1 2 3 ≥ 4 even ≥ 5 odd
Hr Z/2 0 0 Q/Z Z/2 0

1. Tate cohomology

Let G be a finite group and M a G-module. Let NG =
∑

g∈G g and IG =
{∑

g∈G ngg :
∑

g∈G ng = 0
}

.

Define the Tate cohomology groups Ĥr (G,M) by

r ≤ −2 −1 0 ≥ 1

Ĥr H |r|−1 (G,M) KerNG

IGM
MG

NGM Hr (G,M)

Example 1. Suppose G is the trivial group. Then Ĥr (G,M) = 0 for all r.

Example 2. Let C2 act on C× by complex conjugation. Then

Ĥ0
(
C2,C×

)
=

R×

R×+
∼= Z/2.

Note that we also have Ĥ1 (C2,C×) = H1 (Gal (C/R) ,C×) = 0.

Theorem 3 ([Ser79, Section VIII.4]). If G is cyclic, the groups Ĥr (G,M) only depend on the parity of
r.

2. Notation

For the remainder, let us fix some notation.

(1) K is a number field, for example Q.
(2) OK is the ring of integers in K, for example Z if K = Q.
(3) X = SpecOK .
(4) If v is a non-archimedean prime, then Kv = Frac

(
Oh

K,v

)
, where Oh

K,v is the henselization of
OK,v.

(5) If v is a non-archimedean prime, κ(v) is the residue fieldof Kv.
(6) If v is an archimedean prime, Kv is the completion of K with respect to v.
(7) U0 is the set of (non-archimedean) places contained in U .
(8) j : U ↪→ X is the inclusion of an open subscheme.
(9) g : SpecK ↪→ X is the inclusion of the generic point.
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Convention. For an archimedean prime v and étale sheaf F on Kv, we set Hr (Kv,F) = Ĥr (Gv,MF ),
where Gv = Gal (Kv) and MF is the Gv-module corresponding to F .

Section 1 shows that if v is real then Hr (Kv,Gm) is Z/2 for r even and 0 for r odd. And if v is complex
then Hr (Kv,Gm) = 0 for all r.

3. Cohomology computation

To compute Hr (U,Gm), we employ the divisor exact sequence

(1) 0→ Gm → g∗Gm,K → DivU → 0,

where DivU =
⊕

v∈U0 iv,∗Z is the sheaf of Weil divisors of U .

3.1. Cohomology of g∗Gm,K . We will use the following two theorems without proof.

Theorem 4 ([Sha72, p. 116]). Let R be an excellent henselian DVR for which the residue field is
algebraically closed. Then the fraction field of R is C1

1.

Theorem 5 ([Ser02, Section II.3]). If L is a C1 field then Hr (L,Gm) = 0 for r ≥ 1.

Corollary 6. The higher direct images Rrg∗Gm,K = 0 for r ≥ 1.

Proof. Let x→ X be a geometric point. Then

(Rrg∗Gm,K)x
∼= Hr (Kx,Gm) ,

where Kx = Frac (OK,x) [Mil13, p. 81]. The ring OK,x is a strict henselization of OK,x and satisfies the
hypothesis of Theorem 4, so Kx is C1. By Theorem 5 it follows that (Rrg∗Gm,K)x = 0 for r ≥ 1. �

From the above we get that the Leray spectral sequence for g degenerates to isomorphisms

Hr (U, g∗Gm,K) ∼= Hr (K,Gm) .

Theorem 7 ([Mil06, Corollary I.4.21]). For r ≥ 3 we have isomorphisms

Hr (K,Gm) ∼=
⊕

v real

Hr (Kv,Gm) =

{
0, r ≥ 3 odd,⊕

v real Z/2, r ≥ 4 even.

(Remember that Hr (Kv,Gm) = Ĥr (Kv,Gm).)

3.2. Cohomology of DivU . Since the points v ∈ U0 are closed, iv,∗ : Specκ(v) ↪→ U is exact by
[Mil13, Corollary 8.4], so the Leray spectral sequence for iv degenerates to isomorphisms Hr (U, iv,∗Z) ∼=
Hr (κ(v),Z). It follows that

Hr (U,DivU ) ∼=
⊕
v∈U0

Hr (U, iv,∗Z) ∼=
⊕
v∈U0

Hr (κ(v),Z) .

These groups are known:

Theorem 8 ([Mil06, Corollary II.1.2]). The groups Hr (κ(v),Z) are given by the following table.

r 0 1 2 ≥ 3
Hr (κ(v),Z) Z 0 Br (Kv) 0

Remark 9. By [Mil06, Proposition I.A.1] the groups Br (Kv) ∼= Q/Z.

1Another word for C1 is quasi-algebraically closed.
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3.3. The induced long exact sequence. Using the above results, the long exact sequence for the
divisor exact sequence (1) reads

0 Γ (U,OU )
×

K×
⊕

v∈U0 Z

Pic(U) 0 0

H2 (U,Gm) Br(K)
⊕

v∈U0 Br(Kv)

H3 (U,Gm) 0

and for r ≥ 4 we have isomorphisms

Hr (U,Gm) ∼= Hr (K,Gm) ∼=
⊕

v real

Hr (Kv,Gm) ∼=

{⊕
v real Z/2, r even,

0, r odd.

3.4. Interlude on Brauer groups. Global class field theory yields an exact sequence

(2) 0→ Br(K)→
⊕
all v

Br(Kv)→ Q/Z→ 0,

where the sum is taken over all places v of K [Mil06, Theorem I.A.7]. We can describe the maps
Br(Kv)→ Q/Z:

(1) If v is non-archimedean, it is an isomorphism Br(Kv) ∼= Q/Z [Mil06, Proposition I.A.1].
(2) If v is real, it maps Br (Kv) ∼= Br (R) ∼= Z/2 onto 1

2Z/Z.
(3) If v is complex, Br(Kv) = 0 and there is nothing to say.

3.5. Another exact sequence. Consider the “snake lemma diagram”

H2 (U,Gm)
⊕

v/∈U Br (Kv) Q/Z

0 Br(K)
⊕

all v Br(Kv) Q/Z 0

0
⊕

v∈U0 Br (Kv)
⊕

v∈U0 Br(Kv) 0

H3 (U,Gm) 0

The second row is (2), so it is exact. In the first column the top and bottom element is the kernel
and cokernel of the middle map by section 3.3. By the snake lemma it follows that there is a map
Q/Z→ H3 (U,Gm) such that

(3) 0→ H2 (U,Gm)→
⊕
v/∈U

Br (Kv)→ Q/Z→ H3 (U,Gm)→ 0

is exact. Note that the sum is taken over all places v not in U , including archimedean ones.

3.6. Examples.

Example 10 (K = Q and U = SpecZ). Let Hr be short hand for Hr (SpecZ,Gm).

By definition H0 = Z× = {±1} ∼= Z/2.

The group H1 = Pic(Z) is the ideal class group of Z, which is 0 because Z is a PID.
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The sequence (3) reads
0→ H2 → Z/2→ Q/Z→ H3 → 0,

where the second map is an isomorphism onto 1
2Z/Z. It follows that H2 = 0, and H3 ∼= Q/ 1

2Z ∼= Q/Z.

From section 3.3 we see that for r ≥ 4 the group Hr ∼= Z/2 if r is even and Hr ∼= 0 if r is odd.

Example 11 (K has no real primes and U = SpecOK). Assume that K has no real primes. If K = Q(γ),
this is equivalent to requiring that the minimal polynomial of γ has no real roots. For example, we could
take K = Q(i). For Hr = Hr (SpecOK ,Gm), we have the following table.

r 0 1 2 3 ≥ 4
Hr O×K Pic(OK) 0 Q/Z 0
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