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a b s t r a c t

A computational framework is presented to include the effects of grain size and

morphology in the crystal plasticity finite element (CPFE) method for simulations of

polycrystals. The developed framework is used to investigate the effects of grain size and

morphology on the yield strength and extreme value fatigue response using a new grain-

level length scale. Each grain is approximated by a best-fit ellipsoid, whose information

is used to modify the slip resistances based on a Hall-Petch type relation extended to each

slip system. The grain-level length scale is computed for each slip system using a shape

factor proposed in an earlier work based on discrete dislocation dynamics simulations.

This is incorporated into a rate-dependent CPFE model with kinematic and isotropic

hardening within the PRISMS-Plasticity open-source software. CPFE simulations are con-

ducted on Al 7075-T6 microstructure models with different textures, grain sizes, and grain

morphologies which relate qualitative trends in yield strength to a parameter constructed

from the power-law flow rule. Incorporating grain morphology in the model reveals a

notable influence on the computed extreme value fatigue response which may be critical in

simulations of polycrystalline microstructure models with significant grain morphology

anisotropy, for instance in components produced by large deformation rolling or additive

manufacturing. The developed framework is available to the community as part of the

open-source software PRISMS-Plasticity and PRISMS-Toolbox.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Effects of grain size and morphology on the mechanical

properties of polycrystalline metals and alloys have been one

of the most vital and challenging topics in material science
. Yaghoobi).
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and engineering. Grain size modification is one of the con-

ventional metallurgical procedures to enhance the mechani-

cal properties of alloys and metals. Hall [1] was one of the

pioneers to study grain size effects in mild steel where an

enhancement in yield strength was observed with a decrease
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in grain size, and a linear relationship between the yield

strength and the inverse square-root of grain size was pro-

posed. Hall [1] justified the strength enhancement using the

pile-up theory presented by Eshelby et al. [2]. Petch [3] pro-

posed a similar relationship between the cleavage strength

and grain size in iron and mild steel. Accordingly, an increase

in the strength of materials by decreasing the grain size is

commonly termed as the Hall-Petch effect. Since then, various

experiments have been conducted on different alloy systems

to investigate the Hall-Petch effect, which have been reviewed

and summarized in Cordero et al. [4] and Voyiadjis and

Yaghoobi [5]. The grain size effect has been addressed at

different length scales using various computational frame-

works, e.g., atomistic modeling [5e16], discrete dislocation

dynamics [5,17e21], crystal plasticity [5,22e31] and contin-

uum plasticity [5,32e35]. These simulation methodologies

have their own strengths and limitations. Among these,

crystal plasticity has proven to be a useful tool for modeling

the mechanical behavior of polycrystalline metals and alloys

considering microstructure features and common plastic

deformation modes such as crystallographic slip and

twinning.

In modeling grain size effects in crystal plasticity, the

enhanced hardening due to dislocation pile-up can be

modeled using strain gradient crystal plasticity [5,18,22e25].

These models can successfully capture the effect of grain size

using a robust thermodynamically consistent framework.

However, there are challenges with using strain gradient

models to capture the grain size effect. The first challenge is

that strain gradient models introduce more internal variables

and subsequently more model parameters which require

many experiments to adequately calibrate. Secondly, the

available strain gradient models in the literature do not

naturally consider the morphological features of grains. An

alternative to strain gradient models was presented by

Haouala et al. [31] in which the evolution of the critical

resolved shear stress of each slip system is governed by its

corresponding dislocation density. The effect of grain size is

then reflected in the dislocation density evolution depending

on the distance of material point from the grain boundary.

This method can be further simplified by homogenizing the

grain size effect in each grain and then relating the critical

resolved shear stress to the grain size [26,29,36]. This scheme

enables the simulation of very large volumes ofmaterial using

crystal plasticity models, which is an essential part of many

integrated computational materials engineering (ICME)

frameworks. Frommet al. [37] introduced a new grain size and

orientation distribution function (GSODF) to couple the effect

of texture and grain size within a viscoplastic Taylor-like

framework. They observed that the interaction between

texture and grain size may lead to large anisotropy in yield

strength. Their method does not, however, consider the ef-

fects of grain morphology and therefore cannot adequately

model microstructures with elongated grains, such as those

that arise due to rolling or additive manufacturing.

Unlike the effect of grain size on the response of poly-

crystalline materials, which has been widely investigated, the

effect of grainmorphology has not been completely unraveled.

A few studies have addressed the effect of grain morphology

on the response of polycrystals [38e40]. Bunge et al. [38]
combined the HallePetch relationship with the Taylor model

[41] to capture the effect of grain morphology. They approxi-

mated each grain as an ellipsoid and obtained the grain size

along each slip direction using the specific line that passes

through the center of the ellipsoid. However, they did not

consider the evolution of texture. Delannay et al. [42] investi-

gated the plastic anisotropy of textured polycrystalline aggre-

gates resulting from three micro-macro averaging schemesea

crystal plasticity based finite element model, the viscoplastic

self-consistent (VPSC) scheme, and a “multisite” model based

on a simplified treatment of the interaction of adjacent grains.

Delannay and Barnett [43] proposed closed-form expressions

of the average backstress developed inside grains with sphe-

roidal shapes which are introduced in the crystal plasticity

hardening law. This model reproduced the high plastic

anisotropy of electro-deposited pure iron with a strong g-fiber

and a refined columnar grain structure. However, they did not

consider the general case of ellipsoidal grains and the focus of

their study was not directed towards the dependence of Hall-

Petch slope on grain morphology. Sun and Sundararaghavan

[29] addressed the effect of grain morphology by incorporating

the idea proposed by Fromm et al. [37] along with the ellipsoid

approximation of Bunge et al. [38]. They presented a very

efficient statistical approach that can evolve the GSODF during

deformation. Although the statistical polycrystal scheme pre-

sented by Sun and Sundararaghavan [29] is very robust and

efficient to capture the homogenized response, it cannot

resolve local stress and strain fields within grains.

More precisely, all the proposed methods to address grain

morphology within a crystal plasticity framework [29,38e40]

are homogenized methods, such as Taylor-type models, and

cannot resolve local variations in the stress and strain fields.

The crystal plasticity finite element (CPFE) framework, how-

ever, can handle these issues since it benefits from all features

of conventional finite element methods. The current study

presents a CPFE framework which considers the effects of

grain size andmorphology specifically designed for large scale

simulations. In this framework, grains are modeled as ellip-

soids following the idea of Bunge et al. [38] to capture the

coupling effects between grain size and morphology, while

allowing prediction of local fields unlike the previously

described mean-field methodologies. The use of CPFE allows

improved modeling of internal equilibrium of forces exerted

by grains of different shapes and sizes.

In the current work, a rate-dependentmodel including both

kinematic and isotropic hardening is implemented into the

open-source CPFE software, PRISMS-Plasticity [44e48]. A new

grain-level length scale is integrated into the CPFE framework

to capture the effects of grain size andmorphology. The length

scale definition is based on results reported by Jiang et al. [21]

which incorporated discrete dislocation dynamics simulation

to investigate the effects of grain size, orientation, and

morphology on flow stress. Each grain is approximated by its

best-fit ellipsoid to obtain the grain-level length scale, which

inherently includes grain morphology effects. This measure of

grain size is used to modify the slip resistances, hence incor-

porating the effects of grain size and morphology into the

crystal plasticity formulation. The response of Al 7075-T6

polycrystalline microstructure models with different crystal-

lographic textures, grain sizes, and grain morphologies are
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then investigated to demonstrate the capability of the devel-

oped framework. The effects of grain size and morphology on

yield strength are first investigated. Accordingly, the Hall-

Petch slopes are obtained for different textures and grain

morphologies. The local micromechanical and extreme value

fatigue response is then investigated for sampleswith a similar

average grain size but different grainmorphologies to highlight

the importance of the latter. The grain morphology may have

important implications on the extreme value fatigue response

that is often evaluated using crystal plasticity models [49].
2. Crystal plasticity constitutive model

The primary kinematic ingredient of the constitutive model

for an elasto-plastic single crystal is the deformation gradient

tensor F, which is the tangent map of a smooth deformation

mapping that associates the position of material points in the

reference configuration to their corresponding position in the

deformed configuration. A multiplicative decomposition of

the deformation gradient into elastic and plastic parts is

considered here as follows [50,51]:

F ¼ FeFp (1)

where Fp captures the homogenized distortion of the body as a

consequence of crystallographic slip due to dislocation mo-

tion on specific slip systems and maps infinitesimal material

fibers in the reference configuration to their counterparts in

the intermediate configuration. Fe is the elastic part of the

deformation gradient tensor which encodes elastic stretch

and rotation of the lattice and maps the intermediate config-

uration to the deformed configuration.

The plastic part of the velocity gradient in the intermediate

configuration is related to the underlying crystallography

through the plastic kinematic equation

Lp :¼ _FpFp�1 ¼
Xns
a¼1

_gaSa
0 ¼

Xns
a¼1

_gama
05na

0 (2)

where _Fp denotes the material time derivative of Fp, ns is the

total number of slip systems and _ga is the shear rate on slip

system a (a2 {1, 2,…, ns}.ma
0 and na

0 are unit vectors associated

with the slip direction and slip plane normal, respectively, for

slip systema in the intermediate configuration. Sa
0 is the Schmid

tensor corresponding to slip system a defined as the tensor

product of ma
0 and na

0. Eq. (2) physically represents the shearing

of the body from plastic flow on plane na
0 along direction ma

0.

In the present case, we resort to a flow rule where the

shearing rate on slip system a is explicitly related to the

resolved shear stress, backstress and slip resistance on that

slip system. Following [52] and modifying it to include the

backstress contribution, we assume a flow rule of the power

law type as follows

_ga ¼ _g0

�kta � cak
sa

�m

signðta �caÞ (3)

where _g0 is the reference shearing rate andm is the strain-rate

sensitivity exponent, both assumed to be identical for all slip

systems. ta, ca and sa are the resolved shear stress, the
backstress and the slip resistance, respectively, on slip system

a. sign(,) denotes the signum function. Eq. (3) is one possible

regularization adopted to avert the under-determined system

of equations arising in Eq. (2) where there are 8 independent

components of Lp while ns > 8 for the crystal structures of

interest. The backstress is included to account for kinematic

hardening that manifests as the Bauschinger Effect, while the

slip system resistance accounts for the isotropic hardening of

the material. Specific evolutionary equations for the back-

stress and the slip system resistance are discussed later.

The resolved shear stress is expressed in terms of the

second Piola-Kirchoff stress in the intermediate configuration,

T, as follows

ta ¼
�
FeTFeT

�
: Sa

0 (4)

where the ‘:’ denotes the scalar product of second-order ten-

sors, i.e., A: B ¼ AijBij. Eq. (4) is obtained by equating the con-

tinuum mechanical contribution of plastic power density to

the power expended in crystallographic shearing on slip system

a with shearing rate _ga and resolved shear stress ta [53].

Following [54], we further approximate the resolved shear stress

by ignoring the effects of elastic stretching, which are not sig-

nificant for the levels of deformation considered. Then we have

tazT : Sa

0 (5)

The elastic constitutive equation is motivated from a

generalized version of standard Hooke's law where a linear

relation relationship is prescribed between T and the

GreeneLagrange elastic strain measure (elastic power conju-

gate to T) as follows

T ¼ L,Ee ¼ 1
2
L,ðFeTFe � IÞ (6)

where L denotes the fourth-order material stiffness tensor

which is positive-definite and exhibits both major and minor

symmetries typical of hyperelastic constitutive laws when

symmetric tensors are involved. The ‘,’ denotes the product of

a fourth-order and second-order tensor furnishing a second-

order tensor, i.e., A ¼ L,B 0 Aij ¼ LijklBkl. T is related to the

first Piola-Kirchoff stress in the reference configuration and

the Cauchy stress as follows:

T ¼ Fe�1PFTFe�T ¼ detðFeÞFe�1
sFe�T (7)

The dislocation-induced long range stresses for each slip

system result in the back stress, which is modeled here using

a two-term phenomenological formulation developed by

Ohno-Wang [55]. The model was further modified by McDo-

well [56] to simulate ratcheting behavior in rail steels. On

every slip system a, two independent back stress components,

i.e., ca
1 and ca

2, are defined which evolve as follows

_ca
i ¼ hi _g

a � ri

�
ca
i

bi

�mi

ca
i _g

a ; ði ¼ 1;2Þ

_ca ¼
X2
i¼1

_ca
i ; c

a
i ðt ¼ 0Þ ¼ 0 ; ði ¼ 1; 2Þ

(8)

where hi, ri, bi and mi are the constant model parameters

with bi ¼ hi/ri which denotes the saturation value of the

backstress.

https://doi.org/10.1016/j.jmrt.2022.06.075
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The evolution of slip resistance is prescribed based on

Kalidindi et al. [54] as follows

_sa ¼
Xns
a¼1

qabh0

�
1� sb

ss

�a

k _gbk ; sað0Þ ¼ sa0 (9)

qab ¼ qþ ð1� qÞ~dab

~dab ¼
(
1 ; a; b are coplanar

0 ; otherwise

(10)

where qab denotes the hardening multiplier contribution to

slip system a arising from slip on slip system b. h0 is the

hardening coefficient, ss is the saturation values of the slip

resistance and a is the hardening exponent. To summarize,

the model presented here represents a cyclically stabilized

hysteresis response and does not incorporate damage or

degradation.
3. Grain size and morphology effects

The effects of grain size and morphology are incorporated in

the model by including a grain-level length scale and modi-

fying the initial slip resistance using this length scale.

Accordingly, the slip resistance includes two contributions;

one independent of the grain size and morphology and the

other dependent on both grain size and morphology, defined

as

sa0 ¼ saSI þ saSD (11)

where saSI and saSD are the size independent and dependent

contributions to initial slip resistance, respectively. The size

dependent contribution is assumed to abide to a Hall-Petch

type inverse square-root dependence on the grain size,

which also depends on the slip system as follows:

saSD ¼ kaffiffiffiffiffiffiffiffi
da

eff

p (12)

where daeff is an effective grain-level length scale correspond-

ing to the slip system a. The grain-level length scale is ob-

tained by finding the best-fit ellipsoid for each grain, which

includes the semi-axes lengths and the axes Euler angles

relative to the sample reference frame. The components of the

slip direction ma
0 and slip plane normal na

0 are represented

relative to the principal axes frame of the best-fit ellipsoid for

each slip system, which we denote by ma
e and na

e respectively.

Let tae denote the direction lying in the slip plane perpendicular

to ma
e . Then tae can be obtained via tae ¼ ma

e � na
e , where ‘ � ’ is

vector cross product. The directions tae and ma
e are essential

here since they signify the direction of propagation of the

pure-edge and pure-screw counterparts of deformation ac-

commodating dislocation loops on slip system a. This infor-

mation is used to calculate daeff .

The standard ellipsoid is defined here as the ellipsoid E4R3

centered at the origin with its principal axes coinciding as the

axes of the coordinate system. The surface of the standard

ellipsoid can be characterized as follows:
fðx; y; zÞ ¼ x2

a2
1

þ y2

a2
2

þ z2

a2
3

� 1 ¼ 0 (13)

One can consider a line [ intersecting E at no less than one

point, represented by its parametric form as follows:

pðtÞ ¼ ðu1 þ l1t;u2 þ l2t;u3 þ l3tÞ (14)

where (u1, u2, u3) denotes a point on [ and (l1, l2, l3) denotes

the direction cosines of [. Define d[ as the length of the line

segment contained in [ lying in the interior of E, which is

referred as the line-ellipsoid intercept). Because E is convex,

given a specific line [, d[ is well-defined and unique. Let L be

the set of all lines [ with the same slope, rigidly displaced

relative to one another and intersecting E in at least one point.

The goal is to obtain < d[ > L, where < ,> L denotes the

average of the bracketed argument.

The interior of the ellipsoid is denoted by eE, i.e., the set of

all points satisfying f(x, y, z) < 0. One can substitute the point

p(t) as defined in Eq. (14) into Eq. (13) as follows:

ðu1 þ l1tÞ2
a2
1

þ ðu2 þ l2tÞ2
a2
2

þ ðu3 þ l3tÞ2
a2
3

� 1 ¼ 0

0 t2
 X3

i¼1

l2i
a2
i

!
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k1

þ t

 X3
i¼1

2liui

a2
i

!
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

k2

þ
 X3

i¼1

u2
i

a2
i

!
� 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

k3

¼ 0

0 k1t
2 þ k2tþ k3 ¼ 0

(15)

Eq. (15) must have two distinct real roots of t1 and t2.

Accordingly, d[ can be written as follows:

d[ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

l2i ðt2 � t1Þ2
vuut ¼ 1

k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � 4k1k3

q
; k1 >0 (16)

The parametrization for the family of lines L is required to

obtain <d[ > L, and this is performed using two-parameters.

One should note that obtaining < d[ > L requires integrating

d[ over the set described by the two-parameter family. A

convenient parametrization choice eases the integration of

d[ and leads to an straightforward procedure to obtain < d[ > L.

The first step is to identify the set Q4E of points such that

the line [ with direction cosines l ¼ (l1, l2, l3) passing through

q2 Q is a tangent to the ellipsoid. This warrants the following

conditions on the point q ¼ (xq, yq, zq)

x2
q

a2
1

þ y2
q

a2
2

þ z2q
a2
3

� 1 ¼ 0; l,Vf ¼ 0 (17)

0
l1xq

a2
1

þ l2yq

a2
2

þ l3zq
a2
3

¼ 0 (18)

At least one of the direction cosines is non-zero according

to
P3

i¼1l
2
i ¼ 1. Without loss of generality, one can assume l3 s

0, and Eq. (18) can be rewritten as follows:

zq ¼ �a2
3

l3

�
l1xq

a2
1

þ l2yq

a2
2

�
¼ gðxq; yqÞ (19)

Eq. (19) can be substituted into Eq. (17) as follows:

https://doi.org/10.1016/j.jmrt.2022.06.075
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x2
q

2þ
y2
q

2þ
1
2

��a2
3

�
l1xq

2 þl2yq

2

��2

�1¼ 0

a1 a2 a3 l3 a1 a2

0 x2
q,

 
1

a2
1

þa2
3l

2
1

l23a
4
1

!
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

p

þy2
q,

 
1

a2
2

þa2
3l

2
2

l23a
4
2

!
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

q

þxqyq,
2l1l2a2

3

a2
1a

2
2l

2
3|fflfflfflffl{zfflfflfflffl}

2r

�1¼ 0

(20)

Eq. (20) represents an ellipse, which be confirmed by eval-

uating the conic discriminantD¼ (2r)2� 4pq and examining its

sign as follows:

4ðr2 �pqÞ ¼ 4

8<:
 
l1l2a2

3

a2
1a

2
2l

2
3

!2

�
 
1

a2
1

þ a2
3l

2
1

l23a
4
1

!
,

 
1

a2
2

þ a2
3l

2
2

l23a
4
2

!9=;
� �4

a2
1a

2
2

<0 (21)

The ellipse defined by Eq. (20) is denoted by E and its

interior is denoted by ~E.1 For any point ðx;yÞ2~E, one can obtain

z(x, y) from Eq. (19). Geometrically, the set F :¼ fðx; y; gðx; yÞÞg c

ðx; yÞ2~E represents the intersection of the plane (Eq. (18)) witheE.
Any line [2L with direction cosines l which passes

through eE must intersect E at exactly two points because E is

convex. We now prove that any such line [ must intersect F.

Note that only the portion l ¼ [∩~E is of interest because that

defines d[. One can show that l ∩ Fs 4 by proving that the two

intersection points of [ with E, lie on opposite sides of F or

equivalently of the plane defined by Eq. (18). One can define:

hðx; y; zÞ ¼ l1x

a2
1

þ l2y

a2
2

þ l3z

a2
3

(22)

If the points of intersection of [with E are denoted by (x1, y1,

z1) and (x2, y2, z2), then for these two points to lie on opposite

sides of the plane, it is sufficient that they satisfy the following

condition:

hðx1; y1; z1Þhðx2; y2; z2Þ< 0 (23)

From Eq. (15), one can substitute the points as (x1, y1, z1) ¼
(u1 þ l1t1, u2 þ l2t1, u3 þ l3t1) and (x2, y2, z2) ¼ (u1 þ l1t2,

u2 þ l2t2, u3 þ l3t2). Substituting the points in Eqs. (22) and (23)

can be written as follows:

V ¼hðx1;y1;z1Þhðx2;y2;z2Þ

¼
�
l1x1

a2
1

þl2y1

a2
2

þl3z1
a2
3

�
,

�
l1x2

a2
1

þl2y2

a2
2

þl3z2
a2
3

�
¼�1

4
ðk22�4k1k3Þ<0

(24)

Eqs. (22)e(24) shows that [ ∩ F s 4 implying that for every

line [2L, there is a unique point p 2 F such that p 2 [. Now,

there is a bijection ~g from F to L which simplifies the analysis

because any admissible line [ can be parametrized by only a

point on F. Furthermore, g is a bijection, which implies that

the composition g¼ ~g+g is a bijection from ~E to L.
The parametrization for the ellipse E should be defined in

the next step. The ellipse E can be defined as follows:

px2 þ qy2 þ 2rxy ¼ 1 (25)
1 The interior of the ellipse is defined by the set of points
satisfying the equation px2 þ qy2 þ 2xyr � 1 < 0.
The major and minor axes of an ellipse are orthogonal.

Furthermore, the plane, as described in Eq. (18), passes

through the origin in R3 which implies that F contains the

origin in R3, and consequently, E contains the origin in R2. In

other words, the major and minor axes pass through the

origin so that any such ellipse can be represented as follows:

ðaxþ byÞ2 þ g2ðbx� ayÞ2 ¼ 1 (26)

Comparing Eqs. (25) and (26) yields:

a2 þ g2b2 ¼ p (27)

b2 þ g2a2 ¼ q (28)

abð1�g2Þ ¼ r (29)

Based on the values of r, g, and a, three different cases may

occur as follows:

Case 1: rs0

Eq. (29) can be rewritten as follows:

ab ¼ r
1� g2

(30)

Eqs. (27) and (28) can be rewritten as follows:

a2 ¼ p� qg2

ð1� g2Þð1þ g2Þ ; b2 ¼ q� pg2

ð1� g2Þð1þ g2Þ (31)

One can combine Eqs. (30) and (31) as follows:

ðp� qg2Þðq� pg2Þ
ð1þ g2Þ2 ¼ r2 (32)

ddg2 can be defined and substituted in Eq. (32) as follows:

d2ðr2 � pqÞ þ dð2r2 þp2 þq2Þ þ r2 � pq ¼ 0 (33)

The roots of Eq. (33) can be obtained as follows:

d± ¼ 1
2ðr2�pqÞ

���ð2r2þp2þq2Þ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2r2þp2þq2Þ2�4ðr2�pqÞ2

q �

Choice of either dþ or d� results in the same ellipse so d¼ dþ
is selected. One should note that the ellipse is invariant under

the transformation g / �g, so the positive value of g suffices

and g ¼ ffiffiffiffiffi
dþ

p
. The ellipse is invariant under the transformation

a / �a, b / �b, so a positive value of a is chosen, and b is

fixed accordingly (Eq. (30)). One can obtain a and b as follows:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� qdþ
ð1� dþÞð1þ dþÞ

s
; b ¼ r

ð1� dþÞa (34)

Case 2: r ¼ 0, g2 ¼ 1

The left hand side of Eqs. (27) and (28) are identical which

leads to p ¼ q, i.e., the ellipse becomes a circle. Then a and b

have only one constraint to satisfy as a2 þ b2 ¼ p. For conve-

nience, one can select a ¼ ffiffiffi
p

p
and b ¼ 0.

Case 3: r ¼ 0, a ¼ 0

https://doi.org/10.1016/j.jmrt.2022.06.075
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In this case, b2 ¼ q. One can set b ¼ ffiffiffi
q

p
, and accordingly set

g ¼
ffiffi
p
q

q
.

a, b and g can be obtained from one of the previous three

cases, and E can be parametrized as follows:

axþ by ¼ R cosq (35)

gbx� gay ¼ R sin q (36)

Eqs. (35) and (36) can be combined as follows:	
a b

gb �ga



,

	
x
y



¼
	
R cosq
R sin q



(37)

x and y can then be obtained as follow:	
x
y



¼ 1

gða2 þ b2Þ

	
ga gb

b �a


	
R cosq
R sin q



(38)

x and y can be described as a function of R and q as x ¼ X(R, q)

and y ¼ Y(R, q). Similarly, z can be defined as z ¼ Z(R, q). Also,

one can define u1 ¼ X(R, q), u2 ¼ Y(R, q), u3 ¼ Z(R, q) so that k2
≡ k2(R, q) and k3 ≡ k3(R, q).

The average value of d[, i.e., <d[ > L, is defined as follows:

<d[ > L ¼ ∬ Ed[ðx; yÞdxdy
∬ Edxdy

(39)

The above expression is well-defined because d[(x, y) is a

continuous function and E is a compact set in R2. Changing

variables of integration from x, y to R, q enables integration

over a rectangular domain. Defining ~d[ðR; qÞ ¼ d[ðx; yÞ results

in:

<d[ > L ¼ ∬ E
~d[ðR; qÞJdRdq
∬ EJdRdq

(40)

where J is the Jacobian of the coordinate transformation (Eqs.

(35) and (36)). J can be obtained as follows:

J ¼ det

0BB@
2664
vx
vR

vx
vq

vy
vR

vy
vq

3775
1CCA

¼ 1

ðgða2 þ b2ÞÞ2,det
�	

ga gb

b �a


	
cosq �Rsin q

sin q Rcosq


�
¼ R

gða2 þ b2Þ (41)

One can rewrite Eq. (40) using Eqs. (16) and (41) as follows:

<d[ > L ¼

Z 2p

0

Z 1

0

1
k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � 4k1k3

q
R dRdqZ 2p

0

Z 1

0

R dRdq

¼ 1
k1p

Z2p
0

Z1
0

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðR; qÞ2 � 4k1k3ðR; qÞ

q
dRdq (42)

Eq. (42) can be rewritten as follows:

<d[>L ¼ 1
k1p

Z2p
0

Z1
0

�
AþDR2þBR2cos2qþCR2cosqsin q

�1
2 R dRdq

(43)
The integral described in Eq. (43) can be obtained analyti-

cally by changing variable from R to s ¼ A þ DR2 þ B(Rcosq)2

þ CR2cosqsinq. Accordingly, Eq. (43) can be rewritten as

follows:

<d[ > L ¼ 1
k1p

Z2p
0

ZffiffiffiffiffiffiffiMðqÞ
p

ffiffiffi
A

p

ffiffiffi
s

p
2ðMðqÞ �AÞ dsdq

¼ 1
3k1p

Z2p
0

MðqÞ ffiffiffiffiffiffiffiffiffiffiffi
MðqÞp � A

ffiffiffiffi
A

p

MðqÞ �A
dq (44)

where M(q) ¼ A þ D þ Bcos2q þ Ccosq sin q. Note that the

quantityM(q)/k1 represents the line-ellipsoid intercept at R¼ 1,

at which by construction, the line is tangent to, so that

M(q) ¼ 0; cq 2 [0, 2p). This transforms the integral to a much

simpler one as follows:

<d[ > L ¼ 1
3k1p

Z2p
0

�A
ffiffiffiffi
A

p

�A
dq ¼ 2

ffiffiffiffi
A

p

3k1
(45)

k1 is defined in Eq. (15), and by computing k2(R, q) and k3(R, q)

one can derive A¼4k1. Accordingly, Eq. (45) can be rewritten as

follows:

<d[ > L ¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

�
li
ai

�2s (46)

where l1, l2, l3 are the direction cosines of the familyL, and a1,

a2, a3 are the semi-axes lengths of E. The expression in Eq. (46)

is similar to the one suggested by Bunge et al. [38] except for a

multiplication factor. In the current work, the formulation is

developed using the averaging operator which is different

from the formulation developed by Bunge et al. [38] based on

the line intercept passing through the origin of the ellipsoid.

One can use Eq. (46) to obtain the effective length scales cor-

responding to pure-edge and pure-screw dislocations with the

direction cosines of ma
e (m

a
e;1; m

a
e;2; m

a
e;3) and tae (t

a
e;1; t

a
e;2; t

a
e;3),

respectively, as follows:

dma
e
¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

�
ma

e;i

aa
i

�2s ;dtae ¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1

�
ta
e;i

aa
i

�2s (47)

Jiang et al. [21] conducted a set of discrete dislocation dy-

namics simulations and proposed a shape factor to account

for the grain size and morphology on the flow stress. The

proposed length scale is used here to obtain the slip system-

level length scale. Accordingly, the effective length scale for

slip system a can be obtained as follows:

da
eff ¼

�
4Sa

Ca

�2 1

V
1
3

(48)

where Sa and Ca are the area and circumference, respectively,

of an ellipse with axes-lengths dma
e
and dtae , while V denotes

the volume of the best-fit ellipsoid. Sa can be described as

follows:

Sa ¼ p

4
dma

e
dtae ;V ¼ 4

3
pa1a2a3 (49)
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Ca, on the other hand, does not possess a closed-form

expression and is instead approximated using an expression

proposed by Ramanujan [57] as follows:

Caz
p

2
ðdma

e
þ dtae Þ

 
1þ 3 h2

10þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h2

p
!
; h :¼





dma
e
� dtae

dma
e
þ dtae





 (50)

The slip system-level grain size for each grain and slip

system is computed in a MATLAB script actual_dist.m, which

is available as part of the PRISMS-Toolbox (See the “Code

availability” section). The initial slip resistances are then ob-

tained according to Eq. (11).
4. Modeling fatigue and extreme value
statistics

Over the last few decades, crystal plasticity simulations have

been employed extensively to investigate the local and

extreme value fatigue response of polycrystalline micro-

structures [49,58e60]. The early stages of fatigue crack for-

mation and growth under high cycle fatigue (HCF) loading

conditions are strongly influenced by the localmicrostructure,

including local grain/phase orientation, neighborhood, and

morphology [49]. The grain morphology effects considered

here may therefore have important implications in the use of

these models to predict the extreme value fatigue response

and must be evaluated. We employ Fatigue Indicator Param-

eters (FIPs) as computable quantities of interest within indi-

vidual grains/subgrain regions [49,61e63]. FIPs serve as

surrogate measures of the driving force for fatigue crack for-

mation. Yaghoobi et al. [61] recently presented the open-

source PRISMS-Fatigue framework which is employed here

to calculate and analyze FIPs. PRISMS-Fatigue is a highly effi-

cient, scalable, flexible, and easy-to-use open-source ICME

fatigue framework available to the research community. This

work employs a crystallographic version of the Fatemi-Socie

FIP [64] introduced by Castelluccio and McDowell [65]

defined as

FIPa :¼ Dga
p

2

	
1þ k

sa
n

sY



(51)

where Dga
p is the range of cyclic plastic shear strain on the ath

slip system, san is the peak stress normal to the slip plane and k

controls the influence of san which is normalized by the

macroscopic yield strength sY [65]. The value of k is set to 10 in

accordance with previous work [61e63]. Although the

dependence of sY with respect to the three crystallographic

textures is computed later, it is held fixed at 517 MPa for all

microstructures when comparing FIPs.

FIPs such as FIPa are commonly employed to examine the

fatigue response of polycrystalline microstructure models. In

fact, Bozek, Hochhalter, and colleagues [66e68] investigated

fatigue incubation life in aluminum alloy 7075-T651 at con-

stituent particles and demonstrated that slip-based metrics

computed over appropriate domains could be used to deter-

mine which incubated cracks nucleate. Other common FIP

formulations include a grain boundary impingement FIP that

considers the irreversible plastic shear strain accumulation at
a grain boundary and the stress normal to the grain boundary

[69], the accumulated plastic strain energy density [70,71], a

combination of the peak hydrostatic stress and maximum

local resolved shear stress [72], and stored energy density [73].

In each of these references as well as the current work, FIPs

are computed as post-processing operations and do not in-

fluence the response or the thermodynamic state of the

model. However, recentwork has demonstrated the capability

to model material degradation directly in the constitutive re-

lations, e.g., Egner et al. [74] related fatigue damage to the third

stage of material cyclic softening in a model of P91 steel. In

this work, FIPs are computed after 2 fully reversed straining

cycles since the local response quickly saturates [63].

FIPa is calculated at every integration point across the

final straining cycle and is subsequently volume averaged to

serve two purposes: to alleviate the effects of mesh sensi-

tivity and to reflect the sub-grain fatigue damage process

zone over which fatigue crack formation occurs [49]. Several

FIP volume averaging strategies exist. The simplest strategy

averages FIPs over entire grains but this may too intensely

smear the extreme value response in certain parts of a grain.

Furthermore, the lognormal grain size distribution results in

a non-regularized averaging volume. Castelluccio and

McDowell [65] developed a strategy to average FIPs over

bands that lie parallel to crystallographic slip planes. Stopka

and McDowell [75,76] built on this approach and further

separated bands into sub band regions that provide a regu-

larized averaging volume. FIPa values are volume averaged

over these sub-bands in this work and are then fit to an

Extreme Value Distribution (EVD) to facilitate rank-ordering

of fatigue resistance.

Distributions of a single variable with a sufficiently large

sample size n will converge to one of three non-degenerate

distributions: 1) Gumbel, 2) Fr�echet, and 3) Weibull [77]. FIPs

have previously been characterized well by the Gumbel and

Fr�echet EVDs with a subtle difference depending on whether

fully periodic or “thin film” boundary conditions were pre-

scribed [78]. The Weibull EVD requires an upper bound on the

data and is therefore not considered here, but PRISMS-Fatigue

users have the option to fit FIPs to either the Gumbel or

Fr�echet EVD [61]. In this work, FIPs are fit to the Gumbel EVD

which is expressed as

FYn ðynÞ ¼ exp
�
� e�anðyn�unÞ � (52)

where FYn ðynÞ is the probability that the value Yn will be less

than or equal to yn, un is the characteristic largest value of the

sampled population, and an is an inverse measure of the

dispersion of the largest value of the population [77]. FIPs are

sorted in ascending order with their probabilities estimated by

FYj
ðyjÞ ¼ j� 0:3

nþ 0:4
(53)

where j is the rank order of the corresponding FIP and n is the

number of FIPs from a single or multiple microstructures. Eq.

(53) is written as a linear function of yn in the form

ln

"
ln

 
1

FYn

�
yn

�!#�1

¼ anyn � anun (54)
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Fig. 1 e Orientation distribution function (ODF) pole figures for the (a) random, (b) cube, and (c) rolled texture.
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where an is the slope and � anun is the y-intercept. In this

form, data that are well characterized by a Gumbel distri-

bution appear as a straight line. Only a single sub-band

volume averaged FIP is considered per grain so that data

from multiple elements are not considered. Stopka, Gu, and

colleagues [79,80] examined the convergence behavior of

FIPs fit to the Gumbel EVD and devised a strategy to predict

the maximum FIPs in larger volumes using extreme value

theory, which requires rigorous consideration of a FIP

threshold in the fitting process. In this work, the highest 100

FIPs from each microstructure are fit to the Gumbel EVD for

the sole purpose of rank-ordering relative fatigue resistance.

In other words, only the highest FIPs are of interest since

these are associated with the highest driving forces for fa-

tigue crack formation.
5. Results and discussion

5.1. Simulation details

The developed crystal plasticity framework is implemented

within the PRISMS-Plasticity framework [44], a finite element

method (FEM) code for solving boundary value problems
arising in continuum and crystal plasticity built on top of the

deal.II open-source FEM library [81e83]. In the current work,

Al 7075-T6 polycrystalline microstructures with three

different crystallographic textures of random, cube, and rolled

are generated using DREAM.3D [84], with orientation distri-

bution function (ODF) pole figures shown in Fig. 1(a)e(c). To

isolate the effect of grain size from other microstructural

features, microstructures from different textures are solely

scaled to generate different grain sizes of 25 mm, 50 mm,

200 mm, and 1600 mm. To investigate the effect of grain

morphology, microstructures with different textures and

average grain size of 50 mm are generated with four aspect

ratios, R: 1, 2, 4, 6. An aspect ratio of R implies a relative pro-

portion of R: 1 : 1 of the three axes lengths corresponding to

the best-fit ellipsoids used to represent the grains. The pro-

portion R: 1 : 1 with R � 1 refers to the relative ratio of x: y: z

axes lengths. For the rest of thiswork, the case R¼ 1 is referred

to as ‘AR 1’ (single quotes removed later when referring to this

aspect ratio case), and likewise for the other aspect ratios.

Fig. 2 depicts microstructure models with random texture

corresponding to AR 1, AR 2, AR 4 and AR 6 where one can

observe the grain morphology varying with the aspect ratio R.

Eachmicrostructure instantiation is a cubewith a structured grid

of 100 � 100 � 100 voxels containing approximately 7600 grains.
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Four different scenarios are analyzed: (i) random texture

with loading along the x direction (ii) cube texture with

loading along the x direction (iii) rolled texture with loading

along the x direction and (iv) rolled texture with loading along

the z direction, all relative to the ODF pole figures shown in

Fig. 1. Additionally, we consider cases where microstructures

for each aspect ratio are also deformed along the shortest

principal axis, i.e., perpendicular to the direction of grain

elongation. This is done while ensuring that the texture rela-

tive to the loading direction is preserved. For the cube and

random textures, the symmetry of the ODF pole figures allows

us to simply switch the loading direction from x to z without

the need to modify the crystallographic orientations. For the

rolled texture however, the orientations are modified to

ensure loading along the shortest principal axis, while main-

taining texture relative to the loading direction.

For every texture and aspect ratio cases AR 2, AR 4, and AR

6, the corresponding cases with loading along the shortest

principal axis are referred to as AR 1/2 (R¼ 1/2), AR 1/4 (R¼ 1/4)

and AR 1/6 (R ¼ 1/6), respectively. For example, in the case of

the cube and random textures loaded along the x direction, AR

1/2 implies loading the microstructure for AR 2 along the z
Fig. 2 e Synthetic microstructure models generated using DREAM

AR 2, (c) AR 4, and (d) AR 6.
direction. For the rolled texture loaded along the x direction,

AR 1/2 implies using the microstructure for AR 2, rotating the

crystallographic orientations about the y axis by 90�, and

subsequently loading along the z direction. Similarly, for the

rolled texture loaded along the z direction, AR 1/2 implies

using the microstructure for AR 2, rotating the crystallo-

graphic orientations about the y axis by 90�, and subsequently

loading along the x direction.

All simulations are performed with periodic boundary

conditions implemented into PRISMS-Plasticity following

earlier work [78,85], tomimic subsurfacematerial response. In

the case of local and extreme value fatigue statistical analysis,

cyclic deformation with a strain amplitude of 0.7% is applied

to the samples with an average grain size of 50 mm, for the

three crystallographic textures, and several grain

morphologies.

5.2. Parameter calibration

The room temperature elastic constants for Al 7075-T6 are

adopted here [66,86], which are presented in Table 1. The

crystal plasticity constitutive parameters are calibrated using
.3D for four different aspect ratios - (a) AR 1 (equiaxed), (b)

https://doi.org/10.1016/j.jmrt.2022.06.075
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the experimental results of Al 7075-T6 [87] obtained from cy-

clic loading tests with strain amplitudes of 1% and 1.8%. To ease

the calibration, the Ohno-Wang backstress model described in

Eq. (8) is simplified to the ArmstrongeFrederick model [88] by

assuming just a single backstress contribution with m1 ¼ 0.

Isotropic hardening is neglected for all the simulations.

Since FCC polycrystals are modeled in the current work, saSI
and ka is assumed to be identical for all slip systems. Accordingly,

only two constants should be determined from the calibration

procedure, for which two types of simulations are conducted:

1. A periodic cubic microstructure with dimensions

225 mm � 225 mm � 225 mm comprising 100 � 100 � 100

voxels is generated, representative of random texture with

approximately 7400 equiaxed grains with a lognormal

average grain size of 14 mm. The microstructure is subject

to cyclic loading since experimentally measured cyclic

stressestrain curves are available for this alloy [87].

2. A periodicmicrostructure with random texture, an average

grain size of 50 mm and approximately 7600 equiaxed

grains is generated. The microstructure is then scaled

uniformly to different dimensions to mimic three other

average grain sizes - 25 mm, 200 mm, and 1600 mm - all of

which underwent tensile loading along the x direction.

Strain rate sensitivity exponent of m ¼ 1/75 and reference

shearing rate of _g0 ¼ 0:0001 s�1 are used for the calibration.

Displacement-controlled cyclic loading is applied along the x

direction using periodic boundary conditions [78,85]. saSI and ka

are calibrated to reproduce the Hall-Petch slope of approxi-

mately 120 MPa mm1/2 for Al 7075-T6 with random texture

reported in earlier work [89,90], and the cyclic results reported

previously [87]. Additionally, simulations without grain size

effect are also performed by setting ka ¼ 0 for which calibrated

parameters in previous work [86] are used.

Tables 2 and 3 present the calibrated crystal plasticity

constitutive parameters for simulations with and without

grain size effects, respectively. Fig. 3(a)e3(b) compare the cy-

clic responses without the grain size effect using the param-

eters in Table 2 against the experimental results for strain

amplitudes of 1% and 1.8%. Fig. 3(c)e3(d) compare the cyclic

responses with the grain size effect using the parameters in

Table 3 against the experimental results for strain amplitudes

of 1% and 1.8%. Fig. 4 depicts the yield strength variation with

average grain size for simulated microstructures with a Hall-

Petch slope of approximately K ¼ 123.7 MPa mm1/2, which is

close to the value of 120 MPa mm1/2 reported by [89,90].

5.3. Grain size effect

The effects of average grain size on the yield strength of each

texture are investigated using samples with equiaxed grains

(R ¼ 1). The random texture grain size results obtained post
Table 1e Room temperature elastic constants (Units: GPa)
of Al 7075-T6 [66].

C11 C12 C44

107.3 60.9 28.3
calibration are compared to those of the cube and rolled tex-

tures, with average grain sizes of 25 mm, 50 mm, and 200 mm for

the two latter textures. Fig. 5(a) depicts the yield strength as a

function of average grain size. The variation in yield strength

is fit using the expression sY ¼ s0 þ K=
ffiffiffi
d

p
, where d is the

average grain size and s0 and K are the computed Hall-Petch

constants shown in Table 4.

The ratio of the maximum and minimum values of s0

among the three textures is approximately 1.32. The vari-

ability in s0 can be explained by considering the distribution of

the quantity obtained from the ratio of the global Schmid

factor to the normalized slip system-level resistance. For any

slip system a in a particular grain, one can compute the global

Schmid factor, S
a
, and normalized slip system resistance, sa as

S
a
:¼ ��~s : Sa

0

��; S
a

:¼ 1þ kaffiffiffiffiffiffiffiffiffiffiffiffiffi
da

eff s
a
SI

q

~s ¼

2664
1 0 0

0 0 0

0 0 0

3775ðx loadingÞ ; ~s ¼

2664
0 0 0

0 0 0

0 0 1

3775ðz loadingÞ

R
a

:¼ S
a

sa

(55)

where R
a
is the parameter whose distribution we analyze.

This construction is motivated by the ratio of the resolved

shear stress to slip resistance appearing in the phenomeno-

logical flow rule, Eq. (3), without the backstress term. Fig. 5(b)

depicts the distribution of R
a

for microstructures corre-

sponding to different textures. The probability of larger values

ð > 0:3Þ in R
a
is highest for the cube texture, followed by the

rolled (z loading) and random textures being quite similar, and

the lowest in rolled (x loading). Since the quantity that we

constructed is a measure of ease of crystallographic slip, the

yield strength can be directly correlated to the probability of

finding higher values of R
a
, and that trend is reflected in

Fig. 5(a) in the order of yield strengths for microstructures

corresponding to different textures, for a given grain size.

For the Hall-Petch slope K, the ratio of the maximum and

minimum values among the textures considered is approxi-

mately 1.22. It is interesting to note that for random and rolled

(z loading) cases, the values of s0 and K are close to each other,

suggesting a possible connection between the two. However,

aswe go in the order of lowest to highest s0, K does not depict a

monotonic increase. Instead it is the highest at both the ends

of the spectrum, i.e, cube and rolled (x loading) cases, and

lower for random and rolled (z loading), suggesting a different

coupling between texture and the Hall-Petch slope unlike s0.

5.4. Grain morphology effect

Synthetic microstructure models are generated with an

average grain size of 50 mm and for seven aspect ratios(R) - 1/
Table 2 e Crystal plasticity constitutive parameters for
the model without grain size effects [86].

m saSI(MPa) h1(MPa) r1

1/75 130 75600 720
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Table 3 e Crystal plasticity constitutive parameters for
the model with grain size effects.

m saSI(MPa) h1(MPa) r1 ka(MPa mm1/2)

1/75 35 75600 720 35.5
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6, 1/4, 1/2, 1, 2, 4, 6, and the simulated yield strength is

depicted in Fig. 6(a). Additionally, for a specific texture

(relative to the loading direction) we define the normalized

yield strength ~sY as the ratio of the yield strength for a

specific aspect ratio R, relative to the yield strength for R ¼ 1,

for the same texture, as depicted in Fig. 6(b). This figure

shows that any deviation from equiaxed grain morphology

increases the yield strength. It is important to note that all

microstructure models contain the same average number of

grains and that grains elongated in one direction shrink in

the other two directions, i.e., equiaxed and elongated grains

are on average discretized by the same number of elements/

voxels. Since the yield strength increases with aspect ratio,

this confirms that there is a net decrease in the effective slip

system grain size for many grains, resulting in an increase in

the slip system resistance (relative to equiaxed grains), in turn
Fig. 3 e Comparison of cyclic stressestrain curves between exp

(b) 1.8% strain amplitude without the grain size effect (c) 1% str

size effect.
increasing the yield strength. Apart from this common behavior

for all texture cases, the yield strength corresponding to the

rolled texture (x loading) is more sensitive to aspect ratio than

the other textures. Additionally, when the aspect ratio deviates

from the equiaxed case, i.e., AR 1, cube texture is the least

sensitive, followed by random texture, followed by rolled

texture (z loading).

The effect of grain morphology is further investigated

using the parameter R
a
defined in Eq. (55). Fig. 7(a)e7(d) de-

picts the distribution of R
a

for different aspect ratios and

textures. As expected, the tails of the distribution towards

higher R
a
extend towards larger values as the aspect ratio

approaches 1 from either side. It is interesting to note that the

slope of the tails of the distribution seems to follow a similar

trend (Fig. 7 insets) as the aspect ratios approach 1. In other

words, the tail of rolled texture (x loading) approaches 0much

more gradually than the cube texture, which shows the most

prominent approach. Among the other two textures, random

texture approaches 0 with a higher slope than rolled texture (z

loading). This is the reverse order in which the textures are

arranged based on their yield strength sensitivity to changes

in the aspect ratio close to 1, suggesting a possible correlation
eriments and simulations. (a) 1% strain amplitude and

ain amplitude and (d) 1.8% strain amplitude with the grain
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Fig. 4 e Yield strength as a function of average grain size

for microstructure models with random texture, used to

calibrate the micro HallePetch coefficient and Hall-Petch

slope of approximately 123.7 MPa mm1/2.

Table 4 e Hall-Petch constants for different textures.

Texture s0(MPa) K(MPa mm1/2)

Random 464.6 123.7

Cube 384.8 134.4

Rolled(x loading) 506.0 146.1

Rolled(z loading) 473.8 119.3

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 2 ; 1 9 : 3 3 3 7e3 3 5 43348
between the nature of the tails of the distribution and the yield

strength sensitivity to the aspect ratio.

5.5. Local maximum plastic shear strain and extreme
value fatigue response

Fig. 8 depicts histograms of the maximum plastic shear strain

range (PSSR) at each integration point for each simulation. The

PSSR is calculated for each of the 12 slip systems at each

integration point using data from the final maximum applied

tension and maximum applied compression points in the

simulation, and the maximum value at each integration point

is then determined. The dotted and solid lines represent

simulation data with and without grain size and morphology

effects, respectively. All plots in Fig. 8 have the same x and y
Fig. 5 e (a) Yield strength as a fuction of average grain size for t

dotted lines denote the best linear fit to the data for the corresp

models with different textures and equiaxed grains with avera
axes limits to facilitate easy comparisons. The legends and

coordinate axes indicate the aspect ratio and straining direc-

tion of grains relative to the ODF pole figure, respectively. AR 1

corresponds to the microstructure with equiaxed grains. In

contrast, AR 6 and AR 1/6 correspond to grains strained par-

allel and perpendicular to the direction of grain elongation,

respectively. The insets shown in Fig. 8 display the largest

values of maximum PSSR.

The histograms from cube textured simulations in Fig. 8(b)

show that themaximum of PSSR in cube texture is lower than

other textures. Analysis of the cube ODF pole figure in Fig. 1(b)

reveals that slip is on averagemore homogenously distributed

in this texture, with 8 of the 12 slip systems accommodating

plastic deformation equally. Incorporating of grain size and

morphology effects increases the maximum PSSR most

notably for grains strained in the direction of grain elongation

(AR 6, blue curves), whereas the equiaxed grain morphology

shows less change (AR 1, red curves). Histograms for the

random texture are shown in Fig. 8(a) with relatively more

integration points showing very low or very high plastic slip

activity. Each curve resembles a wider distribution as

compared to the cube textured data in Fig. 8(b). Grain size and

morphology effects do not strongly affect the distributions

except in the case of grains strained perpendicular to the di-

rection of grain elongation (AR 1/6, green curves). The equi-

axed grain morphology (AR 1, red curves) shows the most

plastic slip activity. This data also distinctly overlaps with

data from the simulation with grains strained perpendicular

to the direction of grain elongation without grain size and

morphology effects (AR 1/6, solid green curve) at the highest
he random, cube, and rolled textures (x and z loading). The

onding texture. (b) R
a
distribution for the microstructure

ge grain size of 50 mm.
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Fig. 6 e (a) Yield strength and (b) normalized yield strength as a function of the four textures and seven grain aspect ratio R

in geometric progression from 1/6 to 6, respectively.
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values of plastic slip activity, as shown by the inset figure in

Fig. 8(a).

Histograms of maximum PSSR for microstructures with

rolled crystallographic texture strained in the X and Z
Fig. 7 e Distribution of R
a
for the seven different aspect ratios a

texture (x loading), and (d) rolled texture (z loading). The insets
directions relative to the ODF pole figure are shown in Fig. 8(c)

and Fig. 8(d), respectively. The equiaxed grain morphology

once again displays the highest values and almost no influ-

ence when grain size and morphology effects are modeled. In
nd for the (a) random texture, (b) cube texture, (c) rolled

show the tails of the distributions.
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Fig. 8 eHistograms of themaximum plastic shear strain range at each integration point for the (a) random, (b) cube, (c) rolled

strained in the X, and (d) rolled strained in the Z crystallographic textures. The straining directions indicated on the

coordinate axes are relative to the ODF pole figures. Markers with ‘GS’ indicate data from simulations that consider grain

size and morphology effects.
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contrast, the histograms for the AR 6 and AR 1/6 grain mor-

phologies substantially change when grain size and

morphology effects are included. Overall, the equiaxed grain

morphology displays the largest extreme values of plastic slip

(shown in the inset figures in each panel in Fig. 8) except for

the cube crystallographic texture.

Fig. 9 shows the highest 100 FIPs from each combination of

crystallographic texture and grain aspect ratio fit to the

Gumbel EVD, calculated using the crystallographic version of

the Fatemi-Socie FIP shown in Eq. (51). The x and y axes limits

are once again identical to facilitate easy comparisons. FIPs

from the cube textured microstructures are shown in Fig. 9(b)

and do not vary significantly between all six data sets. The

cube texture in all cases manifests the lowest FIPs and

matches previous work by the authors [61,76]. FIPs from mi-

crostructures with random crystallographic texture are

shown in Fig. 9(a). The equiaxed grain morphology manifests

the highest driving forces for fatigue crack formation. Inter-

estingly, when grain size and morphology effects are consid-

ered in the model, the extreme value FIPs for the equiaxed

grain morphology do not change (red markers). Modeling

grain size and morphology effects decreases FIPs only for the

elongated grain morphologies, i.e., AR 6 and AR 1/6. FIPs from

microstructures with the rolled crystallographic texture are
shown in Fig. 9(c) and Fig. 9(d) for cyclic straining along the x

and z directions, respectively. The equiaxed grainmorphology

once again displays the largest FIPs and lowest sensitivity to

the presence of grain size and morphology effects in the

model. Similar trends are observed by Stopka and McDowell

[76] in that an equiaxed grain morphology reduced FIP mag-

nitudes regardless of crystallographic texture. The unique

observation in this work is that any deviation from an equi-

axed grain morphology reduces FIPs, which indicates that

equiaxed grains represent the “worst case” scenario for the

driving forces for fatigue crack formation. It is important to

point out that the highest FIPs accord with the highest

maximum PSSR shown in Fig. 8, since the computed FIP is

based on the PSSR.

For microstructures with equiaxed grain morphology, the

changes in the EVD of FIPs areminuscule for all three textures

when grain size and morphology effects are included. How-

ever, the highest FIPs can considerably change for the random

and rolled textures with elongated grain morphology. To

further investigate these differences, the microstructures

with random and rolled texture are further analyzed. The

grains that manifest the highest 10 FIPs are determined with

equiaxed grain morphology (i.e., AR 1) and with elongated

grains strained perpendicular to the direction of grain

https://doi.org/10.1016/j.jmrt.2022.06.075
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Fig. 9 e The 100 highest sub-band volume averaged Fatigue Indicator Parameters (FIPs) from distinct grains fit to the Gumbel

Extreme Value Distribution (EVD) for the a) cube, b) random, c) rolled strained in the X direction, and d) rolled strained in the

Z direction crystallographic textures. The straining directions indicated on the coordinate axes are relative to the ODF pole

figures. Markers with ‘GS’ indicate data from simulations that consider grain size and morphology effects.

j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 2 ; 1 9 : 3 3 3 7e3 3 5 4 3351
elongation (i.e., AR 1/6) for both textures. For the random

texture with equiaxed grain morphology, 9 out of the 10

highest FIPs occur in the same grain independent of whether

the grain size and morphology effects are incorporated into

the model. For the rolled texture, this statistic is 7 out of 10

grains that manifest the highest FIPs. For random-textured

microstructures with grains strained perpendicular to the di-

rection of grain elongation, only 4 out of the 10 highest FIPs

occur in the same grain independent of grain size and

morphology effects. For the rolled texture, this statistic is 6 out

of the 10 highest FIPs. If the effects of grain size are included

without the effects of grain morphology, these important

differences would not be observed. These results thus illus-

trate the importance of including the effect of grain

morphology in addition to the grain size effect to accurately

capture the extreme value response.
6. Conclusions

A computational framework is developed to incorporate the ef-

fects of grain size andmorphology onyield strength and extreme

value fatigue response using the crystal plasticity finite element
method designed for large scale simulations. A new grain-level

length scale is developed for polycrystalline metals and alloys

to model the effect of grain size and morphology, which is

motivated by the idea of a grain shape factor obtained from

discrete dislocation dynamics simulations [21]. Each grain is

approximated by its best-fit ellipsoid to extract its length scale

which includes both grain size and morphology. The grain-level

length scale is then calculated for each slip system and incor-

porated to define the corresponding slip resistances. The devel-

oped framework is available to the community as a part of the

open-source software PRISMS-Plasticity and PRISMS-Toolbox.

Simulations of four different texture-loading pairs are

performed to study the variation of yield strength with grain

size and morphology. A connection is drawn between the

distribution of a parameter R
a
, whose construction is moti-

vated by the phenomenological flow rule, and the variations in

the Hall-Petch constant s0, for different textures. Additionally,

while there appears to be some correlation between the Hall-

Petch slope and s0, it does not depict the monotonic behavior

relative to different textures as did s0.

The model also reflects an increase in yield strength with

aspect ratio deviating from equiaxed grains, irrespective of

texture. Furthermore, the sensitivity of yield strength to
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change in aspect ratio is prominent in the case of rolled

texture with loading along the x direction. Additionally, the

importance of the tail of the distribution of R
a
is also high-

lighted in the context of yield strength sensitivity, where the

decay characteristics seem to play a role.

Finally, the simulation results demonstrate that incorpo-

rating grain size and morphology effects can notably perturb

the computed extreme value fatigue response of microstruc-

tures, as evaluated using Fatigue Indicator Parameters. Equi-

axed grains exhibit the highest driving force for fatigue crack

formation. FIPs computed for microstructure models with

equiaxed grainmorphology are the least sensitive for all three

textures with grain size and morphology effects incorporated

in themodel. However, the highest FIPs can drastically change

in the elongated samples for all three textures. This highlights

the importance ofmodeling grainmorphology alongside grain

size in fatigue analyses. The model presented here can

therefore more realistically evaluate the fatigue resistance of

polycrystalline microstructures.
Code availability

PRISMS-Plasticity and PRISMS-Fatigue are open-source com-

puter codes available for download at https://github.com/

prisms-center/plasticity and https://github.com/prisms-

center/Fatigue, respectively. In addition to written tutorials

available in the GitHub repositories, a series of video tutorials

totaling nearly two and three h of content are available at

https://www.youtube.com/playlist?list¼PL4yBCojM4Swqy4FR

teqxHWSiM1uiOOesj and https://www.youtube.com/playlist?

list¼PL4yBCojM4Swo3CvlA57syFrzk3p1mugP5, respectively.

The two Python scripts necessary to reproduce the results

of this article are available at https://github.com/prisms-

center/Fatigue. The MATLAB script used to compute the slip

system-level grain size using equivalent ellipsoid information

is available at https://github.com/prisms-center/prisms-

toolbox/tree/master/PRISMS-Plasticity-Toolbox/Grain_Size_

Morphology.
Availability of data and materials

The microstructures, CPFE input files, PRISMS-Plasticity raw

simulation results, and individual plots are available on Ma-

terials Commons at https://doi.org/10.13011/m3-f90v-gs55.
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