
International Journal of Plasticity 142 (2021) 102991

Available online 5 April 2021
0749-6419/© 2021 Elsevier Ltd. All rights reserved.

Three-dimensional crystal plasticity simulations using 
peridynamics theory and experimental comparison 

Aaditya Lakshmanan a, Jiangyi Luo b, Iman Javaheri a,c, Veera Sundararaghavan a,* 

a Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 48105, USA 
b Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA 
c NASA Langley Research Center, Hampton, VA, 23681, USA   

A R T I C L E  I N F O   

Keywords: 
Peridynamics 
Crystal plasticity 
Continuum mechanics 
Polycrystalline microstructure 
Localization 

A B S T R A C T   

A three-dimensional (3D) peridynamics (PD) model of crystal plasticity (CP) is presented for 
predicting the fine-scale localization in polycrystalline microstructures undergoing elastoplastic 
deformation. Microscale data from electron microscopy and digital image correlation have 
indicated that slip localizations arise early in deformation and act as precursors to mechanical 
failure and fracture. However, classical numerical approaches such as crystal plasticity finite 
element methods (CPFEM) are generally unable to predict the emergence and distribution of such 
localizations. Alternatively, the PD formulation has attracted significant attention for its unique 
treatment of deformation in the presence of high strain gradient fields. In this paper, a mesh-free 
non-ordinary state-based PD technique is developed for simulating the elasto-plastic deformation 
of 3D polycrystalline aggregates of a magnesium alloy. This work presents the details of 3D 
polycrystal plasticity modeling using PD theory with experimental and CPFEM comparisons. The 
results from this model are validated against published experimental data for the stress-strain 
response and texture evolution. The crystal plasticity peridynamic (CPPD) models are success-
ful in simulating grain averaged strains seen in the experiment and depict well-resolved regions of 
strain localization.   

1. Introduction 

Developing computational models for microstructure evolution of polycrystalline alloys in industrial applications remains an active 
challenge. Recent experiments have observed microscale strain localizations, in the form of fine shear bands, on the surface of 
polycrystals undergoing large deformation using a combination of scanning electron microscopy and digital image correlation 
(Kammers and Daly, 2013; Guery et al., 2016). These microscale shear bands can act as precursors for damage and failure. These 
localizations have also been associated with degradation in material strength, in the form of strain-softening (Hornbogen and Gahr, 
1975; Bazant et al., 1984). Slip localization naturally occurs in deforming polycrystalline aggregates in the form of lamellar bands of 
fractions of microns in thickness (Harren et al., 1988). The spacing between such slip bands decreases with increasing plastic 
deformation (Zhang et al., 2010). Instabilities such as Lüders bands are preceded by strain-softening and advanced by the formation of 
new slip bands parallel to the old ones(Hallai and Kyriakides, 2013; Yuzbekova et al., 2017; Shaw and Kyriakides, 1997; Jacobs et al., 
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2019). Micropillar compression experiments (Dimiduk et al., 2006; Greer et al., 2005; Zhang et al., 2013) have revealed plastic 
behavior characterized by strain bursts under stress-controlled conditions, where such bursts are associated with local strain gradients 
in the interior of the material (Maaβ et al., 2007). In situ SEM-DIC experiments under monotonic loading also reveal subgrain slip 
localizations even under positive work hardening rates (Kammers and Daly, 2013; Echlin et al., 2016). (see Figs. 22–24) 

Crystal plasticity constitutive models coupled with continuum mechanics have provided a universal framework to model a wide 
variety of phenomena underlying polycrystalline plasticity (Hill, 1966; Hill and Rice, 1972; Mandel, 1973) and specific applications to 
modeling localizations. When using the standard crystal plasticity finite element (CPFE) models, the discretization of the volumetric 
space influences the size of shear bands, resulting in a mesh-dependent method (Anand and Kalidindi, 1994). These models typically 
require an iterative mesh refinement process to ensure a stable solution. Various enhancements to FEM have been studied in the past to 
overcome such issues. Early approaches involved the development of traction-separation softening laws whose slope was made to 
depend on the elemental volume (Oliver, 1989). Later approaches such as extended-FEM (X-FEM) (Samaniego and Belytschko, 2005) 
or variational multiscale methods (VMM) (Armero and Garikipati, 1996) were developed to represent sharp discontinuities on coarser 
elements by enriching the finite element interpolations. However, none of the above-mentioned techniques are capable of predicting 
localization naturally as a consequence of the underlying physics and imperfections are embedded to trigger localization. The 
development of slip bands and size effect in ductile metals is considered non-local phenomena with an inherent length scale, i.e., the 
crystallographic slip at a material point is influenced by the deformation of material within a finite neighborhood. A significant body of 
recent work has employed gradient theories (Counts et al., 2008; Evers et al., 2004; Voyiadjis and Song, 2019; Liu and Dunstan, 2017) 
to model size effects. These models typically consider strain gradient dependent hardening terms in CP that simulate the evolution of 
geometrically necessary dislocations (GNDs) (Cermelli and Gurtin, 2001; Acharya et al., 2003). However, such low-order gradient 
theories do not retain sufficient long-range interactions to model the width and spacing of slip bands accurately. Presumably, the 
inclusion of higher-order strain gradients could improve the constitutive description, but it would still require a significant amount of 
calibration at the constitutive level, necessitating costly experiments for detailed dislocation density characterization (Calcagnotto 
et al., 2010; Ruggles and Fullwood, 2013). 

Peridynamics (PD), introduced as an alternative integral formulation to continuum mechanics, is a technique that uses mesh-free 
and particle-based discretizations (Silling, 2000; Silling et al., 2007). The first version of PD was a bond-based technique in which 
forces between particles were assumed to be pairwise (i.e., equal and direction-reversed). A more general state-based PD model was 
subsequently proposed (Silling et al., 2007), where force states were defined by the interactions between the particles. As a result, the 
non-locality was conveniently introduced without the need to alter the underlying constitutive equations. Here, the deformation 
measure is computed by integrating the motion of particles across a finite horizon via the correspondence principle. Such an approach 
has been proven to be exceptionally efficient in modeling discontinuities when compared to continuum mechanics (Madenci and 
Oterkus, 2014; Gerstle, 2015). In this paper, non-locality is introduced at the level of the governing equilibrium equations via the 
method of PD (Silling, 2000; Warren et al., 2009). In PD, the body is represented as a set of particles interacting via an integral form of 
the linear momentum balance equation. Additionally, a state-based theory of PD is implemented where the forces in between particles 
are computed from stress tensors obtained by CP. The stress tensor at a particle, in turn, is calculated using non-local strains derived by 
tracking the motion of surrounding particles within a radius of influence. When compared to gradient plasticity theories, this approach 
is more robust since it can take into account popular CP models of ‘local’ nature while avoiding higher-order terms at the constitutive 
level. As a result, the present PD approach is more straightforward since it avoids the need for any additional constitutive model 
development. 

A particular feature of PD has been its ability to effectively model localization in material behavior for a wide variety of problems. 
These include - but are not limited to - cracks (Ha and Bobaru, 2010; Silling et al., 2010; Agwai et al., 2011), shear bands (Liu et al., 
2018; Khan, 2014; Song and Menon, 2018), and phase boundaries (Dayal and Bhattacharya, 2006). However, there has not been much 
work on microstructural localizations in CP like slip bands, which are very commonly observed at the onset of plasticity in poly-
crystalline alloys under permanent deformation. Slip band formation in polycrystalline microstructures has been dealt with to some 
extent (Luo et al., 2018; Sun and Sundararaghavan, 2014a) which base their work on a crystal plasticity peridynamics (CPPD) 
formulation. These recent studies in CPPD however, have been limited to just two-dimensional (2D) problems. This paper presents the 
first implementation of PD formulation of CP simulations in three-dimensional (3D) domain with validation against in situ SEM-DIC 
experiments. 

Although PD has been proven effective in the prediction of discontinuities and damage initiations, there are still intrinsic issues of 
its numerical implementations, among which are zero-energy (also known as hourglass) modes and non-trivial treatment of boundary 
conditions (BCs) (Breitenfeld et al., 2014; Ren et al., 2016). Recent papers have attempted to resolve the hourglass-like instability by 
using fictitious springs between the particles (Breitenfeld et al., 2014; Littlewood, 2011). However, these methods have failed to 
remove the instability altogether. Another branch of methods is to modify the influence functions, either by providing an 
average-weighted displacement (Wu and Ben, 2015) or by using higher-order approximation of gradients (Yaghoobi and Chorzepa, 
2017). In this paper, the latter approach is used to mitigate the zero-energy modes. In addition to the zero-energy modes, non-ordinary 
state-based PD experiences the difficulty in enforcing BCs (Wu and Ben, 2015). Since PD utilizes an integral-form equation of motion, 
different from the partial differential equations (PDEs) in conventional continuum mechanics, the enforcement of kinematic 
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constraints at boundaries is not able to follow the standard approach. Here, additional material layers are used to enforce displacement 
boundary conditions (Sun and Sundararaghavan, 2014b). To obtain a steady state solution, a peridynamics code with an adaptive 
dynamic relaxation method for quasi-static PD simulations, as detailed in Methodology Section, is implemented (Kilic and Madenci, 
2010). Using this approach, an artificial damping ratio estimated from Rayleigh’s quotient is selected to dampen the dynamic system. 
Littlewood (2011) presented an implementation of elasto - crystal viscoplastic material model within the framework of peridynamics 
very similar to our current work, along with some proof-of-concept simulations carried out using a simple baseline model of a hard 
inclusion in a single crystal. However, the focus there was to study and compare the material response in the vicinity of a cracked and 
uncracked particle in single crystals of two different orientations. Gu et al. (2019) presented a non-ordinary state-based PD model of 
crystal elasto-plasticity with penalty force stabilization which could model fine shear bands in a 2D polycrystalline microstructure with 
two slip systems. In our current work, a fully explicit implementation of state-based PD for modeling elasto-plastic quasi-static 
deformation of 3D polycrystals is presented, demonstrating for the first time the capability to simulate polycrystalline mechanical 
behavior, compare simulation predictions with experimental data and depict well-resolved strain localization. The accuracy and 
effectiveness of this new dynamic CPPD model is examined by presenting multiple numerical examples. 

2. Methodology 

In this section, the non-local state-based PD theory is reviewed, followed by a description of the adaptive dynamic relaxation 
scheme, which is setup by recasting the quasi-static problem as a dynamics problem with artificial damping. Then details on the 
numerical discretization, solution algorithm and treatment of boundary conditions are presented. Following that, the crystal plasticity 
constitutive model used to describe elasto-plastic material behavior is detailed. 

2.1. Peridynamic formulation 

The non-ordinary state-based PD theory forms the theoretical foundation of the present work. This model was first proposed by 
Silling (Silling et al., 2007) and is a non-local integral reformulation of the classical continuum mechanics theory. Unlike previous 
bond-based PD models (Silling, 2000; Silling and Askari, 2005) that are restricted to a particular value of the Poisson’s ratio, the 
state-based PD theory can be generalized to include materials with a range of values of the Poisson’s ratio. In addition, it is possible to 
implement classical constitutive material models in the state-based framework, which enabled its integration with crystal 
elasto-plasticity theory, for this paper. 

Consider a material point in the reference configuration at position x, which can only interact with its neighboring points contained 
in a self-centered horizon ℋx with a finite radius δ. Given the displacement field u of the material point at x, the position of corre-
sponding material point in the current configuration is given by y = x + u. We denote the reference configuration of the body as ℬ0 at 
time t = 0 and the deformed configuration as ℬ1, as shown in Fig. 1. 

Let x′ denote the position of a particular material point belonging to ℋx, and ξ = x′ − x denote a bond. The deformation vector state 
Y which encodes the kinematics of deformation, maps the bond ξ (in the reference configuration) to its deformed counterpart via Y[x,

Fig. 1. Kinematics of non-ordinary state-based PD. ℬ0 is the reference configuration of the body while ℬ1 is the deformed configuration. The particle 
at x is bonded to its neighboring particles (positions x′, x′′, and x′ ′ ′) within a region ℋx. The body deforms so that the particle at x displaces to y. The 
mapping can be described by a corresponding deformation gradient F(x, t). T = T[x, t]〈x′

− x〉 and T′

= T[x′

, t]〈x − x′ 〉 are force vector states in the 
reference configuration associated with particles at x and x′, respectively. In the non-ordinary state-based PD theory, these two force vector states 
are not anti-parallel in general. 
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t]〈ξ〉 = y′

− y. The corresponding deformation gradient tensor, F(x, t) is defined in terms of Y[x, t] as: 

F(x, t) =
(∫

ℋx

ω.(Y[x, t]〈ξ〉⊗ ξ)dVx′

)

K(x)− 1 (1)  

where ω is a time-independent influence function defined at particle x in ℋx, quantifying the impact of a neighboring particle at x′ on 
the particle at x. It is selected as a radially symmetric function which maps the initial bond length to some scalar, i.e., ω = ω(|ξ|). K(x) is 
the shape tensor at x, a symmetric and positive-definite tensor, defined as: 

K(x) =
∫

ℋx

ω.(ξ⊗ ξ)dVx′ (2) 

Consequently, The governing equations of PD are formulated as: 

ρü(x, t) = L(x, t) + b(x, t)

L(x, t) =
∫

ℋx

{T[x, t]〈x′

− x〉 − T[x′

, t]〈x − x′ 〉}dVx′
(3)  

where T[x, t]〈x′

− x〉 is the force vector state operating on the bond ξ, due to the particle at x and time t. Here, L(x, t) is the summation of 
the force per unit reference volume due to the interaction of a particle at x with other particles within its horizon. In correspondence 
with classical continuum theories, the force state T[x, t]〈x′

− x〉 is related to the first Piola-Kirchoff (PK–I) stress P(x, t) via the following 
relation: 

T[x, t]〈x′

− x〉 = ωP(x, t)K(x)− 1
.(x′

− x) (4) 

Compared to the governing equations of classical continuum mechanics, no spatial derivatives appear in Eqn. (3) which places 
fewer restrictions on the regularity properties of deformation descriptors. It is worth noting that despite the current PD model being 
non-ordinary the balance of angular momentum is ensured due to the relation in Eqn. (4) (Silling et al., 2007; Luo, 2019). 

2.1.1. Adaptive Dynamic Relaxation Scheme(ADRS) 
In this paper, an adaptive dynamic relaxation method with the quasi-static assumption and a careful time-step selection is adopted. 

Non-linear problems involving static solutions can alternatively be solved as a dynamics problem through artificial damping, leading 
to a stable solution through an iterative process. In the absence of body forces, the governing equations shown in Eqn. (3) can be 
rewritten in a vector form as follows: 

ü(x, t) + cu̇(x, t) = f(u, x, t) (5)  

where c is a damping ratio coefficient, and the force vector, f, is defined as f(u, x, t) = Λ− 1L(x, t), in which Λ is a diagonal fictitious 
density matrix. Based on the adaptive dynamic relaxation method, the most desired density matrix and damping coefficient can be 
determined by Greschgorin’s theorem and Rayleigh’s quotient, respectively (Kilic and Madenci, 2010). 

Let un, u̇n, ün, and fn denote the displacement, velocity, acceleration, and force vector field at t = tn, respectively. Here, Δt refers to 
the time step size. In the central difference scheme, the velocity and acceleration vectors are approximated as: 

u̇n ≈
1

2Δt
(un+1 − un− 1) (6)  

ün ≈
1

Δt2 (u
n+1 − 2un + un− 1) (7) 

Hence, substituting Eqns. (6) and (7) into Eqn. (5), and rearranging the terms yields an update scheme for the displacement field: 

un+1 =
[
2Δt2f n + 4un + (cΔt − 2)un− 1]/(2+ cΔt) (8) 

Accordingly, Eqn. (9) is employed to approximate u− 1 for initialization of the displacement update: 

u− 1 = u0 − Δtu̇0 +
Δt2

2
ü0 (9)  

where u0, u̇0, and ̈u0 are the initial displacement, velocity, and acceleration vectors, respectively. The velocity and acceleration vectors 
may be subsequently updated using Eqns. (6) and (7). With the assumption of a unit diagonal matrix Λ, Δt is selected based on 
Greschgorin’s theorem (Kilic and Madenci, 2010) and is expressed as: 

Δt ≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Λii

/∑

j
|Kij|

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4
/∑

j
|Kij|

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4/‖K‖∞

√

(10)  

where K denotes the stiffness matrix of the system and ‖ ⋅ ‖∞ denotes the vector-induced matrix ∞ norm. Since this stiffness matrix K is 
not explicitly computed, another approximation scheme is applied for the time step size. An appropriate value of Δt for the one- 
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dimensional (1D) peridynamic model is based on the wave speed cs using the Courant-Friedrichs-Lewy (CFL) condition (LeVeque, 
2007): 

Δt ≤ 2Δx/cs (11)  

where Δx is the minimal grid size, or the minimal bond length in PD modeling. In higher-dimensional problems, the CFL condition is 
quite stringent where for an n-dimensional problem using a uniform grid, the critical Δt becomes: 

Δt ≤
2Δx

n
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ/Emax

√
(12)  

where ρ is the density, and Emax is the largest eigenvalue of the elastic stiffness matrix. Note that the CFL condition in Eqn. (12) can be 
quite conservative since the derivation is based solely on nearest neighbors (Silling and Askari, 2005). The damping ratio, c, is then 
selected based on the lowest frequency of the system using Rayleigh’s quotient (Kilic and Madenci, 2010): 

cn = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(un)
Tknun

(un)
Tun

√

(13)  

where kn is the diagonal local stiffness matrix given by: 

kn
ii = − (f n

i

/
Λii − f n− 1

i

/
Λii)
/
(un

i − un− 1
i ) = − (f n

i − f n− 1
i )

/
(un

i − un− 1
i ) (14)  

where fn
i is the ith component of the force vector, f, at time t = tn. Since the local stiffness matrix calculation involves division by the 

difference of displacements in consecutive time steps, it is possible to encounter a division by zero. Accordingly the local stiffness kn
ii is 

set to zero when the difference between displacement fields vanishes. Finally, a guess damping ratio, c0, is chosen to start computation. 

2.1.2. Numerical discretization and algorithm 
Assume there are N neighboring particles that lie in the horizon of the particle at x. Neglecting the body force contribution, spatial 

discretization of Eqn. (3) at time t yields the following: 

L(x) =
∑N

i=1
{T[x, t]〈x′

i − x〉 − T[x′

i , t]〈x − x′

i〉}Vx′i
= 0 (15)  

where x′
i is the position ith particle within the horizon of particle at x, with corresponding volume Vx′i

. The deformation gradient, F(x, 
t), and shape tensor, K(x), are discretized as follows: 

F(x, t) =
[
∑N

i=1
ω
(
y’

i − y
)
⊗
(
x’

i − x
)
Vx’

i

]

K(x)− 1

K(x) =
∑N

i=1
ω
(
x’

i − x
)
⊗
(
x’

i − x
)
Vx’

i

(16) 

Fig. 2. The green particle is the material point of interest, the yellow particles constitute its nearest neighbors, and the red particles are the nearest 
neighbors of the yellow particles. Eqn. (18) requires information of the state all the particles marked in the figure. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of this article.) 
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where both y′
i and y implicitly depending on t. 

Given a particular choice of constitutive model, denoted mathematically by the operator ℱ , the force state T[x, t]〈x′

i − x〉 is 
computed as: 

T[x, t]〈x′

i − x〉 = ωℱ(F(x, t))K(x)− 1
(x′

i − x) (17)  

where the PK-I stress, P(x, t), is dictated by the constitutive model through P(x,t) = ℱ(F(x,t)). As for the rest half terms in (15), T[x′

i, t]
〈x − x′

i〉 can be found in a similar manner as shown below: 

T[x′

i, t]〈x − x′

i〉 = ωℱ
(
F(x′

i , t)
)
K(x′

i)
− 1
(x − x′

i) (18) 

However, in order to acquire F(x′
i, t) and K(x′

i), the ith particle’s horizon needs to be known. Fig. 2 is an illustration of the in-
teractions of a particle with its nearest neighbors and the particles involved in the computation of L. 

With all force vector states obtained, the adaptive dynamic relaxation method is applied to solve the discretized version of Eqn. 
(15). For the 3D problem, the global equations of motion can be organized as a single vector of size 3 × Ntotal, where Ntotal denotes the 

Fig. 3. PD-ADRS flowchart.  

Fig. 4. Boundary region with shadow particles depicted in 2D. The thickness of the shadow-particle layer is equal to the horizon size, δ. A horizon of 
δ = h is illustrated in this plot, where h is the particle spacing. 
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total number of particles in the simulation. Since L(x) is completely dependent on the current state, the system is initialized with 
displacements, velocities, and accelerations. For each iteration of a loading step, two absolute errors ϵ1 and ϵ2 are calculated: 

ϵ1 =
‖L(x)‖2

Ntotal
 and  ϵ2 =

‖δu‖2

Ntotal
(19)  

where Euclidean norm is employed. The error measure, ϵ1, describes the degree to which the L(x) approaches zero, while ϵ2 signifies 
the magnitude of displacement increment between two consecutive iterations. In order to normalize the error from initial guesses, two 
alternate relative errors e1 and e2 are computed and monitored as shown below: 

e1 =
ϵ1

ϵ0
1
 and  e2 =

ϵ2

ϵ0
2

(20)  

where ϵ0
1 and ϵ0

2 refer to the initial absolute errors in each loading step. The iterative process terminates only when both error measures 
are less than a chosen tolerance, i.e., e1 < 10− 6 and e2 < 10− 6. All quantities are then updated to proceed with the next loading step. 
Important computational steps of the PD-ADRS algorithm are summarized in the flowchart shown in Fig. 3. It must be noted that the 
proposed scheme is simple and general enough to incorporate a variety of constitutive material models. 

2.1.3. Boundary treatment 
Conventional constraint conditions, such as Dirichlet and Neumann boundary conditions, are imposed in a different form as the PD 

governing equations are written in non-local formulation. When only nearest-neighbor interactions are considered, no special treat-
ment of boundary conditions is necessary and defect horizons with the smallest horizon can still correctly approximate the deformation 
gradient close to the boundary. However, as the horizon size increases, irregular defect horizons ultimately lead to disordered and 
unstable solutions around boundary particles(Macek and Silling, 2007). Since higher-order approximations are derived from internal 
particles with a fully symmetric horizon and spherically-symmetric influence function, ω, another concern raised is that defect ho-
rizons at a boundary will generate errors in approximating the deformation gradient. Based on (Macek and Silling, 2007; Madenci and 
Oterkus, 2014), a “fictitious material layer” is applied along the boundary where the thickness of this layer is set equal to the horizon 
size, δ, to ascertain that prescribed constraints are sufficiently forced on the real material region. Shadow particles are then introduced 
in the fictitious layer, as shown in Fig. 4. 

Displacement constraints are implemented in all the numerical examples described ahead. Furthermore, the stresses pertaining to 
the shadow particles can be computed using the corresponding constitutive model ℱ . These stresses are then utilized in the equations 
of motion for the boundary particles, even though the boundary particles are prescribed solely with displacements. This special 
boundary enforcement has been particularly effective when using larger-horizon sizes encompassing particles beyond nearest- 
neighbors (Luo, 2019). 

Fig. 5. Schematic of slip systems under deformation gradient F = FeFp. m and n are the slip direction and normal vector, respectively. γ is the shear 
strain due to plastic deformation gradient Fp while θ is the angle of rotation under elastic deformation gradient Fe. 
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The most troublesome stability issue of non-ordinary state-based PD is the zero-energy modes (Luo and Sundararaghavan, 2018), 
which signifies a case where non-unique admissible displacement fields can arise which result in the same deformation gradient and 
potential energy. Zero-energy modes have been demonstrated to be a material instability rather than a numerical instability in cor-
respondence materials (Silling, 2017). In general, larger horizons exhibit stronger zero-energy modes compared to those of smaller 
horizons. Those accumulated zero-energy modes, shown as numerical oscillations, can eventually ruin the results and weak couplings 
between particles is one of the inherent reasons of their occurrence (Breitenfeld et al., 2014; Tupek and Radovitzky, 2014; Wu and Ben, 
2015; Yaghoobi and Chorzepa, 2017). The higher-order approximation method first proposed by Yaghoobi and Chorzepa (2017) has 
been implemented to stabilize zero-energy modes, in which the basic idea is to adjust the weight or influence function values based on 
the Taylor series expansion to better approximate the deformation gradient. 

2.2. Crystal elasto-plasticity theory 

Generalized Hooke’s law characterizes the elastic behavior of the polycrystal, accompanied by a rate independent CP formulation 
to model the plastic constitutive behavior (Anand and Kothari, 1996). The deformation gradient, F, forms the primary kinematic 
descriptor of deformation and assumes a multiplicative decomposition into its constituent elastic, Fe, and plastic, Fp, parts which can be 
properly expressed as F = FeFp. Here, dislocation slip on specific slip systems is assumed to be the primary mechanism by which plastic 
deformation is accommodated. This occurs on a finite number of slip systems which can be completely identified by crystallographic 
plane normals and directions. A simple schematic of different configurations with the slip systems under deformation is shown in 
Fig. 5. 

The kinematics of plasticity is encoded in the plastic part of the velocity gradient which is expressed as a linear combination of slip 
rates on individual slip systems as follows: 

Lp = ḞpFp − 1
=
∑

α
γ̇αSα

0sign(τα) (21)  

where γ̇α is the plastic slip rate, τα refers to the resolved shear stress, and Sα
0 = mα

0 ⊗ nα
0 denotes the Schmid tensor, all corresponding to 

the αth slip system. Here, sign(⋅) denotes the signum function which returns 1 when its argument is positive and 0 otherwise. The elastic 
constitutive law relates the second Piola-Kirchoff stress (henceforth referred to as the intermediate stress) in the intermediate 
configuration to the Green-Lagrange elastic strain, which is its elastic power conjugate deformation measure. The intermediate stress is 
related to the Cauchy stress, σ, by the relation: T = det FeFe − 1σFe − T. This stress measure is used to compute the resolved shear stress on 
the αth slip system defined by τα = T · Sα

0. The elastic constitutive law takes the form T = ℒe ·Ee, where ℒe is the fourth-order 
anisotropic elastic stiffness tensor and Ee is the Green-Lagrange elastic strain defined as Ee

= 1
2 (F

eTFe − I). To accommodate the 
phenomenon of strain hardening an evolution equation for the slip system resistance is prescribed as follows (Anand and Kothari, 
1996): 

Fig. 6. Initial textures of the (a) FCC and (b) HCP polycrystal cubes plotted in the Rodrigues fundamental region while accounting for symmetry.  
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Table 1 
Elastic constants (Units: GPa) of single crystal FCC copper.  

C11 C12 C44 

170.0 124.0 75.0  

Table 2 
Slip resistance and hardening coefficients used for FCC copper.  

s0 (MPa) h0 (MPa) ss (MPa) a 

16.0 180.0 148.0 2.25  

Table 3 
FCC copper slip systems.  

ID Direction Normal ID Direction Normal 

1 [1 -1 0] (1 1 1) 7 [-1 0 1] (1 -1 1) 
2 [-1 0 1] (1 1 1) 8 [0–1 -1] (1 -1 1) 
3 [0 1 -1] (1 1 1) 9 [1 1 0] (1 -1 1) 
4 [1 0 1] (-1 1 1) 10 [-1 1 0] (-1 -1 1) 
5 [-1 -1 0] (-1 1 1) 11 [1 0 1] (-1 -1 1) 
6 [0 1 -1] (-1 1 1) 12 [0–1 -1] (-1 -1 1)  

Fig. 7. Plane-strain compression texture of the 3D FCC polycrystal cube based on (a) CPPD and (b) ODF-FEM (Teodosiu, 1997).  
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Table 4 
Elastic constants (Unit: GPa) of single-crystal HCP magnesium alloy (Hearmon, 1984).  

C11 C12 C13 C33 C44 

59.3 25.7 21.4 61.5 16.4  

Table 5 
Mg slip systems (Staroselsky, 1998).  

Slip System ID Direction Normal 

Basal < a > 1 [1 1–2 0] (0 0 0 1) 
2 [-2 1 1 0] (0 0 0 1) 
3 [1–2 1 0] (0 0 0 1) 

Prism < a > 4 [1–2 1 0] (1 0–1 0) 
5 [2–1 -1 0] (0 1 -1 0) 
6 [1 1–2 0] (-1 1 0 0) 

Pyram < a > 7 [1–2 1 0] (1 0–1 1) 
8 [-2 1 1 0] (0 1 -1 1) 
9 [-1 -1 2 0] (-1 1 0 1) 
10 [-1 2–1 0] (-1 0 1 1) 
11 [2–1 -1 0] (0–1 1 1) 
12 [1 1–2 0] (1 -1 0 1) 

Pyram < c + a > 13 [-1 -1 2 3] (1 1–2 2) 
14 [1–2 1 3] (-1 2–1 2) 
15 [2–1 -1 3] (-2 1 1 2) 
16 [1 1–2 3] (-1 -1 2 2) 
17 [-1 2–1 3] (1–2 1 2) 
18 [-2 1 1 3] (2–1 -1 2) 

Twin < c + a > 19 [-1 0 1 1] (1 0–1 2) 
20 [1 0–1 1] (-1 0 1 2) 
21 [-1 1 0 1] (1 -1 0 2) 
22 [1 -1 0 1] (-1 1 0 2) 
23 [0–1 1 1] (0 1 -1 2) 
24 [0 1 -1 1] (0–1 1 2)  

Table 6 
Slip constants used for the magnesium alloy (Ganesan, 2017).  

Slip System s0 (MPa) h0 (MPa) ss (MPa) a 

Basal < a > 76.0 225.6 248.7 1.0 
Prism < a > 163.2 124.9 356.3 1.0 
Pyram < a > 160.3 120.2 347.8 1.0 
Pyram < c + a > 187.4 237.9 350.4 1.0 
Twin < c + a > 116.4 105.6 238.3 1.0  

Fig. 8. 3D view of the texture of the 3D HCP polycrystal cube under (a) plane-strain compression, and (b) uniaxial compression.  
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Fig. 9. Plane-strain compression texture of the 3D HCP polycrystal cube based on (a) CPPD and (b) ODF-FEM (Dawson and Marin, 1997). The 
number to the right corner of each plane indicates the relative position compared to the maximum z-coordinate value in the fundamental region. 

Fig. 10. Uniaxial compression texture of the 3D HCP polycrystal cube based on (a) CPPD and (b) ODF-FEM (Dawson and Marin, 1997). The number 
to the right corner of each plane indicates the relative position compared to the maximum z-coordinate value in the fundamental region. 
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Fig. 11. 3D polycrystal cube with 78 grains. The cube is discretized into particles with a constant inter particle distance h. (a) The example here has 
24 particles along all three directions. Grains with the same orientation ID share the same Rodrigues vector. (b) This illustration provides the interior 
information on the slice z = 1.3 mm. The black lines indicate grain boundaries. 

Fig. 12. 3D distributions of displacement component u(in mm), and strain component εxx, under plane-strain compression(a),(b) and uniaxial 
compression (c),(d). δ = h. The slices shown here are cut at z = 1.3 mm. 
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Fig. 13. Displacement component u (in mm), and strain component, εxx, distributions on the slice z = 1.3 mm under plain strain compression. Two 
different horizon sizes are used. Gray interior lines are grain boundaries. 

A. Lakshmanan et al.                                                                                                                                                                                                 



International Journal of Plasticity 142 (2021) 102991

14

ṡα(t) =
∑

β
hαβ(t)γ̇β(t) ; sα(0) = τα

0 (22)  

Fig. 14. Displacement component, u, and strain component, εxx, distributions on the slice z = 1.3 mm under uniaxial compression. Two different 
horizon sizes are used. Gray interior lines are grain boundaries. 

Fig. 15. Homogenized stress-strain responses from plane-strain compression and uniaxial compression using two different horizon sizes.  
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Fig. 16. (a) 3D polycrystal cube discretized into particles with a constant inter particle distance h. There are 48 particles along all three directions. 
The colormap denotes the anti-clockwise angle of rotation(in degrees) about the z direction relative to the x − y − z coordinate system to achieve the 
respective orientation. 
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Fig. 17. Shear strain fields at z = 0.9063 mm (a)CPPD - εxz, δ = h (b)CPPD - εxz, δ = 2h (c)CPFE - εxz (d) Max. Schmid factor plot with red line 
segments denoting alignment of corresponding basal system. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 18. 3D CPPD computational domain for SEM–DIC image data with 50 particles in x and y directions and 2 slices along z direction. Length 
dimensions are measured in units of μm. The thickness of the plate is the same as the distance between nearest particles. Units of length are μm. 
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Fig. 19. Displacement components u and v from SEM-DIC data, CPPD and CPFE. The black segments denote grain boundaries. Units of length 
are μm. 
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hαβ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hβ
0

(

1 −
sβ(t)

sβ
s

)a

if  nα = nβ

qhβ
0

(

1 −
sβ(t)

sβ
s

)a

if  nα ∕= nβ  

where hαβ is the hardening coefficient matrix, γ̇β(t) > 0 is the plastic shearing rate on the βth slip system, τα
0 is the initial slip system 

resistance on the αth slip system, q captures latent hardening, sβ
s is the saturation stress on slip system β, and hβ

0 dictates the maximum 
value of the hardening coefficient associated with slip system β. The rate-independent CP constitutive model implementation is 
elaborated in Appendix B, while detailed derivations are presented in Yaghoobi et al. (2019); Ganesan (2017). 

3. Results and discussion 

The CPPD-ADRS model is validated by comparing its predictions on texture development in polycrystals of two different materials 
subject to two different deformation modes. This is followed by a demonstration of its capability to model polycrystal plasticity in a 
more realistic microstructure with two different horizon sizes. We then demonstrate an example of a polycrystal in 3D subject to 
deformation wherein the ability of CPPD to predict localization band patterns is showcased. Finally the CPPD simulations are 
investigated for their ability to simulate localization patterns observed in SEM-DIC experimental data of a magnesium alloy, showing 
some promise as being a single, holistic framework for polycrystalline plasticity modeling. 

3.1. Texture comparison under distinct deformation modes 

Here, a comparison of texture predictions of CPPD with a finite element implementation of the orientation distribution function 
(ODF) conservation equation (Teodosiu, 1997) (ODF-FEM) is made. In order to verify the correctness of the CPPD formulation. The 
microstructure considered here is a 3D polycrystalline cube with a dimension of 3 × 3 × 3 mm3. The cube is discretized into particles 
whose centers are separated by a constant distance h = 0.125 mm, with 24 particles in each direction, resulting in a total of 13824 
particles in the computational domain. Each particle is assigned a unique orientation initially so as to best approximate random 
texture. The Rodrigues space is accordingly utilized to represent the crystal orientation (Sundararaghavan and Zabaras, 2004, 2007, 
2009; Acar and Sundararaghavan, 2016; Javaheri and Sundararaghavan, 2020), in which a rotation can be defined by its axis, n, and 
angle of rotation about that axis, φ. Fig. 6 depicts initial random texture for face-centered cubic (FCC) and hexagonal close packed 
(HCP) crystals represented in their respective fundamental regions. 

Table 7 
Comparison of grain-averaged displacement component u.  

Grain ID u(Exp) u(200) Error(%) u(CPFE) Error(%) 

13 131.214 129.828 1.056 132.353 0.868 
14 93.396 93.295 0.109 98.287 5.236 
16 161.745 155.732 3.717 155.855 3.642 
19 124.381 119.193 4.172 123.614 0.617 
23 138.958 137.009 1.403 137.767 0.857 
27 96.490 96.784 0.304 100.119 3.761 
28 116.7845 112.739 3.464 115.869 0.782  

Table 8 
Comparison of grain-averaged displacement component v.  

Grain ID u(Exp) u(200) Error(%) u(CPFE) Error(%) 

13 47.1972 47.735 1.139 47.401 0.432 
14 46.7184 44.661 4.404 46.238 1.027 
16 71.2743 66.812 6.260 67.252 5.644 
19 36.3375 37.799 4.022 39.032 7.416 
23 33.5344 33.580 0.135 34.459 2.759 
27 38.1632 35.923 5.869 36.683 3.8769 
28 27.5032 112.739 2.982 28.247 2.705  
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Fig. 20. Strain components εxx, εyy and εxy compared between SEM-DIC data, CPPD with 200 particles and 3 slices, and CPFE. The black segments 
denote grain boundaries. Units of length are μm. 
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The CPPD code is tested in two deformation modes: plane-strain compression and uniaxial compression with initial damping ratio 
c0 = 1. Both deformation modes allow large strains experimentally(almost unity), since stability limits are not encountered and failure 
mechanisms such as void growth and coalescence are suppressed (Dawson and Marin, 1997). Displacements enforced on the boundary 
of the domain are computed from an associated constant velocity gradient tensor. For the plane-strain compression deformation mode, 
the velocity gradient, Lpc, is given by: 

Lpc = L0

⎡

⎣
1.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 − 1.0

⎤

⎦ (23)  

where L0 is a constant signifying the applied strain rate. For uniaxial compression the velocity gradient is set to: 

Lut = L0

⎡

⎣
0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 − 1.0

⎤

⎦ (24) 

Material parameters chosen for the case of the FCC polycrystal correspond to copper (Anand and Kothari, 1996). The elastic 
constants and hardening coefficients for the CP model are given in Tables 1 and 2, while the twelve slip systems are listed in Table 3. All 
slip systems being crystallographically symmetric are assumed to share the same slip resistance and hardening coefficients. 

For the copper polycrystal, only the plane-strain compression test is conducted where L0 = 0.001s− 1 is imposed over 200 defor-
mation steps. Fig. 7 provides a comparison of texture of the FCC polycrystal post-deformation between CPPD and ODF-FEM, which 
agree well qualitatively. 

Next, two test cases and examples for HCP polycrystals are shown. Magnesium alloy WE43-T5 temper is chosen for this study, and 
its elastic constants are given in Table 4. 18 slip systems for this alloy are considered, including 3 basal < a >, 3 prismatic < a >, 6 
pyramidal < a >, and 6 pyramidal < c + a > slip systems. No twin systems, however, are considered for this case study. Tables 5 and 6 
include the slip systems and hardening coefficients respectively, used for this test case. 

Two modes of deformation, i.e., plane-strain compression and uniaxial compression are imposed with L0 = 0.001s− 1 over 200 
deformation steps. In order to compare CPPD textures with the those computed by ODF-FEM from (Dawson and Marin, 1997), a 3D 
view of the texture, as shown in Fig. 8, is used. The fundamental region is then sliced to compare the interiors. The same slices are 
selected for ODF-FEM and CPPD results and are depicted in Figs. 9 and 10. Here, all CPPD results are based on a horizon size that 
includes only the nearest particles (i.e., δ = h). 

ODF-FEM textures exhibit more smooth and symmetric texture, while the CPPD results show visible numerical oscillations due to 
the explicit scheme. Overall, the textures are qualitatively similar under both deformation modes, which indicates the capability of the 
3D CPPD-ADRS implementation to satisfactorily capture the deformation textures for FCC and HCP polycrystals. 

3.2. Polycrystalline microstructure simulation 

A 3D polycrystalline cube with 78 grains and properties of WE43 alloy-T5 temper, shown in Fig. 11, forms the microstructure of 
interest with dimensions 3 × 3 × 3 mm3. Simulations are performed with two different horizon sizes, i.e., δ = h and δ = 2h with initial 
damping ratio c0 = 1.0. 

The plane-strain compression velocity gradient, Lpc, and uniaxial compression velocity gradient, Lut, are applied on the boundary, 
using a constant strain rate L0 = 0.001s− 1. The displacement and strain maps captured at the 200th deformation step are depicted in 
Fig. 12 for plane-strain and uniaxial deformation. 

The slice z = 1.3 mm is used to compare the displacement and strain contours for different horizon sizes. Figs. 13 and 14 depict the 
contours of the x-component of displacement, u, and normal strain, εxx, for the two different horizon sizes under plane-strain 
compression and uniaxial compression, respectively. The shadow particles along the boundary are masked, leading to margins on 
all four sides depending on the horizon size. All particles within the horizon distance of the boundary are classified as shadow particles, 
and hence this layer becomes thicker with increasing the horizon size. Results obtained from larger horizons exhibit smoother vari-
ation of displacement and strain, which may be attributed to the higher-order approximation method, which effectively suppresses 
zero-energy mode oscillations. Finally the particle density is increased to investigate the convergence of the homogenized stress-strain 
curves with larger horizons. Fig. 15 shows that stress-strain curves almost coincide for the two different horizon sizes, with a higher 
stress for larger horizon as compared to smaller horizon for the same strain. This observation is attributed to different thickness of the 
shadow particle layers for larger horizon sizes where the simulation domain is effectively smaller. 

Fig. 21. Displacement component u visualized for different degrees of refinements and number of slices. The black segments denote grain 
boundaries. Units of length are μm. 
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3.3. 3D CPPD simulations with basal slip 

A 3D polycrystalline cube with properties of WE43 alloy-T5 temper(Tables 4 and 6), shown in Fig. 16(a) forms the microstructure of 
interest with dimensions 3 × 3 × 3 mm3 and 48 particles in each direction. Orientations are chosen in a way that the z direction 
coincides with the basal plane normal for all orientations, and hence, orientation pairs are related to one another via a rotation about 
the z direction. Displacement boundary conditions are applied based on the following velocity gradient 

Ls = L0

⎡

⎣
0 0 1
0 0 1
0 0 0

⎤

⎦s− 1 , L0 = 0.001 s− 1 (25) 

The motivation for choosing the prescribed set of orientations as earlier along with the velocity gradient, Ls, was to initiate spe-
cifically basal slip, and for this example only the basal slip systems are assumed to be active. The simulation is performed for 50 
deformation steps with horizon sizes δ = h and δ = 2h, with the initial damping ratio c0 = 1.0. 

For further analysis we consider the specific case of the section z = 0.9063 mm, for which the shear strain fields are depicted in 
Fig. 17. For comparison with predictions of CPFE the equivalent problem was setup in the PRISMS-CPFE (Yaghoobi et al., 2019) 
framework on a 3 × 3 × 3 mm3 polycrystal idealized as a structured grid with 483 hexahedral elements and the same orientations 
assigned to mesh elements as the CPPD problem. The same crystal plasticity constitutive model was employed with material properties, 
slip constants and hardening parameters identical to the CPPD problem. Displacement boundary conditions were enforced on the 
boundary based on the velocity gradient Ls’ below 

Ls’
= L0

⎡

⎣
0 0 1
0 0 1
0 0 0

⎤

⎦ , L0 = 0.0001 s− 1 (26) 

To achieve the same macroscopic strain level as the CPPD, the CPFE simulation was performed over 500 deformation steps. 
Additionally we define a Schmid factor for the current scenario as follows: 

Si = |σ̂ : (mi ⊗ n) |; i ∈ {1, 2, 3} , σ̂ =

⎡

⎣
0 0 0.5
0 0 0.5

0.5 0.5 1

⎤

⎦ (27)  

where i denotes the index of the basal slip system under consideration and σ̂ is a ‘unit’ stress tensor representative of the deformation 
mode. mi is the slip direction corresponding to the ith basal slip system in the x − y − z coordinate system and n is the slip plane normal, 
which in the present case coincides with the z direction. The form of σ̂ is motivated by the following construction. Given Ls the global 
deformation gradient is computed as 

Ls = FgF− 1
g ⟹ Fg(t) = exp(tLs)F(0) ⟹ Fg = I + tLs (28)  

where exp(⋅) denotes the matrix exponential and I denotes the identity matrix. Note that from the chosen form of Ls which satisfies Ls. 
Ls = 0 and using Fg(0) = I we obtain Fg(t). Then the global Green-Lagrange strain tensor takes the form 

Eg =
1
2

(
FT

g Fg − I
)
=

1
2
(
(I + tLs)

T
.(I + tLs) − I

)
=

1
2
(
tLsT + tLs) = t

⎡

⎣
0 0 0.5
0 0 0.5

0.5 0.5 1

⎤

⎦ (29) 

If we define a global stress measure using Eg and an effectively transversely isotropic material(about z direction), the global stress 
measure will also take a form similar to Eg. Since time and the effective material constants appear purely as scaling parameters, σ̂ takes 
the form suggested in Eqn. (27). Note however, that the number 1 appearing in σ̂zz does not affect the computation of Si because it 
appears in Eqn. (27) after multiplication with (mi ⊗ n)zz which is 0 because mi is a vector completely contained in the x − y plane. 
Subsequently, we define the maximum Schmid factor as Smax = max

i
{Si}. 

Fig. 17(d) depicts the maximum Schmid factor plot for the section. CPPD shows some signatures of localization bands forming in 
grains with low Schmid factor, also observed in the CPFE results, while the grains with highest Schmid factor show almost uniform 
strain. Such an observation was also made by Luo et al. (2018) and Sun and Sundararaghavan (2014b), drawing a major conclusion 
that shear band formation is a favorable deformation mode in grains with a low Schmid factor. CPPD results for both horizon sizes 

Fig. 22. Displacement component v visualized for different degrees of refinements and number of slices. The black segments denote grain 
boundaries. Units of length are μm. 

A. Lakshmanan et al.                                                                                                                                                                                                 



International Journal of Plasticity 142 (2021) 102991

24

(caption on next page) 

A. Lakshmanan et al.                                                                                                                                                                                                 



International Journal of Plasticity 142 (2021) 102991

25

agree well in a qualitative sense with CPFE, showcasing the applicability of implementation of classical crystal plasticity constitutive 
models in a peridynamics framework. 

3.4. CPPD simulations vs SEM-DIC experimental data 

Here, the CPPD framework predictions are compared with state-of-the-art in situ SEM-DIC data of WE43 magnesium alloy (Githens 
et al., 2020a). SEM–DIC is a useful in-situ, non-destructive technique for characterizing microscopic surface strains. A speckle pattern 
placed on the microstructure during thermomechanical loading is tracked by the DIC setup which is then post-processed to obtain the 
surface displacement fields, from which the surface strains can be computed. Details of the SEM-DIC experiments that were performed 
for the WE43 alloys are described in greater detail by Ganesan (2017); Githens et al. (2020b); Ganesan et al. (2021). The primary 
material used for the experiments was a hot-rolled annealed WE43 plate with a thickness of 31 mm, subjected to T5 temper condition. 
Electron backscatter diffraction (EBSD) scans of the surface prior to loading were used to extract grain orientation information. 
Intergranular and intragranular strain localization patterns are widely observed throughout the microstructure under tensile loading, 
while no twinning is recorded. The comparison of CPPD with experimental results for the above experiment is examined. 

The mechanical test is modeled using CPPD as a boundary value problem (BVP) using the EBSD map of the microstructure within 
the DIC window. The displacement of the boundary of the microstructure is obtained from experiments and these are used to setup 
displacement BCs on the lateral boundaries. Measurements are made on the surface of the sample, which is a traction-free surface, and 
hence, the top and bottom surfaces in the simulation are traction-free. For the sake of comparison with an FE implementation, the same 
problem is simulated using the PRISMS-CPFE framework(Yaghoobi et al., 2019). 

Fig. 18 provides an example of the CPPD computational domain. The thickness of the plate is set equal to the distance between the 
nearest particles, while the horizon size is set equal to the smallest inter-particle distance. The four sides of the plate are displacement- 
constrained based on DIC experimental data. In each loading step, 0.2% of the final displacement is imposed so that 500 displacement 
increments are used arrive at the total displacement. In addition, the bottom surface is constrained only in the z-direction. Simulations 
are performed with four degrees of refinement on the particle grid: 50, 100, 150 and 200 particles, in both x and y directions. 
Additionally, for each level of refinement, 2 and 3 slices of particles are constructed so that 8 different cases are simulated in total. The 
initial damping ratio is set to c0 = 0.5. 

The corresponding FEM problem involves a 200 × 200 x 1 grid with displacement BCs on the lateral boundaries(obtained from 
experiment) and the remaining two surfaces being traction-free. The final displacement on the boundary is achieved in 1000 simu-
lation steps using the same constitutive model and parameters as done for the CPPD simulations. 

Tables 4 and 6 contain the elastic constants, slip systems, and slip system hardening constants used for the CPPD simulations. It is to 
be noted that the < c + a > slip system is the only one capable of accommodating strains along the c-axis, but it is also difficult to 
activate at room temperature due to the high initial slip resistance (Acar et al., 2017). Twinning is an additional mode that can 
accommodate deformation along the c-axis at the expense of a strong asymmetry in mechanical properties. In magnesium alloys, the 
extension twinning system (which leads to a tensile strain parallel to the c-axis) is activated during an in-plane compression, followed 
by an increase in hardening at higher strains (due to twin exhaustion). Tensile twins significantly affect the texture by reorientation of 
the grains by an angle of about 86◦, which makes it necessary to include twinning in the CP constitutive model. For the present work, 
twin systems are considered as pseudo-slip systems, undergoing shear deformation until they reorient (Tomé and Kaschner, 2005). The 
total twin volume fraction, which is the total accumulated pseudo-slip divided by the characteristic shear of the twin system, is 
computed for each particle. In magnesium, extension twins are active in compression with a characteristic shear of 0.129. An approach 
similar to the Predominant Twin Reorientation(PTR) scheme (Tomé and Kaschner, 2005) is used with the main difference being that 
individual particles are reoriented when a threshold twin volume fraction is attained, instead of reorienting the entire grain that the 
particle belongs to. 

Fig. 19 depicts the comparison of the x and y components of displacement between experimental data, CPPD simulations(using 200 
particles and 3 slices) and CPFE simulation. Tables 7 and 8 tabulates the grain averaged displacement components. Very good match is 
obtained for the grain-averaged displacement field predictions between CPPD, CPFE and experiments, as evidenced by the percentage 
difference with experiment. This affirms, on a first level, the ability of the CPPD framework to solve elasto-plastic BVPs directly 
comparable with experimental measurements. Figs. 21-22 depict the variation of x and y components of displacement respectively, for 
different degrees of refinement and number of slices. 

Fig. 23. Strain component εxx visualized for different degrees of refinements and number of slices. The black segments denote grain boundaries. 
Units of length are μm. 
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3.4.1. Grain-averaged strains 
Here, the predictions in strains components are compared quantitatively. Since the displacement components in 2D are recorded in 

the experiment, the data is post-processed to extract the in-plane strain components εxx, εyy and εxy. Fig. 20 shows the comparison in the 
three strain components between experiments and CPPD simulations with both discretizations. Figs. 23-25 depict the variation of x 
and y components of displacement respectively, for different degrees of refinement and number of slices. Qualitatively the strain fields 
look similar between experiments, CPPD and CPFE. To verify that the strain fields are also similar in an averaged sense, the mean strain 
fields in each grain are tabulated in Tables 9–11. Grains with their respective orientation IDs are depicted in Fig. 18(b). 

Grain 42 is an outlier because it forms but a tiny fraction of the microstructure under consideration, so the grain-averaged strains 
are not reported (see Fig. 25). The tabulated results showcase, to some extent, the ability and efficacy of the CPPD framework to predict 
the grain averaged strain components. The grain-averaged normal strain predictions from CPPD show reasonable agreement with 
experimental results. The grain-averaged shear strains show a lot more variability in the percentage difference, especially since the 
values in the experiment are lower in magnitude due to which the relative differences can be high. The qualitative trends in the strain 
fields, when inspected visually, show comparable trends between CPPD and experiments in most regions of the microstructure. Clearly 
the experimental results are quite rich in that they show a number of localization patterns that are not captured by the simulation, 
which is expected since the crystal plasticity constitutive model doesn’t take into account a host of phenomena occurring in the 
material. But on the level of the grain-averaged strains there is some promise that CPPD shows towards modeling elasto-plastic 
behavior of alloys. While both CPPD and CPFE show similar trends in the strain fields, CPPD resolves some strain localization pat-
terns that are otherwise smoothed out by CPFE. Figs. 26–28 depict some of the regions in the simulated microstructure where band-like 
patterns are visible and well-resolved in CPPD. 

4. Conclusions 

In this paper, a 3D peridynamic implementation of CP is presented. This implementation introduces its novelty by combining key 
algorithmic features: an explicit time-stepping scheme with artificial damping, time-step selection procedure, higher-order stabili-
zation of zero-energy modes and boundary condition implementation. The CPPD model is validated by comparing the deformation 
texture development in FCC-Cu and HCP-Mg 3D polycrystals under two different compression deformation modes. A 3D micro-
structure is simulated with two different horizon sizes to investigate the displacement and strain field predictions between the different 
horizon sizes. This is followed by a comparison of CPPD and CPFE simulation of a polycrystal with purely basal slip, depicting 
qualitative agreement between the two implementations and some signatures of localization in grains with low Schmid factor. Finally, 
CPPD predictions are compared against a recent SEM-DIC experiment of uniaxial tension in a magnesium WE43 alloy where the grain- 
averaged strains and localization patterns are compared. Normal components of the grain-averaged strains showed an overall 
agreement, and minor discrepancies are attributed to the localization patterns being predicted differently via experiments and sim-
ulations. Furthermore, CPPD results depict strain localization patterns which are typically well-resolved with increased refinement, 
otherwise smoothed out by CPFE. All the codes and examples constituting the current CPPD implementation will be available in an 
open source platform to the community upon publication of the work. 
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Fig. 24. Strain component εyy visualized for different degrees of refinements and number of slices. The black segments denote grain boundaries. 
Units of length are μm. 
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Fig. 25. Strain component εxy visualized for different degrees of refinements and number of slices. The black segments denote grain boundaries. 
Units of length are μm. 

Table 9 
Comparison of grain-averaged strain component εxx.  

Grain ID εxx(Exp) εxx(200) Error(%) εxx(CPFE) Error(%) 

13 0.04098 0.0345 15.847 0.0341 16.863 
14 0.03446 0.0313 9.311 0.0364 5.672 
16 0.04336 0.0682 57.367 0.0635 46.458 
19 0.02124 0.0183 13.895 0.0136 35.812 
23 0.02842 0.0425 49.544 0.0364 28.067 
27 0.01915 0.0208 8.643 0.0287 50.092 
28 0.01784 0.0147 17.415 0.0159 10.894  

Table 10 
Comparison of grain-averaged strain component εyy.  

Grain ID εyy(Exp) εyy(200) Error(%) εyy(CPFE) Error(%) 

13 − 0.02160 − 0.0177 17.899 − 0.01767 18.148 
14 − 0.01450 − 0.0176 21.632 − 0.01432 1.18 
16 − 0.02024 − 0.0269 32.821 − 0.0251 24.349 
19 − 0.01200 − 0.0122 1.343 − 0.00903 24.685 
23 − 0.01860 − 0.0220 18.172 − 0.0208 11.595 
27 − 0.00714 − 0.0145 103.235 − 0.0172 140.236 
28 − 0.00716 − 0.0047 33.709 − 0.00652 8.886  

Table 11 
Comparison of grain-averaged strain component εxy.  

Grain ID εxy(Exp) εxy(200) Error(%) εxy(CPFE) Error(%) 

13 0.008463 − 0.00653 177.177 0.00458 45.774 
14 − 0.000586 − 0.00383 553.695 0.000236 140.304 
16 0.000837 − 0.00121 243.975 − 0.00187 323.62 
19 0.002951 0.00191 35.240 0.00117 60.258 
23 0.007106 0.00495 30.307 0.00397 44.096 
27 0.001594 − 0.00258 261.481 − 0.00506 417.391 
28 0.000337 0.00160 375.896 0.0003002 109.061  

Fig. 26. Localization comparison for εxx between CPPD and CPFE.  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijplas.2021.102991. 

Appendix B. Crystal plasticity constitutive update scheme 

All quantities below are described relative to the undeformed (also known as reference) configuration, and quantities at the current 
time step are denoted by subscript (n + 1). Given the deformation gradient Fn+1, the update procedure below numerically computes the 
PK-I stress (numerically converged) P = ℱ(Fn+1), where the operator ℱ denotes the constitutive model. Implicit time integration 
scheme of (21) results in the following approximation with the additional assumption that Δγ ≪ 1: 

Fp = exp

(

Δt
∑

α
γ̇αSα

0sign(τα)

)

Fp
n ≈

(

I +
∑

α
ΔγαSα

0sign(τα)

)

Fp
n (B.1)  

where Δγα = γ̇αΔt. Substituting Eqn. (B.1) into the multiplicative decomposition relation F = FeFp and rearranging terms yields: 

Fig. 27. Localization comparison for εyy between CPPD and CPFE.  

Fig. 28. Localization comparison for εxy between CPPD and CPFE.  
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Fe = Fe
trial

(

I −
∑

α
ΔγαSα

0sign(τα)

)

(B.2) 

where Fe
trial = Fn+1Fp − 1

n is the trial elastic deformation gradient. The initial condition Fp(0) = I signifies that the reference configuration 
is plastically undeformed. The Green-Lagrange elastic strain measure computed using Eqn. (B.2) then takes the form: 

Ee
=

1
2
(
FeTFe − I

)
= Ee

trial −
1
2
∑

α
ΔγαBαsign(τα) (B.3)  

where Ee
trial and Bα are defined as: 

Ee
trial =

1
2
(
(Fe

trial)
TFe

trial − I
)
, (B.4)  

Bα = (Sα
0)

T
(Fe

trial)
TFe

trial + (Fe
trial)

TFe
trialS

α
0 (B.5) 

Using Eqn. (B.3) the intermediate stress T = ℒe ·Ee takes the form: 

T = Ttrial −
1
2
∑

α
Δγαℒe ·Bαsign(τα

trial) (B.6)  

where Ttrial = ℒe ·Ee
trial. 

A trial resolved shear stress τα
trial = Ttrial : Sα

0 is then computed so that potentially active set of slip systems (denoted as ℘𝒜) may be 
identified based on the criterion that |τα

trial| − sα > 0. The active systems (for which γ̇α > 0) are assumed to follow the Kuhn-Tucker 
consistency condition: |τα| = sα. Substituting Eqn. (B.6) into the consistency yields: 

|τα| = sα ⟹ |τα
trial| −

1
2

sign(τα
trial)

(
∑

β
Δγβℒe ·Bβsign(τβ

trial)

)

: Sα
0 = sα

n +
∑

β
hαβ(sβ)Δγβ

⟹
(

hαβ +
1
2

sign(τα
trial)sign(τβ

trial)(ℒ
e ·Bβ) : Sα

0

)

Δγβ = |τα
trial| − sα  

where α, β ∈ ℘𝒜 and it is assumed that sign(τα) = sign(τα
trial). When the consistency conditions are written out for all the potentially 

active slip systems we obtain the following linear system: 
∑

β∈℘𝒜

AαβΔγβ = bα (B.7)  

where 

Aαβ = hαβ +
1
2

sign
(
τα

trial

)
sign

(
τβ

trial
)
(ℒe ·Bβ) : Sα

0 ,

bα =
⃒
⃒τα

trial

⃒
⃒ − sα

(B.8) 

Once the linear system is solved, a consistency check is performed to determine whether the potentially active systems are active, i. 
e., if Δγβ ≥ 0 ; ∀β ∈ ℘𝒜. Any system which fails consistency is removed from the set of potentially active systems. The entire procedure 
is repeated until Δγβ > 0 ; ∀β ∈ ℘𝒜 at which point the potentially active slip systems are indeed active. 
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