
1

Modelling and Simulation in Materials Science and Engineering

A Markov random field approach for 
modeling spatio-temporal evolution of 
microstructures

Pinar Acar and Veera Sundararaghavan

Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

E-mail: veeras@umich.edu

Received 10 March 2016, revised 16 June 2016
Accepted for publication 18 July 2016
Published 9 September 2016

Abstract
The following problem is addressed: ‘Can one synthesize microstructure 
evolution over a large area given experimental movies measured over 
smaller regions?’ Our input is a movie of microstructure evolution over a 
small sample window. A Markov random field (MRF) algorithm is developed 
that uses this data to estimate the evolution of microstructure over a larger 
region. Unlike the standard microstructure reconstruction problem based 
on stationary images, the present algorithm is also able to reconstruct time-
evolving phenomena such as grain growth. Such an algorithm would decrease 
the cost of full-scale microstructure measurements by coupling mathematical 
estimation with targeted small-scale spatiotemporal measurements. The grain 
size, shape and orientation distribution statistics of synthesized polycrystalline 
microstructures at different times are compared with the original movie to 
verify the method.

Keywords: microstructure, reconstruction, probability, markov random fields

(Some figures may appear in colour only in the online journal)

1.  Introduction

Images of polycrystalline microstructures are routinely obtained using diffraction or opti-
cal methods over small spatial domains. Using reconstruction methods, microstructural maps 
over larger spatial regions can be generated. Most popular among these methods are feature-
based algorithms that attempt to match features (such as marginal histograms [1], multireso-
lution filter outputs (Gaussian [2] and wavelet [3] filters) and point probability functions (eg. 
autocorrelation function) [4–7]) with the experimental image. These methods are good at 
capturing global features of the image, however local information in the form of per-pixel 
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data is lost. Thus, features such as grain boundaries are smeared out when reconstructing 
polycrystalline structures [3].

In an earlier paper [8], we demonstrated the use of Markov random field (MRF) algorithms 
to alleviate this issue. The algorithm works by sampling the conditional probability density for 
the coloring of a pixel given the known states of its neighboring pixels using reference exper
imental images. If only the nearest neighbors are chosen, this amounts to sampling from a 
Ising-type model [10]. While in Ising models, a lattice is constructed with pixels (with binary 
states) interacting with its nearest neighbors, in MRFs, pixels take up integer or vector states 
and interact with multiple neighbors over a window. The sampling of conditional probability 
of a pixel given the states of its known neighbors is based on Claude Shannon’s generalized 
Markov chain [11]. In the one dimensional problem, a set of consecutive pixels is used as a tem-
plate to determine the probability distribution function (PDF) of the next pixel. In 2D micro-
structures, microstructures are grown layer-by-layer from a small seed image (3 3×  pixels) 
taken randomly from the experimental micrograph [12]. The algorithm first finds all windows 
in an experimental micrograph that are similar to an unknown pixel’s neighborhood window.  
One of these matching windows is chosen and its center pixel is taken to be the newly synthesized 
pixel. This technique is popular in the field of ‘texture synthesis’ [12–15], in geological mat
erial reconstruction literature where such sampling methods are termed ‘multiple-point statis-
tics’ [16], and more recently, has been applied for modeling 2D material microstructures [8, 9].  
However, these methods were primarily developed for stationary microstructure images.

Advanced high-speed imaging techniques are now able to routinely obtain movies of 
microstructure evolution over small spatial domains. It will be valuable to develop similar 
reconstruction methods to recover the temporal evolution of microstructures over a larger spa-
tial domain (or perhaps, the entire specimen) from this data. In this paper, we extend the sam-
pling algorithm in [8] to also allow for temporal reconstruction of various frames in a movie. 
This is done by employing an optimization technique that ensures contiguous evolution of 
grain boundaries across consecutive frames. The optimization approach minimizes a neigh-
borhood cost function that ensures that the local neighborhood of the current frame is similar 
to some neighborhood of the corresponding experimental frame. Such an optimization strat-
egy has been previously used in the context of 3D microstructure reconstruction in [17, 18]  
but not for temporal microstructure reconstruction, to the best of our knowledge.

The limited nature of experimental data is due to small regions (order of microns) that are 
usually measured while engineering analysis is over much large domains (order of centim-
eters) (see figure 1). The method presented in this paper is capable of reconstructing larger 
regions of microstructure needed for engineering analysis by using small-scale experimental 
data. We assume that the ‘limited’ experimental data contains a sufficient range of features to 
capture the true larger scale microstructure. The major contribution of this paper, compared to 
large literature of statistical reconstruction methods [4], is (1) the capability of predicting not 
only the spatial evolution but also the temporal evolution of 2D microstructures (2) Ability 
to work with polycrystalline microstructure while most literature is for multi-phase random 
composites. We employ the method for generating grain growth movies using results from a 
small phase field simulation. The results are tested by comparing statistical measures across 
various time steps with the original movie.

2.  Mathematical modeling of microstructures as Markov random fields

Some of early attempts at microstructure modeling were based on Ising models [10]. In the 
Ising model, a N N×  lattice (L) is constructed with values Xi assigned for each particle i on 
the lattice, i N1, .., 2[ ]∈ . In an Ising model, Xi is a binary variable equal to either  +1 or  −1  
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(eg. magnetic moment [10]). In general, the values Xi may contain any one of G color levels 
in the range {0,1,..,G  −  1} (following the integer range extension of the Ising model by Besag 
[19]). A coloring of L denoted by X maps each particle in the lattice L to a particular value 
in the set {0,1,..,G  −  1}. Ising models fall under the umbrella of undirected graph models 
in probability theory. In order to rewrite the Ising model as a graph, we assign neighbors to 
particles and link pairs of neighbors using a bond as shown in figure 2(a). The rule to assign 
neighbors is based on a pairwise Markov property. A particle j is said to be a neighbor of par-
ticle i only if the conditional probability of the value Xi given all other particles (except (i,j), 
i.e. p X X X X X X X X, , .., , , .., , , ..,i i i j j N1 2 1 1 1 1 2( )| − + − + ) depends on the value Xj.

In the classical Ising model, each particle is bonded to the next nearest neighbor as shown 
in figure 2(a). For modelling microstructures, a higher order Ising model (figure 2(b)) is used. 
The particles of the lattice correspond to pixels of the 2D microstructure image. The neigh-
borhood of a pixel is modeled using a square window around that pixel and bonding the 
center pixel to every other pixel within the window. Using this graph structure, a Markov 
random field can be defined as the joint probability density XP( ) on the set of all possible 
colorings X, subject to a local Markov property. The local Markov property states that the 
probability of value Xi, given its neighbors, is conditionally independent of the values at all 
other particles. In other words, P X i p X iall particles except neighbors of particlei i(       ) (       )| = | . 
Next, we describe a method based on [8] to sample from the conditional probability density 
p X ineighbors of voxeli(       )| .

2.1.  Sampling algorithm

In the following discussion, the color (Xi) of a pixel i is represented using G color levels in 
the range {0,1,..,G  −  1} each of which maps to an RGB triplet. The number of color levels is 
chosen based on the microstructure to be reconstructed, eg. for binary images G  =  2. Let E 
and S denote the experimental and synthesized microstructure, respectively. Let v be a pixel 
in S whose color needs to inferred using the sampling procedure. Let Sv denote the colors in a 
neighborhood window around pixel v. Let Ew denote the colors of pixels in a window of the 
same size in the input 2D micrograph.

In order to find the coloring of pixel v, one needs to compute the conditional probability 
density Sp Xv v( )| . Explicit construction of such a probability density is often computationally 
intractable. Instead, the most likely value of v is identified by first finding a window Ev in 
the input 2D micrograph that is most similar to Sv (see figure 3). This is done by solving the 
following problem (where Sv u,  denotes the color of pixel u in Sv and Eu

w denotes the color of 
pixel u in Ew):

Figure 1.  The objective of the MRF algorithm is to reconstruct larger domains 
from small measurement volumes. The reconstructed microstructure can be used for 
engineering finite element (FE) analysis.
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E S Earg min
E

v
u

v u v u u
w

, ,
2

w
( )∑ω= −� (1)

where, S ED u v u v u u
w

, ,
2( )ω= ∑ −  is a distance measure defined as the normalized sum of 

weighted squared differences of pixel colors. In order to preserve the short range correlations 
of the microstructure as much as possible, the weight for nearby pixel is taken to be greater 
than pixels farther away (Gaussian weighting function ω is used). If the pixel u is located 
at position (x,y) (in lattice units) with respect to the center pixel v (located at (0,0)), v u,ω  is 
given as:

Figure 2.  Markov random field as an undirected graph model, circles are pixels in the 
image and bonds are used to connect neighbors: (a) Ising model with nearest neighbor 
interactions. (b) Microstructure modeled by including higher order interactions in the 
Ising model.

Figure 3.  The Markov random field approach: the image is grown from a 3 3×  seed 
image (center). As the algorithm progresses along the path shown (right), the unknown 
output pixel (shown in blue) is computed by searching for a pixel with a similar 
neighborhood in the input image (left).
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Here, the summation in the denominator is taken over all the known pixels in Sv. The 
weights v u,ω  for the unknown pixels in Sv are taken to be zero. This ensures that the distance 
measure is computed only using the known values and is normalized by the total number of 
known pixels. The standard deviation (σ) is taken to be 0.16w.

The problem in equation  (1) is solved using an exhaustive search by comparing all the 
windows in the input 2D micrograph to the corresponding neighborhood of pixel v. In our 
approach, a measure of stochasticity is introduced by storing all matches with a distance 
measure that is within 1.3 times that of the best matching window [12]. The center pixel colors 
of all these matches give a histogram for the color of the unknown pixel (Xv), which is then 
sampled using a uniform random number.

The microstructure is grown layer-by-layer starting from a small seed image (3 3×  pixels) 
taken randomly from the experimental micrograph (figure 3). In this way, for any pixel the val-
ues of only some of its neighborhood pixels will be known. The fundamental approximation 
in this numerical implementation is that the probability distribution function (PDF) of an 
unfilled pixel is assumed to be independent of the PDF of its unfilled neighbors. Each iteration 
in the algorithm involves coloring the unfilled pixels along the boundary of filled pixels in 
the synthesized image as shown in figure 3. An upper limit of 0.1 is enforced for the distance 
measure initially. If the matching window for a unfilled pixel has a larger distance measure, 
then the pixel is temporarily skipped while the other pixels on the boundary are filled. If none 
of the pixels on the boundary can be filled during an iteration, then the threshold is increased 
by 10% for the next iteration.

2.2. Temporal sampling

Consider an input microstructure movie which is a collection of F frames. In the temporal 
reconstruction algorithm, the first frame is reconstructed using the algorithm in section 2.1. 
The reference locations (in the experimental frame) of each pixel in the synthesized micro-
structure is stored. The Nth synthesized frame is computed by updating the (N  −  1)th synthe-
sized frame using pixels at the previously stored locations in the Nth experimental frame. As 
the microstructure evolves, the reference locations may change. To update the stored reference 
locations, an optimizer is used on the Nth synthesized frame. The optimization is posed as a 
minimization of an energy function [20, 21]:

S S Earg min
S v u

v u v u v u, , ,
2( )∑∑ω= −∗

� (3)

where, S∗ is the optimum synthetic microstructure. The optimization is carried out in two 
steps. In the first step, the energy is minimized with respect to Ev. This step is identical to the 
sampling algorithm (equation (1)) and finds the best matching neighborhood of each pixel v 
by solving the following problem:

E S Earg min
E

v
u

v u v u u
w

, ,
2

w
( )∑ω= −� (4)

This is an exhaustive search (as previously explained in the sampling algorithm) that finds a 
matching experimental image neighborhood for each pixel v in the synthesized image. Because 
the matching neighborhoods contain other pixels too, multiple values of coloring are obtained 
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for each pixel depending on how many windows overlap over that pixel. The optimal color of 
pixel v is computed by setting the derivative of the energy function equation (3) with respect 
to Xv to zero. This leads to a simple weighted average expression for the color of pixel v:

EXv
u

u v u v
u

u v, , ,( )/( )∑ ∑ω ω=� (5)

Note that the subscripts u and v are switched in the above expression as compared to equa-
tion (3). This implies that the optimal color of the pixel v is the weighted average of the colors 
at locations corresponding to pixel v in the best matching windows (Eu) of pixels (u) in the 
synthesized microstructure. Since Xv changes after this step, the set of closest input neighbor-
hoods Ev will also change. Hence, these two steps were repeated until convergence, i.e. until 
the set Ev stops changing. To get optimal reconstruction speed, the optimizer is only used once 
every k frames, where k is specified by the user. The pseudocode in table 1 summarizes the 
solution procedure and temporal sampling scheme.

3.  Examples

3.1.  Synthesis of a gray scale movie

The temporal Markov random field (MRF) algorithm is used to synthesize the evolution of 
microstructure over a larger region given a small input movie. The movie is obtained from a 
phase field simulation of grain growth [22]. The image size of the original gray-scale movie 
is 71 71× . The synthesized movies are double the size (142 142×  pixels) but over the same 
time steps as the original phase field simulation. The snapshots from the original phase field 
simulation and the synthesized movies for initial, an intermediate and the final time are com-
pared in figure 4. These synthesized microstructures correspond to window sizes of 5, 7 and 
9 used in the MRF model. The window size is the adjustable parameter in the method for 
different microstructures. At window sizes much smaller than the correlation lengths, false 
matches lead to high noise in the reconstructions. The window size of 5 does not produce a 
good quality reconstruction as seen in the clusters of small grains that persist at longer times. 
At very high window sizes, not enough matching windows can be identified and in addition, 
more computations are needed that slow down the simulation. Hence, there is an ideal window 
size that needs to be found either through numerical trial or using correlation lengths as shown 
in [9, 23] for two phase materials. As seen in figure 4, the window sizes of 7 and 9 visually 
look similar to the phase field simulation. To quantitatively compare the grain size and shapes 
of the input and synthesized images, two global feature vectors were extracted from the input 
microstructure and compared to the synthesized microstructure (window size 9). The feature 
vectors are described below:

	 (i)	Grain size and grain boundary perimeter statistics [24, 25]: the grain size and grain 
boundary (GB) perimeter of each grain is tabulated. A histogram containing the area or 
the perimeter of grains in the x-axis and the fraction of grains with the corresponding area 
(or GB perimeter) is plotted in the y-axis.

	(ii)	Grain shape statistics using the Rose of intersections [26]: to obtain the rose of inter-
sections, a network of parallel equidistant lines is placed over the microstructure image 
at several angles and the number of grain boundary intersections with each test line is 
measured. The histogram of intersections with the angle of orientation of the lines is 
called the rose of intersection. Rose of interactions is related to the ASTM standard for 
determining the average grain size (E,112-188, also see Heyn intercept technique [27]). 
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The shape and size of the rose of intersections is related to the average shape and size of 
the grains in the microstructure.

The plot in figures 5(a) and (b) shows the fraction of grains as a function of grain area 
and grain perimeter (measured in pixels) for initial and final times. The rose of intersections 
graphs are illustrated using lines with 11 different angles at initial and final times. The shape 
histogram depicts the decrease in overall grain size with time (shrinking of the contour) while 
the overall grain shape as indicated by the contour shape remains mostly equiaxial. Figure 5 
shows that the synthesized microstructures are able to capture the grain size and shape sta-
tistics of the original microstructure evolution predicted by the phase field method. MRF 

Table 1.  Pseudocode for the MRF microstructure evolution algorithm.

Given a movie consisting of N frames
Step 1. Reconstruct frame 1 by sampling

− Initialize synthesized frame any 3 3×  patch from the 1st input frame
− Initialize the location matrix using input frame coordinates of the patch.

− Initialize threshold  =  0.1

− Set window size  =  w w×  pixels
While [the synthesized image is not complete] do
 For all unfilled neighbors

     Get the image window around the unfilled pixel
     Find the window with lowest D (see equation (1) with weights in equa-
tion (2), w0.16σ = )
     Find all matching windows within 1.3 times D
     Pick one match using a uniform random number

     If distance of the match  <  threshold
       The unfilled pixel is filled using the center pixel of the matching window
       Store coordinates of center pixel in the location matrix
     Otherwise
       Skip and continue to next unfilled neighbor
     end if

     If none of the neighbors are filled
       Raise threshold by 10%
     end if

 end for
end while
Step 2. Reconstruct all other frames
For frames i  =  2,..,N
− Generate ith frame using pixels at stored locations in the ith input frame
 For every k frames (k  =  5 here)
     Find the best matching windows in ith input frame (equation (4))
     Store locations of the center pixels of these matching windows
     Use equation (5) to recompute the value of pixels in the ith synthesized 
frame.
 end for
end for
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sampling approach proposed here is significantly faster than performing a phase field simula-
tion for larger spatial regions. We do not solve any differential equations and as such, are not 
constrained by the small time increments needed to maintain numerical stability.

3.2.  Synthesis of a colored microstructure movie

The second example includes crystal orientation information (in the form of grain coloring) 
in addition to grain sizes and shapes. The original movie (downloadable from [28]) illustrates 
grain growth in a 2D microstructure generated from a cellular automata method. The synthe-
sized movies are generated using window sizes of 5, 7 and 9 respectively, and the number of 
time frames is the same as the original movie. The image size of the original movie is 87 106×  
pixels, and the synthesized images are twice the size of the original. The time snapshots were 
taken for initial, intermediate and final times, and are shown in figure 6. A visual check of 
the movie indicates that the synthesized microstructures capture the grain growth behavior 
in a larger spatial domain and the snapshots at different times look qualitatively similar with 
respect to grain sizes and shapes of the original cellular automata simulation (figure 6) for 
window sizes of 7 and 9.

Figure 4.  Snapshots of the gray-scale movie are compared to the synthesized movie 
snapshots at initial, intermediate and final times. The synthesized microstructures are 
obtained using three different window sizes.
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To measure the similarity of coloring of the sample and synthesized microstructures, we 
assigned a unique orientation to each pixel based on its color and have plotted the orientation 
distribution function in figure 7. The orientation distribution function (ODF), in principle, is 
equivalent to a color histogram and contains the volume density of each crystal orientation 
(color) in the Rodrigues fundamental region for a copper polycrystal [29]. The ODFs are plot-
ted for the sample and three synthesized images (window sizes of 5, 7, 9 in the MRF model) at 
the initial and final times. Once the crystal orientation distribution is known, properties such 
as Young’s modulus can be computed and compared. In particular, we are interested in the 
anisotropy of Young’s modulus with respect to loading direction predicted by the original and 
synthesized image.

Values of elastic parameters for FCC copper crystal are taken as c11  =  168.0 GPa, 
c12  =  121.4 GPa, c44  =  75.4 GPa [30]. The polycrystal stiffness, C̄, is computed through a 
weighted average of the stiffness of individual crystals expressed in the sample reference 
frame over the fundamental region. The elastic modulus is then computed through this poly-

crystal stiffness as E
C

1.0
1

11( ¯ )( )
= − . Furthermore, the elastic modulus during loading at any angle 

Figure 5.  Comparison of statistical features of phase field and MRF algorithms ((a) 
and (b)) grain area and grain perimeter statistics at initial and final time (c) Rose of 
interactions at initial and final time.
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with respect to the rolling direction (RD) can be evaluated using the above equation, but after 
a coordinate transformation of C̄. The distributions of Young’s modulus with respect to the 
different loading angles is given in figure 8 for initial and final time snapshots. The trend in 
elastic modulus anisotropy is similar for both original and synthesized images, with minimum 
modulus for loading at 45 degrees to the rolling direction. The differences in the values of 
Young’s modulus at specific loading angles may be attributed to the stochasticity introduced 
by the reconstruction algorithm. In addition, the Young’s modulus predicted by reconstruc-
tion using window sizes 5, 7 and 9 show a converging trend, and such a trend may be used for 
optimal window size selection.

3.3.  Synthesis of microstructure evolution with non-uniform grain growth

The last example includes a microstructure movie showing heterogeneous distribution of grain 
sizes and shapes. The original movie (downloadable from [31]) is generated from a phase field 
simulation, and it illustrates the presence of two different grain sizes at any time step with a 
few grains evolving in an anisotropic fashion. This example is used to illustrate window size 

Figure 6.  Time snapshots of the colored movie.
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selection based on correlation functions. The original movie is sized to 75 75×  pixel grid and 
the synthesized movies are generated for a 150 150×  domain using window sizes of 5, 7 and 9 
respectively. The number of time frames is the same as the original movie. The time snapshots 
for initial, intermediate and final times are shown in figure 9 along with the rose of intersec-
tions for the final time for each window size. Window size of 9 gives the best reconstruction 
among these window sizes at the final time step.

However, we note that a window size of 5 gives good reconstruction for the first time step. 
While at an intermediate time step, the window size of 5 leads to disruption of grain boundary 
connectivity and poor reconstruction. On the other hand, window size of 7 gives a reason-
able reconstruction for the intermediate time step while it gives an excess of small grains at 

Figure 7.  ODF representations at initial and final times.

Figure 8.  Young’s modulus distributions: (a) for initial time snapshot, (b) for final time 
snapshot.
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Figure 9.  Snapshots of the movie are compared to the synthesized movie snapshots 
at initial, intermediate and final times. The rose of intersection of the final image at 
all three steps are also plotted and compared against those of the experimental image.

Figure 10.  Comparison of autocorrelation function of the phase field simulation at 
initial, intermediate and final time. The distance at which zero crossover occurs is 
indicated for the three cases.
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the final time step. As shown using the rose of intersections for 3 different window sizes, the 
technique has no issues with changing grain topology if a sufficiently large window size is 
chosen in the first step. Since the window size is related to the average grain size, a user could 
look at the input movie and start with a large enough window. However, one could also start 
with a smaller window and adaptively increase window sizes during subsequent time steps. 
An automated way of doing this is to look at the change in correlation functions (treating the 
polycrystal as two-phase material: grain (phase 1) and grain boundary (phase 2)) over differ-
ent frames in the movie to adaptively choose the window size. The autocorrelation function 

of the microstructure is defined as, r S r p

p p
2

2

2( ) ( )γ = −
−

, where p is the volume fraction of phase 

1 (the grain boundary phase) and S2(r) is the two-point correlation measure obtained by ran-
domly placing line segments of length r within the microstructure and counting the fraction 
of times the end points fall in phase 1, with p  =  S2(0) [7]. The autocorrelation functions for 
the initial, intermediate and final time steps of the original image are plotted in figure 10. The 
first zero crossover of the autocorrelation function occurs between two and four pixel lengths. 
The window size chosen should be at least 2z  +  1, where z is the correlation length estimated 
from the decay of the autocorrelation function. In this case, we use the first zero crossover as 
the correlation length, which leads to minimal window sizes of 5, 7 and 9 for the initial, inter-
mediate and final time steps for optimal reconstruction. This is reflected in the reconstructions 
shown in figure 9.

4.  Conclusions

We present an extension of our Markov random field algorithm presented in [8] for modelling 
the temporal evolution of 2D microstructures. We use a movie of microstructure evolution 
measured over a small window in an experimental sample to estimate the evolution of micro-
structures over a larger region. The algorithm combines a sampling approach in [8] with a new 
optimization methodology that allows us to control the microstructural evolution trajectory 
according to the statistics of the original microstructure movie. In this optimization algorithm, 
we minimize a neighborhood cost function that ensures that the local neighborhood of the 
current microstructural frame is similar to some neighborhood in the microstructural movie 
at any given time step. Three examples were considered for movie synthesis: polycrystalline 
grain growth from a phase field simulation, a colored movie based on cellular automata simu-
lation of recrystallization, another movie, generated from a phase field simulation, showing 
non-equiax grains. The snapshots of the microstructures taken at different times from the orig-
inal movie as well as the synthesized movies were compared. Such a comparison showed that 
the extended MRF algorithm was able to reproduce the original microstructure simulations 
while capturing key statistics such as grain size and shape distributions and elastic properties 
that are representative of the original movie. Such an algorithm, in practise, would decrease 
the cost of full-scale microstructure measurements by coupling mathematical estimation with 
targeted small-scale spatiotemporal measurements of microstructure. Future efforts will aim 
to extend this approach for modeling evolving 3D microstructures.
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