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Abstract

Material property evolution during processing is governed by the evolution of the underlying
microstructure. We present an efficient technique for tailoring texture development and thus, opti-
mizing properties in forming processes involving polycrystalline materials. The deformation process
simulator allows simulation of texture formation using a continuum representation of the orienta-
tion distribution function. An efficient multi-scale sensitivity analysis technique is then introduced
that allows computation of the sensitivity of microstructure field variables such as slip resistances
and texture with respect to perturbations in macro-scale forming parameters such as forging rates,
die shapes and preform shapes. These sensitivities are used within a gradient-based optimization
framework for computational design of material property distribution during metal forming pro-
cesses. Effectiveness of the developed computational scheme is demonstrated through computation-
ally intensive examples that address control of properties such as Young’s modulus, strength and
magnetic hysteresis loss in finished products.
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1. Introduction

Realization of optimal material properties is important to address the critical perfor-
mance needs of hardware components in aerospace, naval and automotive applications.
Newly emerging property design strategies for metallic materials are aimed towards tailor-
ing microstructural subsystems by controlling processes that govern their evolution
(Olson, 1997). An example is in composite design, where techniques that enable tailoring
of microstructure topology have allowed identification of structures with interesting extre-
mal properties such as negative thermal expansion (Sigmund and Torquato, 1996) and
negative Poisson’s ratio (Lakes, 2000). One such technique for optimizing properties of
metallic materials, comprised of a polycrystalline microstructure, involves tailoring of pre-
ferred orientation of crystals manifested as the crystallographic texture. During forging
and extrusion processes, mechanisms such as crystallographic slip and lattice rotation
drive formation of texture and variability in property distributions in polycrystalline mate-
rials. A possible method for designing property distribution in such materials is to control
the deformation so that textures with desired properties are obtained. Several applications
exist where certain textures are desirable to improve properties of materials. For example,
a Goss texture is desirable in transformer cores to reduce power losses during magnetiza-
tion (Rollett et al., 2001). In deep drawing, a high value of texture-dependent R parameter
(Hosford, 1993) and low planar anisotropy is necessary to prevent earing and to increase
drawability of the sheet.

Recent developments in microstructure-sensitive design have addressed problems such
as computing optimal textures that lead to desired properties from the space of all possible
textures (Adams et al., 2001; Kalidindi et al., 2004). The problem of identification of pro-
cessing paths that lead to such optimal textures is being addressed using novel means such
as representation of processing paths in microstructure spaces using spectral (Li et al.,
2005) or reduced order representations (Sundararaghavan and Zabaras, 2007) and using
gradient optimization techniques (Acharjee and Zabaras, 2003; Sundararaghavan and
Zabaras, 2006). However, the success of such process design techniques has only been
demonstrated at the microstructural length scale. The novelty in this work is that process
design is performed using two different length scales. The macro-scale is associated with
the component being modelled (10~10' m) and the meso-scale is characterized by the
underlying polycrystalline microstructure (10°~107* m). We address the design problem
of computation of macro-scale parameters such as forging velocity, die and preform
shapes such that microstructure evolution is tailored towards achieving desired properties.

The optimization problem involves minimizing an objective function that is an error
measure between the desired property and the numerically calculated properties for a
given set of macro-scale parameters. A sensitivity analysis scheme is used for calculating
the gradient of the objective function and to drive the optimization procedure (Srikanth
and Zabaras, 2001; Zabaras et al., 2003). Posed in a multi-scale sense, the approach is used
to compute sensitivities of microstructural fields such as slip resistance, crystal orientations
due to perturbations in macro-scale parameters. These sensitivities are exactly defined
using a set of field equations developed by directly differentiating the governing equations
with respect to small perturbations in the macro-scale process parameters. An averaging
principle is then developed to compute sensitivity of stress and various material properties
at the macroscopic level from microstructural sensitivity fields. Evolution of the micro-
scale during forming is modelled using continuum representation of texture (Kumar
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and Dawson, 1996, 1997; Ganapathysubramanian and Zabaras, 2005) and incorporates
crystal elasto-plasticity through the constitutive equations of Anand and Kothari
(1996). Effectiveness of the developed computational scheme is demonstrated through
examples involving control of properties such as Young’s modulus, strength and magnetic
hysteresis loss in finished products.

The paper is arranged as follows. In Section 2, the direct deformation model is briefly
defined. This includes details about the microstructure representation, the constitutive
model for polycrystalline materials and the kinematic problem in the context of a multi-
length scale analysis. Section 3 develops the multi-length scale kinematic sensitivity prob-
lem. Section 4 considers a set of examples to demonstrate the accuracy, performance and
applicability of the proposed algorithms.

2. Direct deformation problem

To supplement the continuum sensitivity model developed in the next section and to
introduce our notation, we first briefly present the direct deformation model used in our
analysis. In this work, polycrystalline microstructure at each material point in the
macro-continuum is represented using an underlying orientation distribution function
(ODF) (Bunge, 1983; Kocks et al., 2000). The ODF .o/ is represented over the Rodri-
gues—Frank (RF) fundamental region following our work in Ganapathysubramanian
and Zabaras (2005). When texture development is modelled, a reorientation vector
(s, t) is computed that maps the location r in the reoriented region (at time ¢) to the cor-
responding location s in the reference fundamental region (at time ¢ = 0) as shown in
Fig. 1. With this notation, the ODF can either be represented as .o/ (r,¢) (Eulerian form)

or EJ(S, t) (Lagrangian form) with the two representations related as: /(r,f) =

A (F(5,1),1) = o (5.1).

In this work, the Lagrangian version of the ODF conservation equation is used to com-
pute the ODF at any time, ¢, during deformation using the following equation (Kumar and
Dawson, 1996, 1997):

L (5,0J(s,1) = </ (5,0) = A(s), (1)
where J(s, ) = det(Vi(s,t)) is the Jacobian determinant of the reorientation of crystals
and .o/ (s,0) = .o/(s) is the initial texturing of the material.

The polycrystal average of an orientation dependent property, Y'(r,¢), is determined as

) = [ Y0t rdn = [ ¥l o

where dv; is a volume element in the reoriented region.

2.1. Single-crystal constitutive problem

We shall employ the (now) classical single-crystal plasticity theory (e.g., Taylor, 1938;
Mandel, 1965; Rice, 1971; Mandel, 1972; Hill, 1965; Teodosiu and Sidoroff, 1976; Asaro,
1983; Asaro and Needleman, 1985; Rashid and Nemat-Nasser, 1990; Bronkhorst et al.,
1992; Cuitifio and Ortiz, 1992) based on the notion that plastic flow takes place through
slip on prescribed slip systems. A rate-independent version of the single-crystal plasticity
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Fig. 1. A Lagrangian framework describing texture development at a material point X using parameters s and r,
drawn from the RF fundamental region.

model developed in Anand and Kothari (1996) is used to model the single-crystal consti-
tutive response and is summarized below.

For a material with oo = 1,..., N slip systems defined by ortho-normal vector pairs
(m*,n*) denoting the slip direction and slip plane normal respectively, the constitutive equa-
tions relate the following basic fields: the Cauchy stress T, the slip resistances s* > 0 and the
deformation gradient F which can be decomposed into elastic and plastic parts as F = F° F?
with det F? = 1. In the constitutive equations (intended to characterize small elastic strains)
to be defined below, the Green elastic strain measure E¢ =1 (F*'F° —I) defined on the
relaxed configuration (plastically deformed, unstressed configuration) 4 is utilized. The
conjugate stress measure is then defined as T = det F*(F¢) ' T(F°)"" where T is the Cauchy
stress for the crystal in the sample reference frame.

The constitutive relation, for stress, is given by T = Z°[E°] where Z° is the fourth-
order anisotropic elasticity tensor. It is assumed that deformation takes place through dis-
location glide and the evolution of the plastic flow is given by

L= PPy = 3 jSisien(e), (3)

where §§ = m* @ n* is the Schmid tensor and j” is the plastic shearing rate on the ath slip
system. The resolved stress on the ath slip system is given by t* = T - S;. The resolved
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shear stress t* attains a critical value s* on the systems where slip occurs (7* > 0). Further,
the resolved shear stress does not exceed s* on the inactive systems with * = 0. The hard-
ening law for the slip resistance s* is taken as

F(0)=>_ W s7(0) = s, (4)
B

A constitutive time-integration procedure for the rate-independent crystal plasticity
model is detailed in Anand and Kothari (1996). The constitutive problem is solved at
every integration point in a reference fundamental region attached to a macroscopic
material point.

For computing texture evolution, the reorientation velocity for use in Eq. (1) is found as
follows:

v:%:%(w—f—(w-r)r—i—wxr), (5)

where r is the orientation (Rodrigues’ parametrization) and @ represents the spin vector
defined as o = vect(R°R') = vect(Q) where R° is evaluated through the polar decompo-
sition of the elastic deformation gradient F° as F© = R°U".

2.2. Solution of the kinematic problem

We follow an updated Lagrangian formulation to solve the direct deformation problem
in a generic forming stage in which material occupying an initial configuration By is
deformed to obtain a configuration B,,; at time ¢ = ¢, ;. Using an updated Lagrangian
framework, the total deformation gradient F at time ¢ =7, can be expressed in terms
of F, at time ¢t =1¢, as F = F,F,, where F, is the relative deformation gradient. In the
absence of body forces, the equilibrium equation at ¢ = ¢,,; can be expressed in the refer-
ence configuration B, as

V- (P,) =0, (6)

where V,, denotes the divergence in B,. The polycrystal-averaged Piola—Kirchhoff I stress
(P,) is expressed per unit area of B, and given in terms of the average Cauchy stress ((T))
as (P,) = detF,(T)F," using the Taylor hypothesis for the macro-micro linking assump-
tion. The solution of the deformation problem in the current processing stage proceeds
incrementally in time starting from the initial configuration B,. Each increment involves
the solution of the virtual work equation given by

/ (P,)-V,adV, = / t-ud4,, (7)
B, L,

where the test displacement # is expressed over the initial configuration B,,. The right hand
side term in the above equation involves implicit traction conditions as a result of contact
between surfaces. The contact problem is solved using an augmented Lagrangian frame-
work detailed for 2D deformation in Srikanth and Zabaras (2000) and 3D deformation
in Acharjee and Zabaras (2006). To solve this non-linear equation, a Newton—-Raphson
iterative scheme along with a line search procedure is employed. The fully implicit linear-
ization scheme for the micro-averaged PK-I stress is presented in Sundararaghavan (2007)
and is not repeated for brevity.
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3. Continuum sensitivity method for microstructure-sensitive design

Deformation process design for desired material properties has for long been empirical
in nature. Such approaches are not only time consuming but also quite costly. With these
issues in mind, in this section, an efficient framework is developed for computational
design of deformation processes for desired microstructure-sensitive properties.

The design framework adopted here is based on a gradient optimization method. To
calculate the gradients of the objective function and constraints, one needs to calculate
the sensitivities, i.e. change in the property to be controlled due to infinitesimal pertur-
bations to the design parameters. The sensitivities are evaluated using the continuum
sensitivity method (CSM). In this method, sensitivities are exactly defined using a set
of field equations developed by directly differentiating the equations of the direct defor-
mation problem with respect to the macro-scale process parameters. For example, sen-
sitivity of the equilibrium equation is considered to establish a principle of virtual work
like equation for obtaining sensitivity of macro-scale deformation fields. A CSM-based
gradient optimization approach has been used previously to solve design problems for
optimum process parameters and preform shapes in metal forming applications using
phenomenological models (Badrinarayanan and Zabaras, 1996; Srikanth and Zabaras,
2001; Ganapathysubramanian and Zabaras, 2002; Acharjee and Zabaras, 2006). In this
paper, the technique is applied for the first time to multi-scale design problems. New
developments include the use of averaging relations to compute sensitivity of stress
and various material properties at the macroscopic level from computed microstructural
sensitivity fields. Conventional forming design problems solely address macro-scale
objectives such as maximization of die cavity fill and minimization of material wastage
in the form of flash (Srikanth and Zabaras, 2001; Chenot et al., 1996; Zhao et al., 1997;
Sousa et al., 2002). This paper, in addition to optimizing these objectives, also addresses
optimization of variations in material properties that depend on the underlying micro-
structure. The approach is explained in detail in this section.

3.1. Sensitivity of deformation problem

Let us consider the sensitivities with respect to the design parameters f of field vari-
ables in the current forming stage. Such typical process parameters may include the ram
speed history, the die surface of the current stage, and others. An updated Lagrangian
representation is adopted here. Let us consider a generic field @ that can represent x or
any other material or deformation related field. The dependence of the updated
Lagrangian field @ = &(x,,# ) on B can be expressed as follows:

@ = d(x,, ;) = D(X(X,1;8),6: ) = D(X, 1, B) (8)
with the position x, referred to the reference configuration B,. The parameter sensitivity

® = %(x,,,t; B, AB) is defined as the total Gateaux differential of @ = ®(x,,# ) in the
direction Ap computed at f:

~

o d ~
O(x,, 15 B, AB) = > O(X. 18+ AAB),o. ©)
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Extension of these definitions to shape sensitivities (e.g. sensitivities with respect to the pre-
form shape) is a mathematically more complex process that is described in detail in Srik-
anth and Zabaras (2000).

The novelty in this paper is that the definitions for sensitivity fields are now extended
towards a multi-length scale framework. The process of evaluating the sensitivities of fields
on the micro-scale due to perturbations on the macro-scale is shown schematically in
Fig. 2. This requires a macro-sensitivity problem where the interest is to compute how per-
turbations on the macro-design variables f affect the continuum fields — the deformation
gradient F and the velocity gradient L. The dependence of the deformation gradient F on
B, in a total Lagrangian framework, can be expressed as F = F(X,¢; f). The parameter

sensitivity F—F (X,t; B, AB) is defined as the total Gateaux differential of the deformation
gradient in the direction Af computed at f:

d F(X,t; B+ 2AB)| . (10)

FX,:8,08) =
=0

The micro-sensitivity problem, also defined in Fig. 2, computes the resulting variation of
the ODF and other microstructural properties from the perturbation AF of F (or AL of
the velocity gradient L). In extending the direct analysis in earlier sections, which was
based on the Taylor hypothesis, Taylor hypothesis for the sensitivity problems is devel-
oped as well. In particular, this is defined as follows: the sensitivity of the deformation gra-
dient at a material point is taken to be the same as the sensitivity of the deformation
gradient of the underlying crystals, in the sample reference frame. Before the sensitivity

Macro-sensitivity problem driven by perturbation Micro-sensitivity problem driven by
to macro-design variable (B) sensitivity of deformation gradient

P+P=RX,5.LF+F)

x+}:x(x,r;ﬁ+aﬁ)

L+L=L(X.; B+A8)

Fig. 2. Pictorial of the two-length scale sensitivity analysis. On the left, the macro-sensitivity problem (following a
Lagrangian approach) computes the sensitivities of continuum fields (e.g. of the velocity gradient) with respect to
macro-design variables (here the die surface). On the right, the micro-sensitivity problem computes the sensitivity
of the ODF at each material point with respect to perturbations in deformation gradient induced by the die shape
perturbation.
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problems are discussed, the polycrystal average of sensitivity fields needs to be defined.
This is defined as follows:

o

) = [ Xp) s ssp)do= [ VGs.158).58.89)So(s)do
2, 2
— [ Yp.Ap)S) o (1)
72
where dv, is defined as the vohélme element on the reoriented region and it is assumed that

the initial texture is fixed (i.e. .27, = 0). From Eq. (11), one can conclude that at no point in
the analysis, the sensitivity of the ODF is needed to compute the polycrystal average of
different properties. Examples discussed later, however, do report the sensitivity of the
ODF as a post-processing step for validating the developed analysis.

Described below is the analysis for the development of an updated Lagrangian sensitiv-
ity formulation for the deformation problem. In this approach, the governing equations of
the various sub-problems in the direct analysis (e.g. the kinematic, constitutive, contact
analysis) are first design-differentiated and then appropriate weak forms, time integration
and discretization are introduced. The resulting linear sensitivity sub-problems are com-
bined to produce a linear problem for computing the sensitivity of the deformation, plastic
deformation gradient and material state.

The sensitivity deformation problem is developed on the reference preform B,. The
design sensitivity of the equilibrium equation (Eq. (6)) at ¢t = ¢, results in

V.(P,)=0, Vx,€B,. (12)
A variational form for the above sensitivity equilibrium equation can be posed as follows
(Srikanth and Zabaras, 2000):

/B (P) - ViV, — / (P, - LT]) -7dV, - / (PILT) - V,iidV,

:/r{jl—[Ln-(N@)N)]/l}-ﬁdAn, (13)

where # is a kinematically admissible sensitivity deformation field expressed over the ref-
erence configuration B,, N is the unit normal vector to I', and the (known) design velocity
gradient L, at ¢, is defined as follows:

L, = V,%(x, 1,0, B, AB) = F,F". (14)
The primary unknown of Eq. (13) is the design differential Xpp1 = ,O\c(x,,7 tor1; B, AB). To ob-

tain the final form of the variational sensitivity problem, the relationships between F,, (P,)

and 4 to x,,, need to be developed.
The relationship between F, and x,.,, is purely kinematic and is given as follows:

o

IOT = vnxn-%—l = Vn-;n-%—l - F,.Ln. (15)

The relationship between 4 and ,%,Hl is obtained from the sensitivity contact problem as

o

A=D[x,.]+4d, (16)
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where D is a second-order tensor and d a vector. The non-trivial derivation of these ten-
sors resulting by design-differentiation of a regularized contact problem can be found in
Srikanth and Zabaras (2000). _

The relationship between (P,) and .;,H,] is obtained from the sensitivity constitutive
problem and takes the form:

(P,) = </[F,) +B, (17)
where ./ is a fourth-order tensor and B is a second-order tensor. Analogous to the con-
stitutive update for the direct deformation problem, the sensitivity constitutive update pro-

cedure involves computation of the set 7, s, Fe, FP for each crystal orientation at the end of

the time increment ¢#,,,, where the sensitivity of the total deformation gradient F,,; is
assumed known. The detailed derivations of the sensitivity constitutive equations can be
found in Sundararaghavan (2007).

The constitutive sensitivity problem for a crystal orientation is history-dependent and
the solution of the sensitivity problem at time ¢, is assumed known for each crystal orien-
tation, yielding the variables s,, F © F P at the beginning of each time increment. The active
systems identified in the direct problem are then used for deriving the sensitivity of these
quantities at the current time step. This assumes that slip systems activated under a per-
turbed deformation gradient (F + F) are the same as when a deformation gradient of F
is acting on the crystal. This is a valid assumption since the applied perturbations to the
design variables are small (~10~’) and hence, no new slip systems are activated.

The post-processing step involves computation of the sensitivity of the orientation dis-
tribution function at each material point in the macro-continuulrol. For this, one needs to
first compute the sensitivity of the reorientation vector. Once F;,, has been evaluated

using the sensitivity constitutive problem, Rn +1 can be obtained as (Badrinarayanan and
Zabaras, 1996) (the subscript n + 1 is dropped in this equation):

R = FFF'RE — Resym{ U 'sym(FTF¢)} F ' RE. (18)

The sensitivities of the spin vector and the spin tensor are obtained as

o= Vect(f!), where @ = R°R — QR°R*". (19)

The sensitivity of the reorientation vector ¥,,; can now be found by design differentiating
and solving Eq. (5). Design-differentiation of the Lagrangian version of the ODF conser-
vation equation (Eq. (1)), leads to the following equation for the sensitivity of the ODF:

o

A (5,5, 8,A8) (5,1, B) = =/ (5,5, B) J (5,1, B, AB), (20)
where J(s, 1; B, AB) = det(Vi(s, ; B, AP)) = J (s 1; )V - (s, 1; p. AB)].

3.2. Definition of the gradient optimization problem

Using the computed sensitivity fields, one can evaluate the gradients of any microstruc-
ture-dependent property (X') with respect to the components of a design vector B of size m.
The design vector B can be an appropriate parametrization of the macro-scale design var-
iable that can represent the die or preform shape, forging velocity, etc. The gradient is rep-

resented as V(Y) = (m an) ﬂ) where

1 2B P
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a<r> — <Y>(r7t;ﬁlﬂ'"7ﬁn1505"'7Aﬁi7"'50) (21)
op; Ap; '
The ith sensitivity problem is driven by Af; with Af; = 0 for j # i.
The objective function for the gradient optimization problem where it is desirable to
obtain a set of properties (X')**™* can be as follows:

1 N

min F(B) = 5= > ((0),(8) — (X)), (22)
b 2N S

where N is the total number of sampling points (for e.g. nodal points of interest in the final

macro-scale mesh) and (Y), defines the property computed at the ith sampling point.

Alternately, the objective function can be expressed in vector notation as
. 1

min F(f) = —

B ®) 2N

where A(Y) = (X)(B) — (XY)**™_ An iterative approach is followed to solve for p which
would give the desired property. Let f” be the solution at the rth optimization iteration
step. The descent direction d” of F(B) can be computed from Eq. (23) as

(A(Y)"(A(Y)), (23)

& = —VF(B) = ~ - SHAT), (24)

where the sensitivity matrix Sz of (Y) is defined as Sy = 0(Y)/0B. Sy is of the order
N x m, where N is the dimension of (Y) (number of sampling points) and m is the
dimension of the design vector B. After each iteration, the design parameters are up-
dated as follows:

Bt =p+o6d, r=0,1,..., (25)
where the optimal scalar J, is computed from a line search procedure:
F(B +8,d) = min F((Y(")) + 6d) (26)
leading to the following step size:
d7SLA(Y
oo -2 52l (27)
d"SySyd

This step size is used to update the design vector and the iterative process is repeated until
the prescribed convergence criterion is satisfied.

4. Numerical examples

The slip system hardening model used in the examples is given as
W =g+ (1—¢)0"Ih*  (no sum on p), (28)

where /” is a single-slip hardening rate, ¢ is the latent-hardening ratio and 6* is the Kro-
necker delta function. The parameter ¢ is taken to be 1.0 for coplanar slip systems and 1.4
for non-coplanar slip systems. For the single-slip hardening rate, the following specific
form is adopted:
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W = ho(l —Sﬁ>a, (29)

Ss

where 4,, a, and s, are slip hardening parameters taken to be identical for all slip systems,
with values #, = 180 MPa,s, = 148 MPa and a = 2.25 for FCC copper single crystals. The
initial value of slip system resistance is taken as s, = 16 MPa (Anand and Kothari, 1996).
Values of elastic parameters for copper crystal are taken as C;; = 170 GPa,Cy, = 124 GPa
and Cy = 75 GPa. Slip is assumed to occur in the 12 {1 11}(110) slip systems in the FCC
crystal. As a validation of the micro-scale texture evolution model, results are compared
with the numerical example of Anand and Kothari (1996). The experiment corresponds
to an x-axis compression with a strain rate of 0.001 s~! of FCC copper polycrystal. The
initial texturing of the material is assumed to be random, and this corresponds to a con-
stant Lagrangian ODF of 2.435. The reference fundamental region is discretized into 448
tetrahedral elements with cubic symmetry enforced in the solution procedure. Comparison
of results of Anand and Kothari (1996) with the present ODF-Taylor model is shown in
Fig. 3.

To validate the continuum sensitivity algorithm, we consider the problem of plane
strain compression of a block and compare the sensitivity of the ODF with respect to
the straining rate using the continuum sensitivity method (CSM) and the finite difference
method (FDM). The evaluation of the gradient, using CSM in this case, involves solving
one non-linear direct problem and a linear sensitivity problem corresponding to perturba-
tion in the strain rate. In comparison, in the finite difference method (FDM), that uses
finite differences to approximate the derivatives, one would require a solution of two
non-linear direct problems with compression rates f and f# + §f. The initial block size is
taken as 1.0 mm by 1.0 mm. The straining rate is fixed at 10> s~!, and simulation is for
a total time of 3.2 s. Parameter sensitivities are computed with respect to a perturbation
of 1077 s7! to the compression rate. Fig. 4 shows comparison of texture sensitivity of
the two techniques in the two-scale problem where it is seen that CSM produces exactly
the same sensitivity results as the FDM.

350

300

m
3
MPa)
N
g

4.71 2

436 @ 200

4.01 ®

3.66 £ 150

3.32 k%

2.97 4

262 2 100

227

fe2 W ODF-Taylor(thiswork)
157 50

1.22 Kothari and Anand(1996)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Equivalent plastic strain

Fig. 3. (a) Texture obtained using the Taylor model after 135 s of simple compression of a copper polycrystal at
the rate of 107* s~'. (b) Comparison of equivalent stress—strain response with results from Anand and Kothari
(1996).
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Fig. 4. (a) Multi-scale plane strain compression of a block, final texture at the bottom left corner element is
shown. (b) Sensitivity of this texture calculated using the CSM technique is compared with (c) sensitivities
obtained using the finite difference technique.

Since the CSM involves solution of a simpler linear sensitivity problem for each design
variable, it is much faster than the FDM. The FDM also presents difficulties due to the
fact that direct deformation problems, such as those involving abrupt contact between
die and the workpiece, are insensitive to infinitesimal changes in design parameters. Fur-
ther, FDM sensitivities are mesh-dependent and cannot predict accurate sensitivities in
problems that involve remeshing operations. On the other hand, accurate sensitivities
can be found using CSM with infinitesimal perturbations in deformation/contact prob-
lems and the approach works equally well for problems that involve remeshing. Such
advantages are important in the case of complex multi-scale deformation problems, and
is a factor enabling the proposed algorithm to solve otherwise difficult design examples
as demonstrated later in this section.

The parameter sensitivities in the design problem, as discussed later, are computed with
respect to a perturbation of 10~ units to the design parameters. First two examples
involve control of properties in axi-symmetric extrusion and closed-die forging processes,
simulated without remeshing. The last two examples relates to control of strength and
magnetic hysteresis losses in complex forging processes in the presence of remeshing
and data transfer for both direct and sensitivity fields. In all examples, an assumed strain
analysis scheme is used to treat the effect of near-incompressibility based on the work in
Srikanth and Zabaras (2001). To aid in speeding up the solution process for the multi-scale
problem, the design simulator was parallelized using MPI. The simulator was developed
using object oriented programming and was dynamically linked to the parallel toolbox
PetSc (Balay et al., 2004) for parallel assembly and solution of linear systems. In particu-
lar, for solution of linear systems, a GMRES solver along with block Jacobi and ILU pre-
conditioning from the PetSc toolbox was employed.

4.1. Example 1. Design of Young’s modulus distribution during extrusion

In this example, we study the feasibility of controlling Young’s Modulus distribution in
the finished product through control of the extrusion die shape. An axi-symmetric extru-
sion process is considered with a fixed reduction in cross section over a fixed length. Dur-
ing extrusion process, texturing and the material state strongly vary over the final cross
section due to the loading conditions. Through control of loading conditions, in particu-
lar, the die shape, it is possible to minimize variations in properties in the finished product.
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The objective is to design the die shape such that Young’s modulus distribution at the exit
is as uniform as possible. The objective function for this design problem is defined as
follows:

N
min F(f) = > ((E(B) —EB))), (30)
i=1
where E;(i = 1,...,N) is Young’s modulus at the N nodal points in the exit cross section

and E is the mean property over those points defined as £ = 13" |E,. Young’s modulus
for loading along a particular direction at each material point is found using the polycrys-
tal stiffness, (C), computed through a weighted average (over .«7) of the stiffness of indi-
vidual crystals expressed in the sample reference frame. Young’s modulus for the
polycrystal is then computed through the averaged stiffness matrix as

1.0
E=— " 31
(O ey

In this example, Young’s modulus along the axis of the drawn workpiece was calculated
using the above equation but after a coordinate transformation of (C) so that the first ba-
sis vector is along the extrusion axis.

The initial texture of the preform is assumed to be random, and this corresponds to a
constant Lagrangian ODF of 2.435. The reference fundamental region with cubic symme-
try is discretized into 61 tetrahedral elements. We design an extrusion process with a die of
area reduction of 13.5% over a length of 0.5 mm. Initial radius of the FCC copper work-
piece is 0.5 mm and the initial height is 1.0 mm. The workpiece was extruded with a nom-
inal displacement rate of 0.1 s~!. A total of 400 time steps up to ¢ = 10 s were performed to
reach steady-state conditions at the exit. The die-workpiece interface friction coefficient is
taken as 0.01. The die surface is represented by a degree 7 Bézier curve as follows:

7
o
=) Cip(a), z==1i , 0<a<, 32
r(ot) z:; ¢i(2), z=7 inmm o (32)
where C;,i = [1,...,7], are the algebraic control parameters. The Bernstein functions ¢;(o)

are given as
b =(1.0—0)° ¢, =60(1.0—x) x, ¢;=150(1.0—0a)?
by =20.0(1.0 — a)’®, s = 15.0(1.0 — a)*a, (33)
¢ =6.0(1.0 — ), ¢, = ol

We apply the constraints (to obtain the same reduction for different die design parameters)
that the radius and slope (with respect to the z-axis) at the inlet and exit are fixed with
C, = C; =0.52 mm,Cs = C7 = 0.45 mm. With this selection of parameters, there are three
design parameters f = (Cs, C4, Cs) for the control problem. An initial guess of the design
variables of C3 = 0.52, C4 = 0.52, Cs = 0.52 mm was employed. The energy and displace-
ment error norms for the finite element solution are taken to be 107*.

Fig. 5 shows the intermediate configuration (at 0.5 mm stroke) and the final configuration
(at 1 mm stroke) of the extrusion process along with a representative ODF (Fig. 5c¢) obtained
at a point on the circumference of the exit cross section at 0.5 mm stroke. Observe that due to
the natural symmetry of Rodrigues space, axes of the space relate directly to sample axes. In
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Fig. 5. (a) The distribution of Young’s modulus when the exit cross section just leaves the extrusion die (b)
Young’s modulus distribution in the final time step (c) ODF at a representative material point close to the die
surface. (d) The (111) pole figure of the ODF.

axi-symmetric forming operations, we hereafter use the x-direction of the ODF (as indicated
in Fig. 5¢) to denote the radial (r-)direction and the y-direction of the ODF to denote the axial
(z-)sample direction. The ODF, as expected for an extrusion process, can be seen to arise
from a predominantly x—y axes shear deformation, as evidenced by the strong x-axis
(111) fiber in the (111) pole figure (Fig. 5d). The x-axis (111) fibers lie near boundaries
of the fundamental region and are seen across the z-face of the ODF. Note that in Rodri-
gues—Frank space, ideal orientations liec on boundaries of the fundamental region which
allows the structure of the textures to be reflected adequately by the boundary ODF.

The die shape identified at various iterations of the design problem and variation of the
objective function over all iterations are shown in Fig. 6. The optimal die shape corre-
sponds to Bézier coefficients C3 = 0.5229, C, = 0.5099, Cs = 0.4765. Young’s modulus dis-
tribution on the curved surface at the end of forging at the first, second and final iteration
are shown in Fig. 7. In the first iteration, Young’s modulus distribution is highly non-uni-
form with variation from 116 GPa at the center to a maximum of 123 GPa halfway from
the center. In the final iteration, the deviation reduces to just 1 GPa from the center to
about two-thirds of the exit cross section. The optimal solution for the design problem
is attained in just four iterations showcasing the efficiency of the design algorithm.

4.2. Example 2. Design of yield strength variation during closed die forging

In this problem, the forging of a circular disc is considered. The primary objective is to
design the preform for a final forged product (with fixed stroke) such that the die cavity is
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Fig. 6. (a) The extrusion die profile at the initial, intermediate and final (fourth) iteration. (b) The decrease in cost
function at successive iterations.
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Fig. 7. Young’s modulus distribution on the exit cross section at the end of extrusion in the (a) first iteration (b)
second iteration (c) final iteration. The workpiece is shown end-on and the outer area depicts material still in the
process zone.

fully filled. The secondary objective in this problem is to minimize the variation of strength
on the curved surface of the final product. One way to ensure that the die cavity is filled is
to consider a preform of a much larger volume than that needed. In this case, the die cavity
is filled up but there will be considerable material wastage due to flash. Further, our sec-
ondary objective of minimizing yield strength variation might not be satisfied. The objec-
tive function for the design problem is defined so as to fulfill both objectives:

N N*

min F(B) = D (B) = V() + (1) — ™)+ (2 () — 2P,
i=1 =1

(34)

where Y; (i =1,...,N) are the yield strength values on the curved surface in the final
product and Y is the mean property over those points defined as ¥ = %ZLY ;. Also,
pdesired gpd zdesied gre the closest point projections of the points 7,(B) and z(B) on the die
and N* denotes the number of points on the contact (top and curved) surface. FCC copper
is used as the material for the workpiece. The crystal plasticity model described previously
is used to calculate the yield strength at all Gauss points using the ODF and slip system
resistances at each time step. In this method, the polycrystal at each integration point in
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the macro-scale mesh is separately subject to uniaxial (y-axis) tension conditions up to a
strain of 0.2% to obtain the corresponding 0.2% offset yield strength at each integration
point.

The initial surface of the preform (Rg(«)) is represented with a degree 6 Bézier curve.
Using the restriction R};(O) = 0, the representation of Ry can be defined with 6 independent
design variables f;, i = [1,..., 6] as follows:

Ry( ZM’ 0<a<l, (35)

where o = 7 represents the z-coordinate normalized with the height of the preform. Basis
functions are given as

¢, = (10— ) +6u(l —a)’, ¢, = 15.0(1.0 — a)*o?,
¢y =20.0(1.0 — a)’c®, ¢, =15.0(1.0 — o) o, (36)
¢s = 6.0(1.0 —0)o’, g = 0.

The optimization iterations start with a preform of lesser volume than the die cavity and
the design iterations try to attain the optimum shape of the final preform that satisfies the
objectives. The specified forging velocity is taken as 0.01 mm/s and the shape parameters
in the reference preform are ff; = 1.0 for all i. This corresponds to a cylindrical preform of
radius 1.0 mm. The objective is to design the free surface (represented by the degree 6 Bé-
zier curve) of the preform of fixed height # = 0.60 mm that when forged using the closed
forming die results in a fully-filled die cavity and uniform distribution of yield strength on
the external surface after a specified stroke of 0.3 mm. The die is described as follows:

r(n) = 1.3(1 —n),

z(n) = 548357 + 1.35, 1 €[0,0.07692],

z(n) = 378.373(n — 0.16952)° + 1.9, 5 € [0.07692,0.16952),
(n) =

(n) =

z

n) =19, 5 e0.16952,0.36663],
z(n) = 0.15(15.0463 — 79.3599n + 295.8557n* — 511.87115 + 403.38301*
— 118.05417°) +0.85, 1 > 0.36663.

The workpiece is assumed to be isothermal. The initial temperature of the workpiece is
assumed to be uniform and equal to 300 K. The forging die is modelled as a rigid surface
and to simulate sticking friction between the die and workpiece, a coefficient of friction of
0.1 is applied. The energy and displacement error norms for the finite element solution are
taken to be 107*.

Fig. 8 shows an intermediate step (at 0.02 mm stroke) and the final forged product (at
0.3 mm stroke) at the optimal preform shape along with a representative ODF calculated
at the material point marked in the figure. The development of y-axis compression texture
is clearly captured in the simulation. FCC metals are typically associated with texturing to
(110) fibers under compression. At lower strain (0.02 mm stroke, Fig. 8c), intensities can
be seen to develop uniformly along the compression (y-)axis (110) fibers that are seen
across the z- and x-faces of the ODF. At higher strains (0.3 mm stroke, Fig. 8d), the
ODF within the attracting regions about the (110) fibers intensifies and sharpens. Also,
note the boundary symmetry of the space that implies that structures associated with fibers
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Fig. 8. (a) Yield strength distribution at 0.02 mm stroke. (b) Yield strength distribution at 0.3 mm stroke. (c, d)
ODF at a point close to the bottom corner of the preform at 0.02 and 0.3 mm stroke. (e, f) The (111) and (110)
pole figures of the ODF in (d).

on opposing faces comprise a single feature. While the (1 10) fibers correspond to regions
attracting crystal flow, the (100) and (111) fibers define regions that repel crystal flow.
This is seen from the pole figures in Fig. 8¢, where compression axis (110) fiber develops
high intensities.

The preform shape identified at various iterations of the design problem and the objec-
tive function over seven iterations are shown in Fig. 9. The optimal solution for the design
problem is attained in the sixth iteration. The optimal preform shape corresponds to
Bézier coefficients f = {1.00639, 1.02940, 1.08443,1.15127,1.16593,1.13392}. The preform
shape at the final time step of the optimization problem for the first, second and final iter-
ation of the design problem is shown in Fig. 10. The yield strength distribution on the
curved surface at the end of forging at the first, second and final iteration are shown in
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Fig. 9. (a) Profile of the curved surface of the preform at the initial, intermediate and final iterations of the design
problem (b) decrease in cost function at successive iterations.
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Fig. 10. Final configuration at the end of forging in the (a) first iteration (b) second iteration (c) final iteration.

Fig. 11. In the first iteration (Fig. 10a), the preform does not completely fill the die upon
forging. Almost complete fill is obtained in as early as the second iteration (Fig. 10b)
showcasing the efficiency of the design algorithm. However, in this iteration, the require-
ment of uniform yield strength is not met and as much as 30 MPa variation is seen on the
curved surface in Fig. 11b. In the converged solution shown in Fig. 11c, both requirements
are met and the variation in yield strength reduces to about 3 MPa on the curved surface.

4.3. Example 3. Design of yield strength distribution in complex forging operations using
remeshing schemes

Complex metal forming simulations often lead to severe distortions in the initial mesh.
As a result, periodic remeshing operations need to be carried out to ensure good element
quality throughout the simulation. In the next two examples, an automatic remeshing
capability is implemented. Once remeshing is complete, all history-dependent variables
including deformed ODF grids at each integration point of the macro-scale, and the quan-
tities s*, T, w, F° and FP at every integration point of the corresponding ODF are updated.
The sensitivity counterparts of these quantities are also transferred in the same manner. In
this problem, the forging of a FCC copper spheroidal preform to form a cross-shaft is con-
sidered. The primary objective is to design the preform for a final forged product (with
fixed stroke) such that required shape is obtained. The secondary objective is the same
as the previous problem, i.e. to minimize the variation of strength on the curved surface

Yield strength (MPa)

a b c

Fig. 11. Yield strength distribution on the curved surface at the end of forging at the (a) first iteration (b) second
iteration (c) final iteration.
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Fig. 12. Texturing at a representative material point during an (a) intermediate and (b) final time step of the
closed-die forging problem. The objective function is described in (a).

of the final product. The objective function for the design problem is same as in the pre-
vious example. However, the objective function is only computed with a radius of 0.75 mm
which is the required dimension of the cross-shaft as indicated in Fig. 12a.

For the design problem the free surface of the sphere is discretized using Bézier curves
in a similar fashion as the previous example leading to a total of six design variables. The
forging velocity was assumed to be 0.01 mm/s while the stroke was fixed at 0.1 mm. The
shape parameters in the initial preform are §; = 0.7 for all i. This corresponds to a spher-
ical preform of radius 0.7 mm. The objective is to design the free surface (represented by
the degree 6 Bézier curve) of the preform of fixed height # = 0.70 mm that when forged
using the closed forming die results in the desired dimensions (contact radius of
0.75 mm) and uniform distribution of yield strength on the external surface after a spec-
ified stroke of 0.1 mm.

Fig. 12 shows an intermediate step (at 0.05 mm stroke) and the final forged product (at
0.1 mm stroke) at the optimal preform shape along with a representative ODF calculated
at the material point marked in the figure. At the final time step the ODF (Fig. 12d) indi-
cates a predominantly z-axis compression mode with the depletion of intensities from the
z-axis (100) fiber and development of strong z-axis (1 10) fibers on the x- and y-face of the
ODF. The preform shape identified at various iterations of the design problem and the
objective function are shown in Fig. 13. The optimal preform shape corresponds to Bézier
coefficients p = {0.851,0.847,0.830,0.810,0.810,0.755}. The preform shape and yield
strength distribution at the final time step of the optimization problem for the first, second
and final iteration of the design problem is shown in Fig. 14. The figure clearly shows the
decrease in variability of yield strength in successive design iterations.
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Fig. 13. (a) Profile of the curved surface of the preform at the initial, intermediate and final iterations of the
design problem (b) Decrease in cost function at successive iterations.
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Fig. 14. Final configuration at the end of forging for various iterations of the design problem.

4.4. Example 4. Design of magnetic hysteresis losses in closed die forged components

When a ferromagnetic material is taken through a cycle of magnetization and demag-
netization in an alternating current field, energy is spent in aligning the magnetization vec-
tors of the individual crystals along the direction of the external applied field. This
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alternating magnetization and demagnetization leads to a power loss in the material
defined as hysteresis loss. Power losses also occur due to eddy currents. The total power
loss can be expressed as a function of the external magnetization direction /& by the expres-
sion (Hutchinson and Swift, 1972):

P(h) = Ay + A, (Pm® + m*n® + Pn?) + A, Pm*n?, (38)

where P is expressed in W/kg and /, m and n are the direction cosines of k as represented in
the crystal coordinate frame.

The coefficients 4y and 4, are different for the total power loss and the hysteresis loss
and also depend on the frequency of magnetization. The coefficient 4, is small and is gen-
erally ignored. FCC nickel is used as the deforming material with constitutive model
parameters /i, = 283 MPa, s, = 240 MPa, a = 3.0, s, = 16 MPa calibrated using experi-
mental results of Narutani and Takamura (1991). Elastic parameters of Nickel used are
Cy; =247 GPa,C;, = 147 GPa and Cy4 = 125 GPa. For computation of magnetic hyster-
esis loss, the values 49 = 0 and 4, = 10.0 W/kg are used for computing the hysteresis loss
of nickel at a frequency of 30 Hz (Acharjee and Zabaras, 2003). The corresponding poly-
crystal quantities can then be obtained by averaging over the ODF as in Eq. (2). The exter-
nal magnetization direction in the sample coordinate system is taken as (1/v/2,1/v/2,0).

The particular process involved is a closed-die forging of a circular disc. The primary
objective is to design the preform for a final forged product such that the die cavity is
fully-filled with minimal flash after a stroke of 4.8 mm. The secondary objective in this
problem is to minimize the hysteresis loss on the curved surface (along the perimeter) of
the final product. The objective function for the design problem is thus defined as

N N*

min F(B) =1 S ((PL(B)) + D ((rB) — A0 4 () — ). (39)

i=1 i=1

This example presents a forging process design for producing an axi-symmetric ribbed
disk. The initial billet is a right cylinder of 0.6 mm height and 1.15 mm radius. The forging
velocity is taken as 0.01 mm/s. The geometry of the finishing die is taken from Example 5.3
of Zabaras et al. (2003).

This example involves four remeshing operations at times 10, 20, 30 and 40 s. The ODF
grids are also transferred to integration points of the new mesh through smoothing and
data transfer operations. The details of the remeshing and data transfer procedure are
the same as Example 3. The Bézier curve representation of the preform is given by Eq.
(35). Fig. 15 shows an intermediate steps (at 0.22 mm and 0.44 mm stroke) of the preform
shape in the second iteration along with a representative ODF calculated at the material
point marked in the figure. At 0.22 mm stroke, the ODF shown closely represents ODFs
obtained from plane strain compression along y-direction in the z—y plane. The texture is
predominated by the o fiber connecting the ideal Goss and brass orientations on the x-face
of the ODF. At 0.44 mm stroke, the z-axis tension texture becomes predominant due to
compressive strains developing along both x- and y-direction as the preform progressively
comes into contact with the die. This is evidenced by the loss of intensity in the z-axis
(110) fibers seen on the x- and y-faces of the ODF in Fig. 15d. The (110) pole figures
at 0.22 mm stroke and 0.44 mm stroke, respectively, as shown in Fig. 15¢ and e, show
the progressive loss of intensities of the z-axis (110) fibers due to the change in the pre-
dominant deformation mode from y-axis plane strain compression to z-axis tension.
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Fig. 15. (a, b) Yield strength distribution at 0.22 mm and 0.44 mm stroke (c, d) ODF at a point close to the
bottom perimeter of the preform at 0.22 and 0.44 mm stroke. (e, f) The (110) pole figures of the ODF at 0.22 and
0.44 mm stroke respectively.
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Advantages are derived from the symmetry of Rodrigues’ space relative to the sample
axes. The effect of a permutation of the sample axes on texture results in a corresponding
permutation of the axes of Rodrigues space without any alteration of the structure of the
texture. For example, textures developed under compression along the y-axis as seen in
Fig. 8d were associated with increase in intensities along y-axis (110) fibers located on
the z- and x-faces of the ODF. In the case of z-axis tension texture in Fig. 15d, decrease
in intensities are found (by corresponding permutation of axis) along z-axis (110) fibers
located on the x- and y-faces of the ODF. In contrast, over the Euler angle space, permu-
tations of sample axes modify the texture in complex ways.

0.6
a ; b
/.

e c

0.5 | 7 1 O 095
e °
7 c

04 /;"// B 2 0.9
- |~ 2
£ 7 b

£ o3 s 1 S oss
= . 5
N T )

- /

02 ’ 8 T o8
, ’ — |Initial preform surface E
/ N I Intermediate iteration «

01 7/ —— Optimal preform surface |1 § 0.75
/ : ]
z

0 . . . 0.7 * -
1.1 1.15 1.2 1.25 1 2 3
r (mm) Iteration
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Fig. 17. Hysteresis loss distribution and the die cavity fill is illustrated in the (a) first iteration (b) second iteration
(c) final iteration.

The optimal solution for the design problem is attained in four iterations. The preform
shape identified at various iterations of the design problem and the objective function over
four iterations are shown in Fig. 16. The optimal preform shape corresponds to Bézier
coefficients f = {1.0681,1.0825,1.1141,1.1845,1.2374,1.2403}. The magnetic hysteresis
loss distribution on the curved surface at the end of forging at the first, second and final
iteration are shown in Fig. 17a—c respectively. In the first iteration, less material was used
leading to large underfill. In the second iteration, the underfill reduces drastically, how-
ever, the magnetic hysteresis losses have not yet reached the optimal value. The final iter-
ation gives the optimal decrease in magnetic hysteresis loss as well as allows complete
filling of the die cavity as indicated in Fig. 17c.

5. Conclusions

Selection of macro-scale process parameters such as die shape, preform shape and forg-
ing velocity to control properties such as strength and stiffness is a challenging multi-scale
problem due to the need to relate such macro-scale parameters with microstructure
evolution. In this work, we presented a multi-scale optimization strategy for designing
thermo-mechanical processes so that desired microstructure-sensitive properties are real-
ized. Specifically, a two-scale continuum sensitivity formulation was developed that allows
efficient computation of sensitivities of microstructure field variables such as slip resis-
tances and texture with respect to perturbations in macro-scale forming parameters such
as forging rates, die shapes and preform shapes. These sensitivities have been successfully
employed in a gradient optimization framework for controlling properties such as hyster-
esis losses, the yield stress distribution and Young’s modulus in complex deformation
processes by optimally altering die and preform shapes.

The algorithm is computationally efficient and converges to the desired response within
a few iterations. The simulator can also be easily extended towards computational design
of other orientation-dependent properties such as thermal conductivity or the thermal
expansion coefficient (Kocks et al., 2000) as well as in the design of devices with desired
optical properties (Bunge, 1983). Other areas of applicability of this approach include cal-
ibration of material models or contact parameters through minimization of error between
known experimental measurements and those predicted by the multi-scale model. The
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extension of the technique to address materials design in multiple stage forming processes
is needed but the modifications involved are rather straightforward (Zabaras et al., 2003).
Effort is currently on to improve the micro-scale model by incorporating higher-order fea-
tures such as grain size and orientation correlations, in addition to crystallographic tex-
ture, using finite element homogenization schemes (Sundararaghavan and Zabaras, 2006).
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