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Abstract—Predicting the remaining useful life (RUL) of a
lithium-ion battery with its limited degradation history is critical
as it ensures timely maintenance of electric vehicles and efficient
reuse of second-life batteries. Considering realistic battery oper-
ating conditions, this work investigates the RUL prediction under
partial charge and discharge with a limited degradation history
of the target cell. Given its ability to inform feature importance,
the random forest is adopted to help prioritize different battery
measurements and identify the least amount of operating data re-
quired for accurate RUL prediction. By examining the prediction
performance using one complete charge and discharge cycle, it
is shown that the duration, used capacity, and voltage signals of
both charge and discharge contain important features related
to battery RUL. The prediction performance under partial
charge and discharge is also studied under state-of-charge (SOC)
uncertainties, revealing satisfactory performance achieved with
the data collected over the SOC range of [0.2, 0.8]. Comparison
with an existing convolutional neural network-based approach
that uses four complete charge and discharge cycles verifies
the enhanced onboard feasibility of the proposed approach.
Sensitivity analysis against SOC ranges shows that the data
in the SOC range of [0.1, 0.2] contain the richest RUL-related
information for lithium iron phosphate cells. Extensive validation
on cells with different chemistry, ambient temperatures, and
C rates further demonstrates the robustness of the proposed
approach.

Index Terms—Remaining useful life, Lithium-ion battery cells,
Random forest, Partial charge and discharge

NOMENCLATURE

µx Various statistical features: mean (x = 1), variance
(x = 2), skewness (x = 3), kurtosis (x = 4),
minimum (

¯
µ0), and maximum (µ̄0)

Cx Nominal (x = n) and actual (x = a) capacity of the
cell [Ah].

Nx Number of aging cycles to the present cycle (x = p)
and end of life (x = EOL).

Qx Used capacity during charge (x = c) and discharge
(x = d) [Ah].
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R Internal resistance of the cell [Ω].
Tx Temperature during charge (x = c) and discharge

(x = d) [◦C].
tx Duration for charge (x = c) and discharge (x = d)

[min].
Vx Voltage during charge (x = c) and discharge (x = d)

[V].

I. INTRODUCTION

Given their long lifetime and high energy density, lithium-
ion batteries have been broadly used as power sources/energy
storage systems nowadays for various applications, e.g., elec-
tric vehicles (EVs) [1], electronic devices [2], and micro-
grids [3]. To maintain reliability and cost-effectiveness of
battery usage, one critical issue is to accurately predict the
number of cycles till the end of useful life (EOL) of the
lithium-ion batteries, also referred to as battery remaining
useful life (RUL) prediction [4]. For example, in EV applica-
tions, the EOL is typically defined as the time when batteries
degrade to 80% of the nominal capacity to ensure daily driving
demand [5], and the RUL information can help to determine
a proper and timely maintenance schedule for the vehicle [6].
In renewable energy systems, second-life batteries are widely
deployed, where RUL information will be important to assess
the economic benefit of using these batteries [7].

While a profound understanding of the battery degradation
mechanism has been established [8], it remains challenging to
accurately predict the RUL of batteries in real applications,
which might be primarily due to the following reasons. First,
as an electro-chemical system [9], the degradation of lithium-
ion batteries is an interplay of various complex phenomena in-
fluenced by the operating condition (e.g., C rates and ambient
temperature) [10]. Consequently, its dynamics can be highly
nonlinear and subject to the impact of multiple inputs. Second,
in most practical applications, only limited degradation data
(or history) of the target cell can be collected/stored online for
its RUL prediction due to operational constraints. For instance,
operating data in low or high state of charge (SOC) regions
may be unavailable due to partial charge/discharge [11]. Only
the data of the present cycle/the last few cycles may be
accessible with stringent onboard memory constraints [12],
e.g., smartphones and second-life batteries. As a result, the
richness of RUL-related information in the data can decrease
significantly, leading to a more demanding RUL prediction
problem.
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To tackle the RUL prediction of batteries, early works focus
on developing model-based approaches. The model-based ap-
proaches typically achieve the RUL prediction in two stages.
During the offline stage, the structure of a physics/empirical-
based degradation model is first established. The model pa-
rameters are then identified during the online stage based
on the operating data of the target cell to provide the RUL
prediction for the cell [13]. For example, in [14], a two-term
logarithmic model was developed to capture the degradation
trends of batteries for predicting RUL. The battery degradation
rate was modeled by the Wiener process in [15] to account
for stochasticity under different temperature conditions when
predicting RUL. An Arrhenius law-based model was adopted
in [16] to take the impact of discharge rate into considera-
tion. Besides using different modeling approaches to better
capture the underlying degradation dynamics, studies were
also conducted with various parameter estimation approaches,
e.g., Kalman filter [17], unscented Kalman filter [18], and
particle filter [19], to improve the RUL prediction accuracy of
model-based approaches. The model-based approaches can be
efficiently implemented with low memory and computational
overhead. Nevertheless, the degradation model can still be
oversimplified to capture the thermal, electrical, and chemical
interactions, leading to compromised performance.

With the advancement in data-driven modeling approaches
and the increasing data availability, machine learning ap-
proaches have become promising and alternative solutions for
RUL prediction. Trained offline with the degradation data of
similar cells, machine learning models are capable of predict-
ing RUL after taking in the operating data of the target cell
collected online [20]. For instance, the support vector machine
was applied with a particle filter for simultaneously obtaining
the state of health (SOH) and RUL of batteries in [21]. In [22],
the random forest was integrated with a model-based approach
to correct its RUL prediction error for enhanced accuracy.
An artificial neural network was used in [23] to leverage
the strong learning ability of deep learning approaches for
RUL prediction. To consider the temporal dependency in the
RUL prediction, recurrent neural networks such as long-short
term memory networks and gated recurrent units were also
studied in [24], [25]. Being model-free, machine learning
approaches can learn the degradation dynamics from the data,
well tackling the challenge of complex degradation dynamics
and achieving satisfactory RUL prediction accuracy. However,
the challenge of limited degradation data availability for the
target cell can frequently be overlooked in the aforementioned
RUL prediction studies, which may impair the feasibility of
proposed approaches or significantly degrade the performance
in real-world applications.

In this paper, we focus on the RUL prediction problem
where only limited degradation data/history of the target cell
is available online for its RUL prediction. Recently, efforts
to tackle this challenge have emerged in the literature. For
example, the authors in [26] showed that the last four complete
charge and discharge cycles are required to predict RUL
accurately with a convolutional neural network (CNN). In [27],
RUL prediction was achieved with one of the aging cycles
within the first 100 cycles, and later work [28] further demon-

strated that the first cycle might contain sufficient information
for RUL prediction. Although these studies have considerably
reduced the need for collecting and storing a long/entire
degradation history of the target cell, obtaining early ag-
ing cycles or the last few cycles could still be prohibitive
for some real-world applications (e.g., second-life batteries).
Meanwhile, assuming data availability under complete charge
and discharge can also make the proposed solution restrictive.

To bridge the gap of RUL prediction under limited degra-
dation data/history, we aim to study the RUL prediction under
partial charge and discharge while reducing the number of
past cycles required for achieving satisfactory RUL predic-
tion accuracy. To this end, the random forest technique is
adopted [29], which produces a prediction by aggregating the
predictions from multiple decision trees constructed with dif-
ferent combinations of the input features. When choosing these
feature combinations during tree construction, the information
gain or variance reduction is typically used as the criteria [30].
This information naturally implies the importance of different
features, which can be directly leveraged to reduce the required
degradation data without significantly deteriorating the RUL
prediction accuracy. By applying random forest to an open-
source dataset in [31], it is first shown that the duration,
change in the charge, and voltage in the present charge and
discharge cycles are critical for RUL prediction. The feasibility
of RUL prediction under partial charge and discharge is then
examined, which reveals that satisfactory RUL prediction can
be achieved over a SOC range of [0.2, 0.8]. The effectiveness
of the proposed approach is verified by comparing it to the
CNN approach in [26]. Extensive validation on other open-
source datasets further demonstrates its effectiveness under
different temperatures, C rates, and cell chemistry.

The main contributions of this paper are given as follows.
• The importance of the RUL-related indicators in past

cycles, different battery measurements (e.g., time, cur-
rent, voltage, temperature, and internal resistance), and
different SOC ranges are revealed.

• A novel RUL predictor is proposed using summary
statistics from battery measurements and random forest
as the regression algorithm.

• The RUL prediction performance under various realistic
scenarios (e.g., different temperatures, C rates, cell chem-
istry, partial charge and discharge under uncertain SOC
information) is quantified.

The above contributions could greatly enhance the feasibility
of RUL prediction for applications with stringent operational
requirements. Without these requirements, it could still help
reduce data collection/storage efforts during the online appli-
cation, thereby benefiting the algorithm efficiency.

The remainder of this paper is organized as follows: Sec-
tion II introduces the adopted dataset with its processing
procedure and formulates the RUL prediction problem. The
random forest is then applied for RUL prediction with a com-
plete charge and discharge cycle in Section III, followed by
a feature importance analysis. In Section IV, RUL prediction
performance of the proposed random forest approach under
partial charge and discharge is studied. To verify the proposed
approach, it is first compared with the RUL prediction ap-
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proach in [26] in Section V, along with a sensitivity analysis
of the prediction performance under different SOC intervals.
Meanwhile, extensive validation on different temperatures, C
rates, and cell chemistry is also conducted in this section.
Finally, Section VI provides conclusions and future work.

II. BACKGROUND

In this section, the dataset employed for the subsequent
study is first presented. Then, the RUL definition is intro-
duced, followed by the illustration of data processing. Fi-
nally, the RUL prediction problem under limited degradation
data/history (of the target cell) is formulated.

For the model development and feature importance anal-
ysis purpose, we utilize the battery cell degradation dataset
in [31], which contains 124 commercial lithium iron phosphate
(LFP)/graphite cells manufactured by A123 Systems (model
APR18650M1A). This specific dataset is adopted due to
the following reasons. First, most cells are sufficiently aged
for studying RUL prediction in many real applications (e.g.,
reached 80% nominal capacity for an EV case study). Second,
it contains the degradation data of a sufficient number of
cells to ensure the statistical significance of the results and
demonstrate the robustness of the proposed approach, e.g.,
prediction performance under cell-to-cell variations.

In the dataset, the nominal capacity of the cell is 1.1 Ah,
and the low and high cutoff voltages are 2.0 V and 3.6 V,
respectively. To age the cells, the cells are cycled repeatedly
in a temperature-controlled chamber at a constant temperature
of 30 C. All cells were cycled with the same discharge profile,
a constant 4 C discharge to the low cutoff voltage with a
taper current of 1/50 C. The charge profile varies across cells.
Different multi-step fast charge profiles were adopted to charge
the cell from 0% to 80% SOC within 9 to 13.3 minutes. All
cells were then charged to 100% SOC at 1 C with a taper
current of 1/50 C. During each aging cycle (including a charge
and a discharge cycle), the cell surface temperature, current,
and terminal voltage were measured over time. In addition, one
internal resistance value was obtained for each aging cycle
by utilizing 10 pulses with an amplitude of ±3.6 C and a
pulse width of 30 to 33 ms conducted at 80% SOC during the
charging process. See [31] for more details.

Since the operating condition remains the same for each
cell in the adopted dataset, in this study, we consider the
RUL prediction problem for cells undergoing identical aging
cycles throughout their entire life. This problem is important
as many applications have nearly identical load profiles. One
aging cycle is then defined as a repetition of the operation/load
profile (e.g., one charge and discharge cycle in the adopted
dataset). For each aging cycle, we first define the SOH of a
cell as follows:

SOH =
Ca

Cn
, (1)

where Cn is the nominal capacity of a cell, and Ca is the
actual capacity of the cell at the present cycle, defined as the
maximum discharge capacity.

We assume a cell reaches its EOL when its SOH is reduced
to 0.8 (see Fig. 1), as is the general practice in the EV
industry [32]. We point out that the SOH value corresponding

to EOL can vary with the application (e.g., for second-life
batteries [33]). Let us denote the number of aging cycles to
reach EOL as NEOL. The RUL of a cell at the pth aging cycle
from the first cycle is then computed as

Np
RUL = NEOL −Np, (2)

where Np is the number of aging cycles accumulated from the
first cycle to the present cycle. A graphical illustration of the
RUL definition is also provided in Fig. 1.

Present cycle

End of life 
(EOL)

𝑁𝐸𝑂𝐿

𝑁𝑝
Remaining 

useful life 𝑁𝑝
𝑅𝑈𝐿

Fig. 1: Illustration of the RUL definition of a cell at its pth

aging cycle (the black line is the cell SOH trajectory over
cycles)

Based on the above definitions, the SOH trajectory and the
number of cycles to EOL of each cell in the dataset of [31] are
provided in Fig. 2. As shown in Fig. 2a, most cells undergo
first linear and then nonlinear aging stages [34]. In the latter
stage, the EOL is quickly approached as the cells begin to have
rapid degradation caused by lithium plating. In addition, the
cells exhibit different aging patterns, namely, the cycles where
the knee point appears can differ substantially [35]. Finally,
there is also a high variance in the cell cycle life ranging
from nearly 300 to 2000, as can be seen in Fig. 2b. The above
observations verify that the adopted dataset contains sufficient
cell-to-cell variations to well showcase the robustness of the
proposed approach.

To process the dataset for the RUL study, the RUL is
computed using (2) for each aging cycle. For each cell, there
are NEOL RUL prediction instances (i.e., from the first to
the last aging cycle) throughout its cycle life. In this study,
we will then tackle the RUL prediction for a battery cell
throughout its cycle life. Meanwhile, we aim at reducing the
required degradation data/history of the target cell for its RUL
prediction, thereby facilitating its application in real-world
applications.

III. RUL PREDICTION UNDER COMPLETE CHARGE &
DISCHARGE

In this section, the details of the available data (i.e., mea-
surements) of the target cell in each aging cycle are first
shown, followed by presenting the adopted summary statistics
to extract features from the available data for RUL prediction.
Next, the methodology of random forest for RUL prediction
and feature importance analysis is introduced. Finally, we
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(a) SOH trajectories of all cells (each color indicates one cell)

(b) Histogram of the cycles to reach EOL of all cells

Fig. 2: Degradation data for all cells that reach the EOL from
the dataset in [31]

examine the performance of random forest models using the
available data in the present aging cycle and discuss the
importance of different features in RUL prediction.

A. Degradation data and RUL features

In each aging cycle, the internal resistance (R), charge &
discharge time (tc & td), charge & discharge temperature
(Tc & Td), charge & discharge used capacity (Qc & Qd),
and charge & discharge voltage (Vc & Vd) are collected,
which may all contain RUL-related indicators. As is dis-
cussed in Section II, the internal resistance is a scalar value
for each cycle obtained during charging at 80% SOC. The
charge/discharge time counts from zero as the battery starts to
charge/discharge. The change in the charge (i.e., used capacity)
during charge & discharge is considered instead of current
since the used capacity contains important information to infer
the battery SOH (even under partial cycles) [36], [37]. The
time, temperature, change in the charge, and voltage sequences
during charge & discharge are illustrated in Fig. 3.

Considering that the data available for RUL prediction
contains scalars and vectors, one may concatenate all the
scalars and vectors as an augmented input vector to be fed
into the random forest model. However, this will result in
an excessively large computation overhead and huge input
size, making the key features less distinguishable. Instead, we
engineer features from the sequences in this study by adopting
the summary statistics, which can provide a powerful synthesis

(a) Charge data

(b) Discharge data

Fig. 3: Temperature, voltage, and change in the charge (i.e.,
used capacity) signals of one aging cycle from the dataset
in [31]

of distributions/time series [38]. Let us denote a real-valued
random variable (e.g., t, T,Q, and V ) as X . We consider the
following summary statistics:

• Mean (µ1): first central moment describing the central
tendency of the variable X;

• Minimum (
¯
µ0) & maximum (µ̄0): extreme values of the

variable X;
• Variance (µ2): second central moment describing the

statistical dispersion of the variable X;
• Skewness (µ3) & kurtosis (µ4): third and fourth central

moments describing the shape of the distribution of the
variable X , computed as

µi = E

[(
X − µ1√

µ2

)i
]
, for i = 3, 4, (3)

where E(·) is the expectation operator.
Based on the adopted summary statistics, (all or part of) the

features listed below will be the inputs to the random forest
models investigated in the subsequent sections:

• Internal resistance (R);
• Mean (µtj

1 ), max (µ̄tj
0 ), variance (µtj

2 ), skewness (µtj
3 ),

and kurtosis (µtj
4 ) of tj ;

• Mean (µVj

1 ), variance (µVj

2 ), skewness (µVj

3 ), and kurtosis
(µVj

4 ) of Vj ;
• Mean (µQj

1 ), max (µ̄Qj

0 ), variance (µQj

2 ), skewness (µQj

3 ),
and kurtosis (µQj

4 ) of Qj ;
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• Min (
¯
µ
Tj

0 ), max (µ̄Tj

0 ), mean (µTj

1 ), variance (µTj

2 ), skew-
ness (µTj

3 ), and kurtosis (µTj

4 ) of Tj ,

where j = c/d denotes the features from the data collected
in the charge/discharge cycle, respectively. The minimum time
and used capacity during charge & discharge are not included,
as they are always zero. The minimum and maximum terminal
voltages are also not included, as they are typically close to
the low- and high-cutoff voltage and provide limited useful
information.

B. Random forest technique

The random forest is an ensemble learning method built
upon a combination of decision trees. A single decision tree
easily overfits the training data while lacking generalizability
to the unseen data. Unlike decision trees, the random forest
synthesizes the outputs from a collection of decision trees
(e.g., by averaging or majority votes), thereby mitigating the
overfitting issue [39]. More importantly, random forest is a
well-known feature selector. As discussed in the introduction,
the inherent structure of the random forest (or decision tree)
permits good interpretability of the importance of the input
features to the model. This information can then be used to
assess the redundancy in the inputs and facilitate relaxing the
need for degradation data.

In this work, the random forest models are set to take in the
statistical features extracted from the battery operating data
(discussed in Section III-A) at the present cycle and output
the RUL at the present cycle. The random forest model is
developed in Scikit-learn [40]. The criterion to measure the
quality of a split is the mean squared error (i.e., variance
reduction), and 90% features are considered when looking for
the best split. The maximum depth of each decision tree is
9, and 50 trees are considered in the random forest model.
The above parameters were obtained by trial and error. The
permutation-based feature importance [41] is adopted, which
essentially measures the decrease in the prediction accuracy
after randomly shuffling the features. Note that, considering
that RUL prediction is a regression problem, impurity-based
importance is not chosen to avoid potential robustness issues
from high cardinality features.

The processed dataset for model development and evalu-
ation consists of the statistical features extracted following
the procedure presented in Section III-A and the RUL values
computed with (2). The data for 60% of the cells are randomly
selected for training. The data for 20% of the cells are
randomly picked for validation, and the rest is used for testing.
To remove performance biases caused by the dataset partition,
we use different cells to form the validation set (resulting
in five different dataset partitions) and select the partition
that achieves the average performance among the five as the
representative partition for the subsequent analysis (i.e., five-
fold cross-validation). To evaluate performance, we adopt the
following mean absolute error (MAE):

MAE =
1

Nt

Nt∑
n=1

∑NEOL,n

p=1 |N̂p
RUL,n − Ñp

RUL,n|
NEOL,n

, (4)

where Nt is the number of cells in the testing data, (·)n
denotes the variable of the nth cell, (̂·) denotes the prediction,
and (̃·) denotes the ground truth value. Since RUL prediction
concerns how many cycles a user can use the battery before
its EOL, the MAE can directly imply the prediction accuracy
in cycles.

C. Performance evaluation and feature importance analysis

We first examine the prediction performance and feature
importance by using all available information of one complete
present aging cycle. A random forest model is developed to
take in the R, tj , Tj , Qj , and Vj (j = c, d) features from
the complete present aging cycle and output the RUL of the
present cycle (i.e., model-a in Table I). The MAE of the RUL
predictions is 62 cycles over the cells in the testing data.
The RUL prediction and the absolute prediction error over
aging cycles for the cells are also shown in Fig. 4. It can
be seen that the random forest model can make reasonable
RUL predictions, e.g., the predicted RUL decreases in general
as the true RUL decreases. However, some information the
random forest model-a requires can be hard to obtain in real-
world applications (e.g., reliable temperature and resistance
information) [42]. Therefore, feature importance analysis is
performed with the random forest model-a to reveal the
necessity of these inputs. The top ten most important features
(among forty-one total features) are given in Fig. 5. The
following observations can be made from Fig. 5.

Observation 1: The variance of the used capacity during
discharge has the largest importance, indicating that the used
capacity during discharge contains the most important feature
for RUL prediction.

Observation 2: Among the top ten important features, the
number of features from discharge data is the same as that
from charge data, showing that both the charge and discharge
data are important for RUL prediction.

Observation 3: Internal resistance and cell temperature-
related features are ranked low in importance analysis. This
implies that, in a temperature-controlled operating environ-
ment, the variations in the cell temperature and internal
resistance may contain minimal RUL-related information.
Observation 1 is expected as the used capacity during dis-
charge is closely related to the cell capacity that defines
the EOL/RUL. Observation 2 is also reasonable since the
RUL is affected by both the charge and discharge conditions.
Observation 3 can be subject to the specific testing condition
of the adopted dataset, i.e., in a temperature-controlled aging
chamber. However, the ambient temperature will typically be
controlled to stay near a pre-defined thermal setpoint in real-
world applications for safe and efficient battery operations.
Meanwhile, a model with a different nominal temperature
can be developed and deployed in the case of a change
in the battery thermal control setpoint. Finally, considering
that thermal measurements usually contain high uncertainties,
leaving out thermal information can be a reasonable practice.
The internal resistance is correlated with the cell capacity [43].
However, its value can contain high uncertainties as the
resistance estimation is subject to both current and voltage
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Aging cycle (cycle)
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Fig. 4: RUL predictions, ground truth RUL values, and absolute RUL prediction error over aging cycles across the
cells in the testing data from [31] under complete charge & discharge (model-a in Table I using features from
tc, td, Vc, Vd, Qc, Qd, Tc, Td, R; each subplot contains the results for a different cell)

sensing noises, leading to a worse cell capacity estimate than
the used capacity. Consequently, including internal resistance
besides the used capacity may only gain marginal information.

Fig. 5: Top ten important features from feature importance
analysis of the random forest model-a in Table I

The relationships between the RUL, the variance of used
capacity during discharge µQd

2 , the skewness of charge time
µtc
3 , the maximum used capacity during discharge µ̄Qd

0 , and the
internal resistance R are provided in Fig. 6 to further clarify
the feature importance observed in Fig. 5. According to the
correlation between RUL and extracted features in Fig. 6, cells
in the dataset can be roughly categorized into three clusters,
corresponding to the cells plotted in dark, medium, and light
brown colors. While having a similar nonlinear relationship
with RUL, the variance of used capacity during discharge
(in Fig. 6a) has the most consistent relationship across the
cells in each cluster compared to the maximum used capacity

during discharge (in Fig. 6c) and the internal resistance (in
Fig. 6d). Consequently, the variance of used capacity during
discharge has a higher feature importance than the maximum
used capacity during discharge and internal resistance. The
skewness of charge time also has a high feature importance.
This is because it has a different nonlinear relationship with
RUL that could facilitate better differentiation of three clusters,
as shown in Fig. 6b. The effectiveness of the skewness of
charge time for distinguishing the three clusters might be due
to the impact of the charge policies, which differs in the
adopted dataset.

(a) (b)

(c) (d)

Fig. 6: Correlation between the RUL and selected features. (a)
the variance of used capacity during discharge vs. RUL. (b)
the skewness of charge time vs. RUL. (c) the maximum used
capacity during discharge vs. RUL. (d) the internal resistance
vs. RUL. Each color indicates one cell.

Based on the feature importance analysis, we consider three
additional scenarios where only current and voltage sensors
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TABLE I: Comparison of the inputs and RUL prediction performance of different random forest models (model inputs are in
the summary statistics format as discussed in Section III-A; the model-b and the model-f both are reported twice in the table
for easier comparison purposes)

Part A Part B Part C

a b c d b e f g h f i j k l m

Model

Inputs

Present

charge

cycle

Duration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Used capacity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Voltage ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Temperature ✓

Resistance ✓

Present

discharge

cycle

Duration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Used capacity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Voltage ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Temperature ✓

Resistance ✓

SOC

Range

SOCinit 0 0 0 0 0 0.1 0.2 0.3 0.4 0.2 0.2 0.2 0.2 0.2 0.2

SOCend 1 1 1 1 1 0.9 0.8 0.7 0.6 0.8 0.8 0.8 0.8 0.8 0.8

SOCinit uncertainty 0 0 0 0 0 0 0 0 0 0 1
300

1
100

2
100

1
300

1
300

SOCend uncertainty 0 0 0 0 0 0 0 0 0 0 1
300

1
100

2
100

1
100

2
100

RUL prediction

Mean Absolute Error (cycle)
62 62 74 95 62 64 67 71 85 67 68 74 84 70 74

are required (summarized in Part A of Table I): i) using
features from tc, td, Vc, Vd, Qc, and Qd (model-b); ii) using
features from tc, Vc, and Qc (model-c); iii) using features from
td, Vd, and Qd (model-d). The RUL prediction performance
of the above scenarios (i.e., by training and evaluating a
model for each scenario) is also summarized at the bottom
row of Table I. Consistent with Observation 3, the prediction
accuracy is barely affected by removing the temperature and
internal resistance-related features. However, the performance
considerably deteriorates if only the charge or discharge data
is utilized. A larger prediction error occurs when the charge
data has been left out of the RUL prediction, matching with
Observation 2 and the discussion based on Fig. 6. According
to the performance in Part A of Table I, we then consider
only using the features from tc, td, Vc, Vd, Qc, and Qd (i.e.,
voltage and current sensors) in the subsequent development
and analysis.

IV. RUL PREDICTION UNDER PARTIAL CHARGE &
DISCHARGE

This section investigates the RUL prediction under partial
charge and discharge conditions. First, the prediction perfor-
mance under different partial charge and discharge ranges with

perfect knowledge of SOC is presented. Then, the effect of
uncertainties in the SOC information on the RUL prediction
performance is studied.

A. Partial charge & discharge with accurate SOC information

The analysis in Section III shows that RUL prediction
may be achieved with the charge and discharge data of a
complete aging cycle. However, completely discharging or
fully charging a cell seldom happens in many applications
(e.g., EV applications) due to safety considerations or user
patterns. Therefore, RUL prediction under partial charge and
discharge conditions must be studied for an approach feasible
in realistic conditions.

Although a few battery degradation datasets collected under
partial charge and discharge are publicly available, these
datasets only contain a limited number of cells, and the cells in
the dataset may not be sufficiently aged (e.g., to 80% nominal
capacity). Therefore, in this study, we create partial charge
and discharge datasets truncated from the complete charge and
discharge cycle data presented in Section II. In particular, tj ,
Qj , and Vj profiles (j = c, d) will be truncated based on the
selected initial and end SOC values denoted as SOCini and
SOCend, respectively. After the truncation, tc and Qc will be
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indexed from zero when cell SOC reaches SOCini, and td
and Qd will be indexed from zero when cell SOC reaches
SOCend. See Fig. 7 for an illustration of the data truncation.

0

𝑄!"#$/𝑡!"#$
Used capacity/time during charge

𝑆𝑂𝐶%&' 𝑆𝑂𝐶(&(

𝑄'"#$/𝑡'"#$

𝑆𝑂𝐶(&( 𝑆𝑂𝐶%&'

0

Used capacity/time during discharge

Fig. 7: Partial charge and discharge curves

Following the above truncation procedure, we consider the
scenario where the initial and end SOC values are the same
for all cells across different cycles. This corresponds to a
scenario where the RUL prediction will be activated once
the cell operates within a designated SOC range, complet-
ing a specified charge and discharge protocol, and accurate
knowledge of the SOC is available. Five different designated
SOC ranges are considered (summarized in Part B of Table I):
i) SOC ∈ [0, 1] (model-b, reused from Part A), ii) SOC
∈ [0.1, 0.9] (model-e), iii) SOC ∈ [0.2, 0.8] (model-f), iv) SOC
∈ [0.3, 0.7] (model-g), and v) SOC ∈ [0.4, 0.6] (model-h).
The random forest is applied to the dataset created under each
designated SOC range (to develop a model and evaluate it),
and the performance is summarized in the last row of Part B in
Table I. The RUL prediction performance will degrade as the
SOC range decreases since less information will be available.
However, it is noteworthy that when the SOC range is reduced
to [0.2, 0.8], which is the typical operating range for EVs, the
RUL prediction performance is only reduced by 5 cycles in
MAE compared to the performance achieved with complete
charge and discharge cycles.

B. Partial charge & discharge with uncertain SOC informa-
tion

Considering that the SOC can not be directly measured
using sensors during battery operation, SOC typically has
to be estimated for onboard applications. Consequently, the
SOC information will inevitably contain uncertainties. To in-
vestigate the prediction performance under realistic scenarios,
we focus on the RUL prediction using data collected over
the SOC range of [0.2, 0.8]. Meanwhile, to account for the
uncertainty in SOC, we perform data truncation with the actual
initial (SOCa

ini) and end SOC (SOCa
end) values sampled from

N (0.2, σ2
ini) and N (0.8, σ2

end) respectively, where N (µ, σ2)
denotes a normal distribution with mean µ and standard
deviation σ.

Based on the SOC estimation accuracy reported in [44],
[45], we first examine the RUL prediction performance when

σini = σend and the standard deviation values are 0.00333,
0.01, or 0.02. According to the three-sigma limits, these four
standard deviation setups represent the scenarios when the
maximum SOC estimation error is about 1%, 3%, or 6%,
respectively. The MAE is listed in Part C of Table I along
with the model setup. It can be seen that when the standard
deviation is above 0.01, the RUL prediction error increases
significantly. Considering that the SOC estimation error can
be up to 5%, the proposed approach may have compromised
performance in real-world applications.

Although the maximum SOC estimation error can be up to
5%, it mostly happens in the region where the open-circuit
voltage (OCV) and SOC relationship is nearly flat (i.e., the
OCV-SOC slope is close to zero). For LFP cells, the OCV-
SOC plateau includes the region where SOC is near 0.8 but
may not include the region where SOC is near 0.2 [46].
Therefore, the SOC estimation error at SOC near 0.2 can
be overestimated above. We then further examine the RUL
prediction performance when σini = 0.00333, and σend can
be 0.01 or 0.02. From Part C in Table I, we see that the RUL
prediction performance is minimally affected by the increase
in uncertainty in SOCa

end, indicating that the RUL-related
features located near SOC = 0.2 are important. The RUL
prediction performance on different cells in the testing data
with σini = 0.00333 and σend = 0.02 (i.e., model-m) is
also provided in Fig. 8, which shows that the RUL prediction
accuracy can improve as the cell approaches its EOL.

V. PERFORMANCE EVALUATION

In this section, we first compare the proposed approach
with a CNN-based RUL prediction approach to demonstrate
its effectiveness. Then, sensitivity analysis is performed to
understand the contribution of information from different SOC
intervals to RUL prediction. Finally, extensive validation on
different temperatures, C rates, and cell chemistry is conducted
with another open-source dataset.

A. Comparison to a CNN-based approach

The performance of a CNN-based approach that directly
uses four aging cycles (i.e., no extraction of statistical features)
under complete charge and discharge, including tj , Vj , Ij , and
Tj (j = c, d), presented in [26] is adopted for the comparison.
We compare it with the performance of the random forest
models using tj , Qj , and Vj (j = c, d) under the following
settings:

1) One aging cycle under complete charge and discharge,
i.e., model-b in Table I;

2) One aging cycle under SOC ∈ [0.2, 0.8] with σini =
σend = 0, i.e., model-f in Table I;

3) One aging cycle under SOC ∈ [0.2, 0.8] with σini =
0.00333, σend = 0.02, i.e., model-m in Table I.

The MAE is reported in Table II. When the data of complete
charge and discharge is available, less degradation data/history
of the target cell is required by the proposed approach, i.e., no
need for temperature measurements and only one aging cycle
data needed. Moreover, the proposed approach can achieve
better prediction accuracy, i.e., a 3 cycle improvement in
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Fig. 8: RUL predictions, ground truth RUL, and absolute RUL prediction error over aging cycles across the cells in the testing
data from [31] under SOC range of [0.2, 0.8] (model-m in Table I using features from tc, td, Vc, Vd, Qc, Qd; σini = 0.00333,
σend = 0.02; each subplot contains the results for a different cell)

TABLE II: RUL prediction performance comparison with the existing approach

MAE (cycle)

CNN: four full cycles [26]

(tc, td, Vc, Vd, Ic, Id, Tc, Td; SOC ∈ [0, 1], σini = 0, σend = 0)
65

Random forest (Model-b in Table I): one full cycle

(tc, td, Vc, Vd, Qc, Qd; SOC ∈ [0, 1], σini = 0, σend = 0)
62

Random forest (Model-f in Table I): partial cycle

(tc, td, Vc, Vd, Qc, Qd; SOC ∈ [0.2, 0.8], σini = 0, σend = 0)
67

Random forest (Model-m in Table I): partial cycle

(tc, td, Vc, Vd, Qc, Qd; SOC ∈ [0.2, 0.8], σini = 1/300, σend = 0.02)
74

MAE. This is primarily because the important signals are
identified from feature importance analysis, thereby avoiding
the overfitting issue during the model training and improving
the generalizability of the machine learning model. When
only partial charge and discharge are allowed, the proposed
approach can still provide RUL prediction in the presence of
uncertainties in SOC with merely a 9 cycle deterioration in
MAE compared to the CNN-based approach.

B. Importance of the features from different SOC intervals

The above studies mostly focus on the RUL prediction
performance under SOC ranges representing typical EV op-
erations. In real-world applications, users may want to design
specific protocols with different choices of the operating
SOC range to balance the RUL prediction accuracy and user

experience. To facilitate choosing the ideal SOC range, a
sensitivity analysis is performed based on the partial cycle
truncation procedure discussed in Section IV-A. Assuming
perfect knowledge of SOC, datasets containing the partial
cycle from SOC range of [SOCs, SOCs + 0.1] for SOCs =
0.1, 0.2, ..., 0.8 are created. By training random forest using
these datasets, the RUL prediction accuracy is summarized in
Table III, showing that the predictability of the data in different
SOC intervals varies, and the data in the SOC interval of
[0.1, 0.2] contains the richest information for RUL prediction.
This is the nonlinear region in the OCV-SOC curve, where the
slope of the OCV-SOC curve is larger for LFP cells, indicating
active lithium intercalation process [47]. Consequently, a good
detectability of battery internal states (e.g., SOC and SOH)
and degradation mode typically exists in this region [48],
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TABLE III: RUL prediction performance using the features from tc, td, Vc, Vd, Qc, Qd under different SOC intervals

SOC Range 0.0 - 1.0 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9

MAE (cycle) 62 69 72 78 86 88 91 89 89

TABLE IV: Extensive validation under the dataset in [49] (charge @ 0.5C and discharge @ 1C; cell nominal capacity 3.5 Ah)

Chemistry Temperature

MAE (cycle)

One full cycle: SOC ∈ [0, 1]

σini = 0, σend = 0

partial cycle: SOC ∈ [0.2, 0.8]

σini = 0, σend = 0

partial cycle: SOC ∈ [0.2, 0.8]

σini = 1/300, σend = 0.02

NCM 45 C 7 8 12

NCA
45 C 21 21 28

25 C 12 12 15

facilitating better RUL prediction accuracy.

C. Extensive validation under different temperatures, C rates,
and battery chemistry

To further demonstrate the robustness of the proposed
approach, we adopt the dataset provided in [49]. The dataset
contains 18650-type batteries of different chemistry (i.e., NCM
and NCA) tested under repeated aging cycles in a temperature-
controlled chamber at 25, 35, or 45 C. During cycling, the
charge and discharge C rates are the same for each cell but may
vary across cells (from 0.25 C to 4 C). To ensure a sufficient
number of cells with enough degradation (i.e., 80% of nominal
capacity) for the RUL prediction study, we consider data under
the following three scenarios, where the cell nominal capacity
is 3.5 Ah, and the charge and discharge rate are 0.5 and 1 C,
respectively:

1) NCM battery under 45 C ambient temperature with
cutoff voltage 2.5-4.2 V;

2) NCA battery under 45 C ambient temperature with
cutoff voltage 2.65-4.2 V;

3) NCA battery under 25 C ambient temperature with
cutoff voltage 2.65-4.2 V.

By training a random forest model and evaluating it in each
scenario, the RUL prediction performance under complete
or partial cycles is then reported in Table IV for the three
scenarios. It can be seen that satisfactory RUL prediction
performance can be achieved under realistic SOC operating
ranges regardless of the cell chemistry and ambient tempera-
ture. Meanwhile, since the C rate from this dataset differs from
the one used in Section V-A, the effectiveness of the proposed
approach under different C rates can also be demonstrated.
Fig. 9 illustrates the RUL prediction performance under partial
cycles with SOC uncertainties for the three scenarios, showing
that reasonable RUL predictions can be obtained at different
aging conditions of a cell.

VI. CONCLUSIONS AND FUTURE WORK

In this work, the random forest technique is adopted to
investigate the RUL prediction of lithium-ion battery cells. To
probe the least amount of data required for RUL prediction,
random forest models are developed using a fast-charging and
discharging dataset, and the importance of the input features is
quantitatively analyzed. The analysis reveals that the informa-
tion on duration, used capacity, and voltage collected under
both charge and discharge is required to ensure satisfactory
RUL prediction accuracy. To verify the effectiveness of the
proposed approach under realistic operations, the prediction
performance under partial charge and discharge is also studied
in the presence of uncertainties in the SOC. The prediction
results indicate that satisfactory performance can be achieved
with the RUL-related features in the SOC range of [0.2, 0.8].
Performance comparison with a CNN-based approach shows
that the proposed approach renders better accuracy and re-
quires less battery operating data. Extensive validation on other
datasets demonstrates the robustness of the proposed approach
under different cell chemistry, temperatures, and C rates.

In this study, instead of developing one model to handle
the RUL prediction under arbitrary ambient temperatures and
C rates, we propose to develop one random forest model
for each operating condition. This is primarily due to a
shortage in battery degradation data under a wide range of
ambient temperatures/C rates, which can be costly to obtain.
Therefore, in the future, we would like to explore leveraging
physics-based degradation models/other data-driven models to
augment the proposed approach for a unified model generic
for different ambient temperatures/C rates. Moreover, investi-
gating the RUL prediction of batteries in string/pack settings is
also of interest. In this case, the problem is more challenging as
it is subject to the impact of cell-to-cell variations and (likely
uneven) cooling conditions.
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Fig. 9: RUL prediction, ground truth RUL, and absolute RUL prediction error over aging cycles across the cells in the testing
data from [49] (models in Table IV using features from tc, td, Vc, Vd, Qc, Qd; σini = 0.00333, σend = 0.02; each subplot
contains the results for a different cell)
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