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Abstract— The thermal management system (TMS) in electric
vehicles (EVs) consumes a considerable amount of energy
for maintaining the battery and cabin temperatures within
the desired range. This energy consumption can significantly
impact the vehicle’s driving range. In this article, a model
predictive control (MPC) is applied to minimize the energy
consumption of the TMS while enforcing power and thermal
constraints. The MPC-based thermal management strategy
relies on a control-oriented model that captures the dynamics
of the powertrain and thermal subsystems of an EV, as well as
the coupling between these subsystems at different timescales.
The relatively slow dynamics of the thermal systems call for
a long prediction horizon to achieve the best performance.
However, large uncertainties associated with speed prediction
and preview information significantly impact the performance
and robustness. In this study, an extensive sensitivity analysis
is conducted to: 1) determine the key traffic and speed features
over a long prediction horizon with a significant influence on the
EV optimal performance and 2) study the impact of uncertainties
associated with predicting these key traffic and speed features
on EV performance in terms of energy efficiency and constraint
enforcement. The MPC-based thermal management strategy
is evaluated using real-world traffic data. To improve the
robustness of the algorithm in the presence of uncertainties,
a location-dependent constraint is proposed and integrated into
the MPC-based thermal management strategy. The simulation
results demonstrate that the location-dependent constraint
enhances the capacity to enforce the battery temperature
constraint, resulting in improved algorithmic robustness against
uncertainties in preview information.

Index Terms— Electrical vehicles (EVs), model predictive con-
trol (MPC), power and thermal management.
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NOMENCLATURE

A f Frontal area of the vehicle, (m2).
Cbat Battery capacity, (Wh).
Fa aerodynamic resistance force, (N ).
Fr Rolling resistance force, (N ).
Ibat Battery current, (A).
Jbat Energy consumption for battery cooling, (kJ).
Jcab Energy consumption for cabin cooling, (kJ).
Jtotal Energy consumption for thermal management, (kJ).
m Vehicle mass, (kg/s).
mbat Battery thermal mass, (g).
ṁbat Mass flow rate through the battery loop, (g/s).
ṁcab Mass flow rate through the cabin loop, (g/s).
ṁcab Mass flow rate through the cabin loop, (g/s).
ṁcom Mass flow rate through the combined loops, (g/s).
Pbat Battery power, (W).
Pthm Power consumed for thermal management, (W).
Q̇amb heat dissipated rate to the ambient, (W).
Q̇bat Battery cooling power, (W).
Q̇cab Cabin cooling power, (W).
Q̇cov heat transfer rate of air convection, (W).
Q̇gen Battery heat generation, (W).
Q̇met heat transfer rate of human metabolic, (W).
Q̇sun heat transfer rate of sun radiation, (W).
Q̇ven heat transfer rate of ventilation, (W).
Rbat Battery internal resistance, (�).
r Split ratio of the coolant, (−).
Tbat Battery temperature, (◦C).
Tcab Cabin temperature, (◦C).
Tcl Coolant temperature, (◦C).
Uoc Battery open circuit voltage, (V).
Tp Prediction horizon length, (sec).
Vveh Vehicle speed, (m/s).
ϵ Slack variable, (◦C).

ACRONYMS

CV Constraint Violation.
COP Coefficient of performance.
DP Dynamic programming.
EV Electric vehicle.
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HVAC Ventilation and air conditioning.
MPC Model predictive control.
NEDC New European driving cycle.
OHE Out heat exchanger.
PMP Pontryagin’s maximum principle.
TMS Thermal management system.
UDDS Urban Dynamometer Driving Schedule.

I. INTRODUCTION

ELECTRIC vehicles (EVs) have attracted intensive atten-
tion in recent years. While the development of new

battery technologies and favorable government policies has
extended light-duty vehicle electrification, there are still issues
impeding the customer acceptance of EVs. Among them,
driving range anxiety has been identified as a major concern
due to the relatively long time required for charging and the
lagging infrastructure for fast charging [1]. Considering the
significant impact thermal management has on both battery
efficiency and driver/passenger comfort, improving thermal
management for EVs is important, particularly in extreme
weather conditions.

The EV TMS includes heating/cooling, ventilation, and
air conditioning systems that maintain components onboard
in their desired and safe thermal states. Cabin and battery
temperature regulation are crucial for EVs, as the battery
is subject to performance degradation or lifespan reduction
when operating at extremely high or low temperatures, while
over/under heating and cooling of the cabin may impact
passengers’ comfort. On the other hand, many recent studies
have demonstrated the driving range reduction due to the use
of TMS systems [2], [3], [4], [5]. For example, the study
in [2] shows that the driving range reduction of Nissan Leaf
over NEDC can be up to 9% and 22% under cooling and
heating scenarios, respectively, due to the operation of the
TMS system. According to the test conducted at Argonne
National Laboratory, Lemont, IL, USA [6], the using of an
HVAC system can reduce the driving range up to 59%.

Many recent works have addressed thermal management
in EVs [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. Among those, various optimization-based approaches
have been developed to improve TMS efficiency and other
performance attribute. DP is exploited to find the global
optimal solution to the TMS [7], [8], [9]. In [7], DP was used
to optimize the operation of the HVAC system on a given trip,
and the improvement of cabin comfort with minimal impact
on energy consumption was demonstrated. DP was also used
in [8] to optimize the battery thermal management perfor-
mance. PMP was used in [10] and [11] to minimize energy
consumption while maintaining battery temperature within a
desired range. Moreover, convex/nonlinear programming was
used in [12], [13], [14], [15], [16], and [17] to enhance the
performance of the electric powertrain. For instance, in [12],
a framework combining high-level convex programming with
low-level mixed-integer optimization was developed to maxi-
mize the driving range of an electric race car. A relationship
between battery temperature and internal resistance was con-
sidered, and during the charging phases, a terminal condition
of battery temperature was imposed to avoid overheating.

Furthermore, a genetic algorithm was used in [18] for cabin
thermal management and achieved improved cabin comfort
and driving range. Despite the reported benefits, most of the
existing optimization-based approaches were conducted offline
while assuming the vehicle speed, and power/thermal loads
over the entire driving cycle are known a priori.

Extending existing offline optimization-based TMS to real-
time presents two main challenges. First, thermal systems
typically exhibit slow dynamics, necessitating a long-range
prediction horizon for optimal performance. However, this can
significantly increase the computational footprint, as demon-
strated in prior research [19], [20], [21], [22]. For example,
in [19], the prediction horizon of the MPC-based cabin thermal
management is 10 min. In [20], the simulation result shows
that increasing the prediction horizon from 30 sec to 180 sec
resulted in reduced energy consumption for battery cooling
and CV of battery temperature. However, when the prediction
horizon was extended to 180 sec, the average computational
time required to solve the optimization problem became unaf-
fordable for real-time implementation. Therefore, to achieve a
balanced solution between thermal management performance
and computational footprint, it is crucial to understand the
necessary window and key information of preview information
for effective TMS implementation.

The second challenge in extending optimization-based TMS
to real time is the uncertainty associated with the pre-
view information over long-range prediction horizons, which
can negatively impact optimal performance. To handle these
uncertainties, various stochastic or deterministic approaches
have been developed. For example, in [23], [24], and [25],
a stochastic MPC was developed for real-time battery thermal
management, which utilized a Markov chain representation of
future vehicle speed and acceleration inferred from data from
standard driving cycles. Although energy efficiency improve-
ments were observed compared with alternative frozen-in-time
predictions of vehicle speed and acceleration, the possible
scenario number increased exponentially with the prediction
horizon, leading to a large computational load. Therefore,
the prediction horizon length adopted in [23] was only 3s.
However, given the slow dynamics of thermal systems, longer
horizons could potentially offer more significant improve-
ments. In contrast, [21] developed a deterministic hierarchical
MPC with piloting and scheduling layers for robust battery
thermal management, assuming that the short piloting layer
had access to more accurate preview information. To improve
robustness, the constraints in the scheduling layer were tight-
ened once a deviation was detected between the planned and
tracked battery temperature over a short horizon. However,
this approach can only detect prediction errors in the short-
range horizon. Due to the slow dynamics of thermal systems,
there may not be enough leading time to completely prevent
CVs. A method that leverages long-term statistical information
to enhance the robustness of optimal TMS for EVs is absent
from the literature.

To handle the aforementioned two challenges, an MPC-
based TMS framework is developed in this article to handle
both battery and cabin temperatures by: 1) determining the
key traffic preview information required over the prediction
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horizon; 2) evaluating the impact of preview uncertainties on
the optimal TMS performance; and 3) further improving the
robustness of the MPC-based thermal management algorithm
in the presence of inevitable uncertainties associated with long-
term traffic/vehicle speed predictions.

The main contributions of this article are fourfold. First,
we investigate the sensitivity of the MPC results to different
prediction horizons and identify the necessary horizon length
for optimal performance. Second, we propose an adaptive
strategy to adjust the prediction horizon length based on
the prediction of key speed features and reduce the aver-
age computational footprint. Third, we study the impact of
uncertainty on MPC-based TMS performance in terms of
energy efficiency and thermal CVs. Finally, we demonstrate a
location-dependent constraint handling strategy that leverages
real-world historical data to balance the tradeoff between
energy efficiency and mitigating thermal CVs.

This article is organized as follows. The power and ther-
mal models of the electrical vehicle adopted in this article
are introduced in Section II. Section III presents the MPC
results with different prediction horizons and identifies the
key speed/traffic features. Then, the impact of uncertainties
in the speed predictions on the optimal TMS performance is
quantified in Section IV. Finally, in Section V, the developed
MPC-based thermal management strategy is evaluated using
real-world traffic data, and a location-dependent constraint
strategy handling is proposed to improve the robustness of
the algorithm against the uncertainties in speed preview.

II. POWERTRAIN AND THERMAL MODELS OF AN
ELECTRICAL VEHICLE

A. Vehicle Traction Power Model

The vehicle traction power (Ptrc) is determined by

Ptrc = Vveh(mV̇ veh + Fr + Fa) (1)

where Fr and Fa represent the rolling and aerodynamic
resistance force, respectively, which are calculated as follows:

Fr = Cr mg (2)

Fa = 0.5ρ A f Cd V 2
veh (3)

where Cr and Cd are the coefficient of rolling and aerodynamic
resistance, A f is the frontal area of the vehicle, and ρ is the
air density. The vehicle is assumed to be on a flat road and
the effects of road grade and wind are not considered. As the
proposed strategy in what follows is strongly based on vehicle
traction power preview, these additional dependencies can be
easily included in (2).

B. Integrated Thermal Management System

Fig. 1 depicts a schematic of the integrated TMS of an
EV, which consists of the refrigerant loop, as well as cabin
and battery cooling loops. The refrigerant absorbs heat from
the battery and cabin coolant, while the OHE dissipates the
absorbed heat to the ambient and provides cold coolant.
This assumption is based on the premise that the lower
level controller/actuators can effectively maintain the coolant

Fig. 1. Schematic of integrated TMS of an EV.

temperature and the coolant dynamics are negligible compared
with the battery and cabin thermal dynamics. Note that the
outlet coolant temperature (Tcl) of the refrigerant system is
assumed to be constant. The battery and cabin coolant is
circulated by an electric pump through the combined cabin
and battery loops. Its mass flow rate is denoted by ṁcom.
The coolant splits into battery and cabin cooling loops by
a three-way valve with a mass flow rate of ṁbat and ṁcab,
respectively. The coolant flow rates follow the mass conserva-
tive law

ṁcom = ṁbat + ṁcab (4)

ṁcab = rṁcom (5)

ṁbat = (1 − r)ṁcom (6)

where r is the split ratio of the coolant, which is controlled
by the three-way valve. The cold coolant provides the cooling
power to the battery (Q̇bat) and cabin (Q̇cab) through their heat
exchanges. The cooling power of each loop is determined by
the following equations:

Q̇bat = α(ṁbat)(Tbat − Tcl) (7)

Q̇cab = β(ṁcab)(Tcab − Tcl) (8)

where α and β are the heat exchange coefficients, which
increase as the coolant flow rate increases. Equations (7) and
(8) are based on Newton’s law of cooling, and the coefficients
of heat exchange are functions of coolant rate, which is
assumed to be linear in this study. The linear relationship
is used for simplicity, and we do not have enough data to
provide a more accurate relationship between cooling power
and coolant flow rate. On the other hand, the focus of this study
is to develop the optimal control framework, and the developed
framework can be easily extended with more accurate models.
The cabin and battery cooling power can be controlled by the
electric pump and three-way valve. The former adjusts ṁcom
and the latter changes r .

The power consumption of the TMS (Pthm) is calculated as
follows:

Pthm =
Q̇bat + Q̇cab

COP
(9)
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where COP is the coefficient of performance describing the
efficiency of the TMS, and Psys includes the power consumed
for the compressor and electric pump. The representation of
COP, as a function of the cooling power, is adopted from [26]
and corresponds to R-134a coolant. Based on this model COP
decreases as the total cooling power increases.

C. Battery Thermal Submodel

The battery current (Ibat) are represented using an equivalent
circuit model

Ibat =
Uoc −

√
U 2

oc − 4Rint Pbat

2Rint
(10)

where Rint and Uoc are internal resistance and open-circuit
voltage, respectively. The variable Pbat is the total power
demanded by the battery, including the power consumed for
vehicle traction (Ptrc) and by TMS (Pthm).

The battery heat generation is mainly attributed to the
internal resistance and is given by

Q̇gen = I 2
bat Rint. (11)

The battery is modeled as a lumped mass and the dynamic
of temperature, Tbat, are expressed as

Ṫ bat = fbat(t) =
1

mbatCbat
(Q̇gen + Q̇amb − Q̇bat) (12)

where mbat and Cbat are the thermal mass and specific heat
capacity of the battery, respectively, and Q̇amb is the rate of
the heat dissipated to the ambient by air convection, which
is proportional to the temperature difference between battery
and ambient.

D. Cabin Thermal Submodel

The cabin is also modeled as a lumped mass so that the
cabin temperature dynamics are expressed as

Ṫ cab = fcab(t)

=
1

mcabCcab
(Q̇sun + Q̇cov + Q̇ven + Q̇met − Q̇cab) (13)

where mcab and Ccab are the thermal mass and specific heat
capacity of the cabin, respectively. Q̇sun, Q̇cov, Q̇ven, and Q̇met
are the heat transfer rate of sun radiation, air convection, air
ventilation, and human metabolic activities, respectively. The
detailed formulation of each heat source term in (13) can be
found in [27].

III. MPC-BASED THERMAL MANAGEMENT OF AN EV

A. MPC Formulation for TMS

We consider EV operating with hot ambient temperatures
(38 ◦C). To reduce the energy consumption by TMS and
enforce the constraints on thermal states and control inputs,
our MPC approach is based on the following discrete-time

finite horizon optimal control problem

min
ṁcom(i),r(i)

t+N−1∑
i=t

{
(Q̇cab(i) + Q̇bat(i))/COP + a1ϵ

2
1 + a2ϵ

2
2

+ b11ṁcom(i) + b21r(i)
}

s.t. Tbat(i + 1) = Tbat(i) + fbat(i)1t

Tcab(i + 1) = Tcab(i) + fcab(i)1t

Q̇bat(i) = α(ṁbat(i))(Tbat(i) − Tcl,out)

Q̇cab(i) = β(ṁcab(i))(Tcab(i) − Tcl,out)

24 ◦C ≤ Tcab(i) ≤ 25 ◦C + ϵ1

15 ◦C ≤ Tbat(i) ≤ 35 ◦C + ϵ2

0 ≤ ṁcom(i) ≤ ṁmax

0 ≤ r(i) ≤ 1
0 ≤ ϵ1,2(i) ≤ 5 ◦C
1ṁcom,min ≤ 1ṁcom(i) ≤ 1ṁcom,max

1rmin ≤ 1r(i) ≤ 1rmax (14)

where fbat and fcab are defined in (12) and (13), respectively.
1t is the sampling time, and Tp = N1t is the prediction
horizon length. The cost function in (14) consists of three
terms: 1) the power consumption for cabin and battery cooling;
2) penalty on slack variables, ϵ1 and ϵ2, which relax Tcab and
Tbat upper bounds; and 3) penalty terms for the rate of change
of control variables, ṁcom and r . Note that the optimization
problem (14) is nonlinear mainly because of (10) and (11).

Remark 1: The rate of change of flow (1ṁcom) and the split
(1r ) are constrained and penalized in (14) because the rapid
change of cabin cooling power could be perceived unfavorably
to passengers’ comfort.

Remark 2: The lower and upper bounds on Tcab are set
as 24 ◦C and 25 ◦C, respectively, assuming that the cabin
temperature setpoint is set to 24.5 ◦C with an allowable
deviation of 0.5 ◦C. The desired operating temperature range
for the battery is from 15 ◦C to 35 ◦C, consistent with [28].
The upper bounds of both cabin and battery temperature are
treated as soft constraints, using the slack variables, ϵ1 and ϵ2,
in the cost function. The maximum values of ϵ1 and ϵ2 are
both 5 ◦C.

Remark 3: The parameters in the cost function of (14)
are selected based on the following considerations. First, the
penalty weights b1 and b2 are set large enough (b1 = b2 =

5 · 104) to make sure there are no significant oscillations of
the ṁcom and r . Second, a1 and a2 determine the strictness of
the upper bound constraints of battery and cabin temperature.
In this study, we prioritize the cabin temperature constraints,
and therefore, a1 = 106 and a2 = 104, to reliably maintain
cabin temperature within the desired range over the entire trip.

Note that the upper limits of cabin and battery temperature
are soft and slack variables have been added to avoid the infea-
sibility of optimization problems. The MPC feedback law is
informed by the first element of the optimal control sequence.
The subsequent simulations are performed on a desktop com-
puter with an Intel i7-10750H @ 2.60-GHz processor. The
optimization problem (14) is solved using MPCTools [29] in
MATLAB. It uses the Interior Point OPTimizer (IPOPT) [30]
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Fig. 2. Energy consumption for battery cooling (Jbat) and average compu-
tational time results of Case II with different sampling times.

from CasADi package [31] for solving the nonlinear program-
ming problem. In the simulations, the initial cabin temperature
is chosen as 25 ◦C and the initial battery temperature as 34 ◦C.
Note that these initial values fall within the ranges allowed by
the constraints, and the cool-down phase is not considered in
this study.

B. Impact of Prediction Horizon Length on MPC-Based TMS
Performance

The relatively slow dynamics of thermal systems call for
a long prediction horizon for MPC to achieve the best per-
formance [21]. In this study, to investigate the impact of
the prediction horizon length on energy consumption and
constraint enforcement, two cases with different prediction
horizon lengths are defined as follows.

1) Case I: Prediction horizon length (Tp) is 50 sec, and
Tbat,max = 35 ◦C.

2) Case II: Prediction horizon length (Tp) is 200 sec, and
Tbat,max = 35 ◦C.

Note that in this section, it is assumed that accurate vehi-
cle speed information over the prediction horizon is known
a priori, regardless of the length of the prediction horizon.
This assumption will be relaxed in the later sections when
investigating the impact of uncertainties.

Remark 4: For both two cases, the sampling time, 1t ,
in (14) is chosen to be 5 sec. A sensitivity analysis on the
sampling time was conducted, and the simulation results of
Case II with different sampling times are presented in Fig. 2.
The value of 5 sec is chosen as it provides the best tradeoff
between energy efficiency and computational footprint.

The simulated driving cycle combines the Environmental
Protection Agency (EPA) UDDS with Highway Fuel Economy
Test Cycle (HWFET), which includes both city and highway
driving scenarios. Fig. 3 summarizes the simulation results.
As one can see, over the entire trip, Tcab can be maintained
in the comfort range for both Cases I and II, while multiple
violations of Tbat can be observed for Case I when the
prediction horizon is 50 sec. As highlighted in Fig. 3, such
violations happen when a large current is generated as the
vehicle is undergoing aggressive acceleration or deceleration
maneuvers. This CV, if occurs often enough, may negatively
impact the battery state-of-health and longevity [28]. It can be
also seen from Fig. 3(e) that ṁcom approaches its limit over

TABLE I
ENERGY CONSUMPTION AND COMPUTATIONAL TIME RESULTS FOR

CASES I, I∗ , II, AND III. Jbat AND Jcab ARE THE ENERGY CONSUMP-
TION FOR THE BATTERY AND CABIN TMS. Jtotal IS THE TOTAL

ENERGY CONSUMPTION FOR TMS

the highlighted time periods for Case I. For Case II with a
long prediction horizon (200 sec), MPC has more awareness
of the large traction power in the near future, and thus, the
controller cools down Tbat in advance to prevent the CV.

Intuitively, one simple approach to enforce the Tbat con-
straint in Case I is to tighten the upper bound of the soft
constraint, Tbat,max, based on which a modified version of
Case I, Case I∗ is defined as follows.

1) Case I∗: Prediction horizon length (Tp) is 50 sec, and
Tbat,max = 33 ◦C.

Note that Tbat,max is reduced by 2 ◦C in Case I∗ according to
the maximum CV observed in Fig. 3(d), while no constraint
tightening is applied to Case II. Fig. 4 presents the simulation
results of Case I∗. It can be observed that by tightening the
upper bound of the soft constraint, Tbat constraint can be
successfully enforced over the entire trip for Case I∗. However,
the conservative approach leads to extra energy consumption
for the TMS, as shown in Table I. It can be seen that compared
with Case I, Case I∗ consumes 9.4% and 1.1% more energy for
battery (Jbat) and cabin (Jcab) cooling, respectively. Moreover,
Case II achieves the best energy efficiency among all three
cases with good enforcement of thermal constraints over the
entire trip, thanks to the long-range prediction horizon. The
above-mentioned analyses demonstrate that for the MPC-based
thermal management for an EV, a longer prediction horizon
allows a less conservative strategy to enforce the thermal
constraints while providing better energy efficiency for this
use case.

C. Key Features in the Speed Preview

It can be seen from Fig. 3(d) that the optimal Tbat
trajectories are considerably different for different prediction
horizons only when there is a large change in traction power.
If there is no such event, e.g., from t = 500 to 1500 sec,
Case I and II exhibit similar results for Tbat, and extending
the prediction horizon does not improve energy efficiency
and constraint enforcement. This case study identifies the
large traction power associated with aggressive acceleration
and deceleration maneuvers as one of the key events that
significantly impact performance, and therefore, should be
captured in the speed preview.

Fig. 5 demonstrates a key event caused by large traction
power. The heat generation is calculated using (1), (10), and
(11), while the maximum battery cooling power (Q̇bat,max) is
calculated based on (8) and (9). It is important to note that due
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Fig. 3. MPC results with different prediction horizons based on Cases I and II. (a) Vehicle speed profile. (b) Traction power profile. (c) Cabin temperature.
(d) Battery temperature. (e) Normalized coolant flow rate. (f) Coolant split ratio.

Fig. 4. MPC results with different prediction horizons based on Cases I∗ and II. (a) Vehicle speed profile. (b) Traction power profile. (c) Cabin temperature.
(d) Battery temperature. (e) Normalized coolant flow rate. (f) Coolant split ratio.

Fig. 5. Identify the key event over the prediction horizon based on the heat
generation profile.

to the coupling of the cabin and battery cooling system, the
Q̇bat,max is also determined by the cabin cooling power (Q̇cab).
For this study, the cabin thermal management is prioritized,
and Q̇cab is set to ensure the cabin temperature remains within
the desired range throughout the trip. As shown in Fig. 5, there
are time periods where the battery heat generation exceeds

the maximum battery cooling power (Q̇bat,max), leading to the
violation of the battery temperature constraint. To avoid this
violation, battery precooling is necessary, which requires the
controller to detect events in advance. Additionally, the total
delivered cooling power must be greater than the generated
heat, as described by the following inequality equation:

t+N−1∑
i=t

Q̇bat,max(i)1t ≥

t+N−1∑
i=t

Hgen(i)1t (15)

where Hgen denotes the battery’s heat generation rate. Note that
the prediction horizon length is given by N1t = Tp, where
N is the number of time steps, 1t is the sampling time, and
Tp is the length of the horizon. If the inequality given by (15)
cannot be satisfied over a short-range horizon, for instance,
when Tp = 50 sec, it indicates that the prediction horizon
is insufficient for precooling the battery. Thus, we define the
event of high traction power when the inequality in (15) cannot
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Fig. 6. Concept of Case III. (a) When the key “event” of large traction
power is not detected over the prediction horizon, a short horizon is adopted
for MPC. (b) When the key “event” is detected within the prediction horizon,
a long optimization horizon is adopted.

be satisfied over a short-range horizon, and a longer range
horizon is required to prevent CV.

To capture the significant events over the long predic-
tion horizon without being overburdened with computation,
we propose the concept of adaptive optimization horizon,
as presented in Fig. 6. A long prediction horizon is applied
to cover the key speed events, and if such event is not
detected over the prediction horizon, as shown in Fig. 6(a),
a short-range optimization horizon is applied to the MPC
problem (14). Whereas, if the key “event” is predicted to occur
within the prediction horizon, as shown in Fig. 6(b), a long
optimization horizon is applied to (14). To demonstrate the
impact of the adaptive prediction horizon, a new case study
(Case III) with adaptive prediction horizon length is considered
as follows.

1) Case III: Adaptive optimization horizon length, and
Tbat,max = 35 ◦C.

In this study, the long and short prediction horizon lengths
are set as 200 and 50 sec, respectively. The simulation results
of Case III are presented in Fig. 7. Table I summarizes the
energy consumption and computational time result of different
cases. It can be seen that Cases II and III provide a similar
trajectory of Tbat and energy consumption, which confirms that
the long-range optimization horizon is only needed when the
key events occur over the prediction horizon. Moreover, com-
pared with Case II, Case III reduces the average computational
time without compromising performance, which is important
as other functions can be run in a shared processor due to
reduced average computation time and the reduction in power
consumption. Note that although the average computational
time is reduced, for practical implementation, the computa-
tional time of the worst case has not been reduced by the
proposed strategy.

IV. ROBUSTNESS OF MPC-BASED THERMAL
MANAGEMENT AGAINST UNCERTAINTIES IN VEHICLE

SPEED PREVIEW

For the analysis in Section III, an accurate speed pre-
view over the prediction horizon is assumed, which is not

Fig. 7. MPC results of Cases I∗, II, and III. (a) Vehicle speed profile.
(b) Battery temperature.

Fig. 8. Concept of two types of uncertainties. (a) Event magnitude
(traction power) is overestimated or underestimated. (b) Event timing is shifted
backward and forward.

realistic, particularly when the prediction horizon is relatively
long. In this section, we evaluate the robustness of the
MPC-based TMS performance against the errors in forecasting
the speed-related key events. Focusing on the impactful period
of high traction power, we consider two different types of
uncertainties, as shown in Fig. 8. Namely, the over- and
under-estimation of the magnitude [Fig. 8(a)] and the wrong
prediction of the timing [Fig. 8(b)]. As vehicle acceleration
occurs after a stop, difficulties in estimating the stop time will
lead to errors in predicting the time of acceleration. While
both types of uncertainties are unavoidable in real applications,
we consider them separately in this study.

To study the impact of the first type of uncertainty, three
cases are defined as follows.

1) Case A: The preview information is accurate.
2) Case B: The traction power during the event period is

30% overestimated.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 23,2023 at 01:20:12 UTC from IEEE Xplore.  Restrictions apply. 



2126 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 5, SEPTEMBER 2023

Fig. 9. MPC-based thermal management results for Cases A–C. (a) Actual
and predicted traction power. (b) Battery temperature. (c) Battery cooling
power.

3) Case C: The traction power during the event period is
30% underestimated.

For all three cases, the prediction horizon is set to 200 sec.
The simulation results are presented in Fig. 9. With accurate
preview information, Tbat constraint of Case A is enforced
by precooling the battery before the upcoming aggressive
acceleration event. Compared with Case A, in Case B, Tbat
magnitude decreases to a lower value because the traction
power is overestimated, and accordingly, more internal heat is
predicted to be generated during the event period. Conversely,
due to the underestimation of the traction power, in Case
C, TMS does not provide enough precooling for Tcab, which
results in the CV after the event. The energy consumption for
battery cooling (Jbat) and accumulated CV with different levels
of uncertainties are summarized in Fig. 10. Note that negative
uncertainty values reflect the underestimation of the traction
power while positive values reflect over-estimation. It can be
seen that Case A achieves the best energy efficiency while
enforcing the constraints with accurate preview information.
When the traction power is overestimated, although no CV
occurs, the energy consumption for battery cooling increases
as the uncertainty increases. This is because of the extra
thermal load imposed by the TMS on the battery to decrease
Tcab to a lower value in the precooling phase, as shown in
Fig. 9(c). On the other hand, when the traction power is under-
estimated, both energy consumption and the accumulated CV
increase as the uncertainty increases. As shown in Fig. 9(c),
because Case C does not provide enough precooling when
Tbat exceeds Tbat,max, a larger Q̇bat is required to prevent a
prolonged period of time with CV, which as discussed earlier,

Fig. 10. Summary of the results with different levels of uncertainties in
traction power magnitude estimation. (a) Energy consumed for battery cooling
(Jbat). (b) Accumulated battery temperature CV.

reduces the efficiency (COP) of the TMS and leads to extra
energy consumption.

To study the impact of the second type of uncertainty, the
following three cases are considered.

1) Case a: The preview information is accurate.
2) Case b: Event timing is predicted to be 30 sec later than

the actual time.
3) Case c: Event timing is predicted to be 30 sec earlier

than the actual time.
The simulation results are shown in Fig. 11. It can be seen

that for Case b, the controller decreases Tbat with a delay and
does not provide enough precooling, which results in battery
temperature CV. On the other hand, for Case c, Tbat is first
decreased and then maintained at a lower value until the high
traction power event occurs. Moreover, no CV is observed for
Case c as Case c involves the same level of precooling as Case
a with accurate preview information. The energy consumption
and the accumulated temperature CV with different levels
of uncertainties in event timing are summarized in Fig. 12.
The negative cases represent the scenarios when the event is
predicted to be earlier than the actual high traction power
event, and the positive ones are those predicted to be later
than the actual event. Similar to the trend shown in Fig. 10,
the energy consumption increases as the uncertainty increases
in either direction, and CV occurs only when the event is
predicted to be later than the actual high traction power event.

Thus, the accuracy of predicting the high traction power
event can significantly affect the optimal performance of MPC-
based TMS. The errors in estimating the event timing and
magnitude can reduce the energy efficiency of the TMS by
performing over-cooling or under-cooling prior to the event.
Moreover, the failure of providing enough precooling could
increase CV.

V. EVALUATION OF MPC-BASED TMS PERFORMANCE
USING REAL-WORLD TRAFFIC DATA

The benefits of the MPC-based thermal management for
EVs were studied in Section III under the assumption that
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Fig. 11. MPC-based thermal management results, for Cases a–c. (a) Actual
and predicted traction power. (b) Battery temperature. (c) Battery cooling
power.

Fig. 12. Summary of the results with different levels of uncertainties in
predicting the high traction power event timing. (a) Energy consumption for
battery cooling (Jbat). (b) Accumulated CV.

the speed preview is available. The impact of uncertainties on
the TMS performance was investigated in Section IV, demon-
strating that the errors in predicting high traction power events
will diminish the benefits of the predictive approach for TMS.
In this section, the MPC performance is further evaluated using
real-world traffic data. Based on insights gained in Section IV
and in this section, a strategy to enhance the robustness of the
MPC-based thermal management algorithm is presented.

A. MPC Results Based on Real-World Traffic Data

In this section, we apply the MPC-based thermal manage-
ment strategy to the commuting driving cycle data collected
from a test vehicle, which was following the same route
between campus and home during commuting hours. The trips
follow the exact same route with the same start and end
points. Fig. 13 presents the simulation results of three different

sample trips randomly selected from the database for the same
vehicle. Note that even though we assume accurate preview
information over the prediction horizon, Case I, with a shorter
prediction horizon, fails to enforce the Tbat constraint for all
sample trips. The Tbat CVs happen at different times during
the trip for different sample trips, and the severity of CVs also
differs. The above-mentioned observations demonstrate that
even for the repeated commuting cycle data, the aggressive
acceleration events have large variations in their temporal
distribution, as well as in their magnitudes from one trip to
another. On the other hand, although Case II enforces the
constraint over the entire trip for these three trips, it requires
accurate preview information over a long prediction horizon,
which may not be available in reality. Therefore, it is important
to understand the impact of uncertainties associated with such
real-world traffic data and improve the robustness of the
MPC-based thermal management algorithm accordingly.

B. Long-Range Vehicle Speed Prediction for Implementation
in MPC-Based TMS

To relax the initial assumption that the vehicle speed
preview is accurate, we use vehicle speed data collected
from a vehicle driving an urban route. Besides, a data-driven
speed prediction framework is adopted to provide long-range
speed prediction based on spatial-domain commute data. This
data-driven speed prediction strategy explores the patterns in
vehicle speed for recurrent trips in the spatial domain to inform
speed predictions by providing an average long-range estimate
of the vehicle speed.

Remark 5: In this work, we focus on commercial vehicles
(e.g., delivery trucks and transit vans) that typically run fixed
routes. For those vehicles, the assumptions about the known
routes and the availability of historical speed data can be
justified. The data used for speed prediction are collected
from the same test vehicle, for which three sample trips are
shown in Fig. 13. The test vehicle follows the same commuting
route on workdays, allowing our analysis in Section V to
assume prior knowledge of the vehicle’s route. The primary
source of uncertainty in our analysis is the variation in vehicle
speed over the same route. More details of the data and the
data-driven speed prediction approach can be found in our
previous work [32].

The aggregated vehicle speed data from around 20 trips
are plotted in Fig. 14 in both the time and spatial domains.
It can be observed that vehicle speed has a large variability
in the time domain [Fig. 14(a)], due to the offset caused by
different pass/stop events and different traffic signal timing and
phasing at intersections. In contrast, the variability of the same
data in the spatial domain is much smaller, suggesting a more
deterministic relationship between the average vehicle speed
and locations along the trip. The average vehicle speed shown
in Fig. 14(b) is leveraged to provide preview information over
the long horizon.

Because the MPC is solved in the time domain, the spatial
vehicle speed prediction needs to be converted to the time
domain by numerically integrating the following differential
equation:

dv

dt
= v

dv

ds
. (16)
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Fig. 13. MPC-based thermal management results over three sample trips from the same test vehicle driving the same route.

Fig. 14. Aggregated vehicle speed profiles collected from a test vehicle
repeating a specific trip on an urban road: (a) in the time domain and (b) the
spatial domain with the average vehicle speed of the test vehicle.

As shown in Fig. 14, while the average speed preview
captures the main trends and the location of high traction
power events, it is subject to uncertainties. To investigate the
impact of these uncertainties associated with real-world traffic
data, three cases are considered as follows.

1) Case 1: The preview information is accurate and the
prediction horizon length is 50 sec; Tbat,max = 30 ◦C
over the entire trip.

2) Case 2: The preview information is accurate and the
prediction horizon length is 200 sec; Tbat,max = 35 ◦C
over the entire trip.

3) Case 3: The preview information is based on the average
speed shown in Fig. 14 and is subject to uncertainties.

The prediction horizon length is 200 sec; Tbat,max =

35 ◦C over the entire trip.
Similar to Case I∗ discussed in Section III-B, with a short
prediction horizon, Case 1 has a tightened Tbat,max as compared
with Cases 2 and 3 to prevent CV. In this case, Tbat,max is
tightened by 5 ◦C based on the maximum Tbat CV observed.
Since a long prediction horizon is used in Case 2 and the
preview information is assumed to be accurate, there is no
need to adjust the upper bounds. For Case 3, we set Tbat,max =

35 ◦C. The state trajectories in three cases based on one
sample trip from the commute data are presented in Fig. 15,
and the energy consumption and accumulated CV results are
summarized in Fig. 16.

It can be seen from Fig. 16 that in both Case 1 and
Case 2, Tbat constraint is successfully enforced over the entire
trip. However, to achieve this goal, compared with Case 2,
Case 1 consumes 30.1% more energy for battery cooling
due to a tightened constraint. Case 1 confirms that a short
prediction horizon leads to a less energy efficient and more
conservative TMS performance. On the other hand, while the
long-range prediction horizon is applied to Case 3, Tbat CV still
happens. This is because of the uncertainty associated with the
long-range speed preview. As presented in Fig. 14(b), while
the average speed inferred in the spatial domain provides an
identifiable pattern for vehicle speed profiles, it is still subject
to errors due to the variance in acceleration/deceleration and
the offset of stop/departure time on different work days
from one trip data to another. Such errors, as discussed in
Section IV, could degrade the MPC-based TMS performance.

The above-mentioned analyses demonstrate the limitations
of the existing MPC-based thermal management strategies in
response to uncertainties in speed preview, specifically over a
long range which is needed for TMS. Such limitations in the
baseline MPC design call for improved robustness of the opti-
mization algorithm without making the TMS controller design
conservative. To address this limitation, a location-dependent
constraint handling strategy is proposed in Section V-C.
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Fig. 15. State trajectories of Cases 1–3. (a) Scaled vehicle speed. (b) Battery
temperature. (c) Battery cooling power.

Fig. 16. Energy consumption and battery temperature CV results of Cases
1–3. (a) Energy consumption for battery cooling (Jbat). (b) Accumulated
Tbat CV.

C. Location-Dependent Thermal Constraint for Improved
MPC Robustness

As previously discussed in Section V-A, for the repeated
commuting trip data, although the test vehicle follows the
same route on different work days, the large traction power
events happen at different times and locations along the route.
The locations where the CV occurs are marked in Fig. 17(a).
Note that we can compute the event probability and the
maximum CV at each location. The event probability means
the probability of the battery temperature CV when the vehicle
passes through certain locations and only a short prediction
horizon is used in Case I. It can be observed that there is only
a finite number of locations that have a nonzero probability
of CV based on historical trip data. This observation suggests

Fig. 17. (a) Aggregated vehicle speed profiles in the spatial domain.
(b) Concept of the location-dependent constraint handling strategy.

a relationship between the high traction power event proba-
bility and the specific locations across the route. To leverage
this relationship, a location-dependent constraint handling in
MPC-based thermal management strategy is proposed and
presented in Fig. 17(b).

The location-dependent constraint handling strategy tightens
the upper limit of the battery temperature constraint based on
the high traction power event probability and the maximum
expected temperature CV. If over a certain range, there is
a probability of CV based on the historical data, the upper
limit, Tbat,max, is tightened based on the maximum violation
of Case I. For example, two locations highlighted in Fig. 17
have a high traction power event probability of 22% and 28%,
respectively, and their maximum Tbat violation are 4.6 ◦C and
4.5 ◦C, respectively. Therefore, the upper battery temperature
limits of these two locations are tightened by 4.6 ◦C and
4.5 ◦C in the MPC formulation, once these two locations are
detected within the controller prediction horizon. Whereas,
for those locations where no CV was observed based on
historical data, no constraint tightening will be performed, i.e.,
Tbat,max = 35 ◦C.

To demonstrate the benefits of the proposed
location-dependent constraint handling strategy, a new
Case 4 is defined as follows and compared against Cases 1–3.

1) Case 4: The preview information is based on the average
speed shown in Fig. 14 and is subject to uncertain-
ties. The prediction horizon length is 200 sec; the
location-dependent constraint is imposed on the upper
limit of the battery temperature over the trip.

The state trajectories with MPC are presented in Fig. 18, and
the energy consumption and accumulated CV are summarized
in Fig. 19. It can be seen from Fig. 18 that with the uncertain
vehicle speed over the long horizon, the battery temperature
constraints can be enforced over the entire trip thanks to
the proposed location-dependent battery temperature constraint
handling strategy. It demonstrates that the location-dependent
constraint enhances the capacity to enforce the battery temper-
ature constraint, resulting in improved algorithmic robustness
against uncertainties in preview information.
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Fig. 18. State trajectories of Cases 1–4. (a) Vehicle speed. (b) Battery
temperature. (c) Battery cooling power.

Fig. 19. Results of Cases 1–4. (a) Energy consumption for battery cooling
(Jbat). (b) Accumulated CV.

D. Combine Location-Dependent Constraint With the
Adaptive Optimization Horizon

In this section, we combine two strategies developed in
this work, i.e., the location-dependent constraint and adaptive
optimization horizon. A new case is defined as follows.

1) Case 5: The preview information is based on the average
speed shown in Fig. 14 and is subject to uncertain-
ties. The adaptive optimization horizon is adopted; the
location-dependent constraint is imposed on the upper
limit of the battery temperature over the trip.

Similar to the adaptive strategy used in Section III, the pre-
diction horizon is set to 200 sec, and the optimization horizon

TABLE II
SIMULATION RESULTS OF CASE 4 AND 5. Jbat AND Jcab ARE THE ENERGY

CONSUMPTION FOR THE BATTERY AND CABIN TMS. Jtotal IS THE
TOTAL ENERGY CONSUMPTION FOR TMS

is based on the prediction of events. As shown in Fig. 17, once
the event is detected over the prediction horizon, and the upper
bound of battery temperature is tightened, the optimization
horizon is set to 200 sec. Otherwise, if no constraint tightening
is needed over the prediction horizon, the optimization horizon
is set to 50 sec to reduce the computational footprint.

As shown in Table II, the results demonstrate that both
Case 4 and 5 can effectively enforce the battery temperature
constraint, in the presence of an uncertain preview. Case 5,
in particular, achieves similar energy consumption for both
battery and cabin thermal management when compared with
Case 4. This finding reaffirms that long-range optimization
is only necessary when a special event is detected over the
prediction horizon. Additionally, Case 5 reduces the average
computational time due to its adaptive optimization horizon.

Overall, the simulation results demonstrate that by combin-
ing the two strategies developed in this article, the controller
achieves a reduced computational time while enhancing its
capacity to enforce battery temperature constraints with uncer-
tain previews.

VI. CONCLUSION

EVs rely on TMS to maintain optimal battery and cabin
temperatures, which consumes a significant amount of energy.
To improve the efficiency of the TMS and increase the driving
range of EVs, this article proposes an MPC-based strategy.
Thermal systems have relatively slow dynamics, which require
a long prediction horizon, making accurate forecasting of
vehicle speed and traction power challenging. This article
demonstrates that predicting critical events, such as the timing
and magnitude of large changes in vehicle speed and trac-
tion power, can significantly improve the MPC-based TMS
performance. Moreover, an adaptive strategy is developed to
adjust the optimization horizon based on the observation of
the critical events over the prediction horizon, which reduces
the average computational time for the optimal controller.
A comprehensive sensitivity analysis was conducted to eval-
uate the robustness of the MPC controller with respect to the
uncertainties against the critical features. Furthermore, to test
the MPC-based thermal management strategy, real-world drive
cycles were used, and a location-dependent thermal constraint
handling strategy was proposed to enhance the controller’s
capacity to enforce the constraints in the presence of preview
uncertainties.
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Future research will focus on the following aspects. First,
the battery thermal model adopted in this article is simplified.
The impact of the model mismatch caused by the simplifica-
tion of the modeling will be investigated in future work. Sec-
ond, in this study, we focus on one certain type of event, i.e.,
peak traction power caused by acceleration/deceleration. How-
ever, there are other events that could influence vehicle traction
and thermal loads, such as road grade and door-opening events,
which need to be properly considered for a better under-
standing of the robustness of the algorithm. Third, battery
degradation will impact battery TMS, algorithms to detect and
incorporate battery state of health will be developed in future
work. Last, in this work, we mainly focused on battery thermal
management and used a simple model to describe the cabin
comfort attribute. To more accurately quantify cabin com-
fort, more complicated models, e.g., the predicted mean vote
(PMV) model, are needed and will be studied in future work.
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