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Eco-Coasting Controller Using Road Grade Preview:
Evaluation and Online Implementation Based on

Mixed Integer Model Predictive Control
Yongjun Yan, Nan Li, Jinlong Hong∗, Bingzhao Gao, Jia Zhang, Hong Chen, Jing Sun, and Ziyou Song∗

Abstract—Coasting is a common method used in eco-driving
to reduce fuel consumption by utilizing kinetic energy. However,
in order to avoid excessive computation induced by integer
coasting maneuvers, the powertrain model used in eco-driving
controllers that rely on look-ahead road information has been
oversimplified. This oversimplification assumes that the engine
goes to idle when coasting, which significantly limits the fuel-
saving potential. To address this issue, we propose an eco-coasting
strategy that calculates the optimal timing and duration of coasting
maneuvers using road information preview. Different from the
engine-idling method, two control-oriented coasting methods, fuel
cut-off method and engine start/stop method are formulated
for the model-based optimal control. To evaluate and choose
the best coasting mechanism for eco-coasting strategy, dynamic
programming (DP) is performed to provide the globally optimal
performance (i.e., benchmark results) for evaluating the engine-
idling method, fuel cut-off method, and engine start/stop method.
Based on the offline simulation results, the engine start/stop
method consistently outperforms the fuel cut-off method in terms
of both fuel consumption and travel time. This is attributed to
the engine start/stop method eliminating the engine drag torque
during deceleration, despite the additional energy cost required
for engine restart being taken into account in the modeling,
thus providing a fair evaluation. Then, the online performance
of the eco-coasting strategy with engine start/stop mechanism is
evaluated using Mixed Integer Model Predictive Control (MIMPC).
We propose a tailored mixed-integer programming algorithm to
facilitate online implementation. Simulation results show that the
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proposed eco-coasting strategy achieves near-optimal performance
compared to DP and outperforms the rule-based method.

Index Terms—Eco-coasting strategy; Engine start/stop mecha-
nism; Mixed-integer model predictive control.

NOMENCLATURE
A Frontal projected area of vehicle, [m2].
C Vector of constraints, [−].
Cd Coefficient of drag, [−].
dmin Minimum off steps, [−].
d Engine start/stop signal, [−].
Ft Traction force, [N ].
Fr Resistance force, [N ].
fr Coefficient of rolling resistance, [−].
g Gravitational constant, [−].
Iengine Engine inertia, [kgm2].
Gf Gear ratio of final reduction drive, [−].
Gg Gear ratio of gearbox, [−].
L Lagrangian equation, [−].
Mf Fuel consumption model in the distance

domain, [−].
meff Effective mass of the vehicle, [kg].
ṁf Instantaneous fuel consumption rate, [g/s].
Nh Prediction horizon, [−].
r Wheel radius, [m].
s Space coordinate, [m].
ṡ Slack variable, [−].
Tb Brake torque, [Nm].
Te Engine torque, [Nm].
Tfinal,1 Final driveshaft torque of engine-idling

method, [Nm].
Tfinal,2 Final driveshaft torque of fuel cut-off

method, [Nm].
Tfinal,3 Final driveshaft torque of engine

start/stop method, [Nm].
v Vehicle longitudinal velocity, [m/s].
v̄ Partial velocity variation, [m/s].
z Fuel cut-off signal, [−].
ż Collected primal variables, [−].
zcurrent Optimal binary variables among the current

horizon, [−].
zhistory History binary variables, [−].
α1∼4 Coefficients of fuel consumption model, [−].
β Weight of weighted sum method, [−].
∆Eengine Energy required for cranking the engine, [J].
∆s Discretization distance, [−].
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∆v Velocity reduction, [m/s].
δEv Partial inertia energy, [J].
δ Extended 0/1 variables, [−].
ε Tolerance constant, [−].
η Gearbox efficiency, [−].
ν Dual variable, [−].
λ Dual variable, [−].
ϕ Slope data, [◦].
ρ Air density, [[kg/m3]].
ωe Rotational velocity of the engine, [rpm].
ωw Rotational velocity of wheel, [rpm].

ACRONYMS

BSFC Brake Specific Fuel Consumption.
BBSQP Integrated branch-and-bound method and

sequential quadratic programming.
DP Dynamic Programming.
FCO Fuel Cut-Off.
KKT Karush–Kuhn–Tucker condition.
MPC Model Predictive Control.
MIMPC Mixed Integer Model Predictive Control.
MINLP Mixed Integer Nonlinear Programming.
MIOCP Mixed Integer Optimal Control Problems.
NLP Nonlinear Programming.
QP Quadratic Programming.
SQP Sequential Quadratic Programming.
SUV Sports Utility Vehicle.
TCU Transmission Control Unit.

I. INTRODUCTION

FOR on-road vehicles, the key to further improving fuel
economy through eco-driving is to comprehensively incor-

porate and fully integrate the powertrain system with the driving
environment represented by traffic conditions and digital maps.
In solving eco-driving problems, researchers have primarily
focused on simplifying and fitting fuel consumption maps with
a single nonlinear convex function to optimize the engine
work area with acceptable computational complexity [1], [2].
However, it is important to note that the fitted function may not
be able to capture all engine conditions, as the trade-off between
model complexity and fitting accuracy may result in the neglect
of some fuel-efficient powertrain maneuvers during coasting, as
discussed in prior research [3]. In reality, for a conventional car
with a gasoline engine and automatic transmission, there are
three methods to coast during the deceleration phase: setting
the gear to neutral and turning off the engine [4], [5]; shutting
off fuel injection when no torque is requested [6]–[8]; and
manipulating the lock-up clutch to disconnect the engine from
the powertrain when the engine is off [9]–[13].

Eco-coasting, as a category of eco-driving, refers to the
strategies used to roll the vehicle with kinetic energy without
traction force [14]. Most studies on eco-coasting have focused
on evaluating the fuel economy benefit of different coasting
strategies using backward vehicle simulation approaches [4],
[15], [16]. In these simulations, the required engine load is
calculated from the pre-defined vehicle speed profile, but this
approach does not fully explore the potential of eco-coasting
since the generated coasting action only relies on the current

vehicle state and road information. Previous investigations have
shown that look-ahead control can achieve better performance
when the slope information on the road ahead is available [17]–
[19]. To the best of the authors’ knowledge, no research has
been reported on the comparison of the fuel-saving potential
among different coasting methods under cruising conditions
with road grade preview, let alone the online implementation
of these coasting strategies.

In the context of eco-coasting, Model Predictive Control
(MPC) is a promising approach to calculate the timing and
duration of coasting maneuvers, taking into account real-time
execution capabilities and look-ahead road grade variations.
However, the integer nature of engine start/stop and fuel
cut-off coasting methods results in mixed-integer optimal
control problems (MIOCPs), similar to those encountered
in gear shift optimization [20], [21] and engine start/stop
of hybrid vehicles [20], [22] in the field of online energy
management. There are two open problems for the online
implementation of eco-coasting strategies with an MPC con-
troller: (1) frequent switching of integer coasting variables; and
(2) computational burden. To reduce the switching frequency,
researchers have proposed adding a penalty for switching
frequency [20] or imposing inequality constraints that limit the
total number of switch occurrences for integer variables [23].
These formulations can reduce switching frequency for a
finite horizon open-loop optimal control problem. However,
neither method is effective for MPC if the first element of the
control sequence changes at different sampling instants due to
numerical sensitivity to driving conditions. In [24], [25], mixed-
integer linear inequalities are used in the MPC formulation
to model the minimum amount of time that an on/off control
variable must be kept on/off.

In terms of computational complexity, two general ap-
proaches exist for solving mixed-integer nonlinear program-
ming (MINLP) problems: the first one involves solving the
MINLP directly using the branch and bound method or
related solvers, which can be computationally expensive [26].
The second approach is a heuristic method that relaxes the
integer variables to continuous ones and reformulates the
original MINLP into a non-linear programming problem (NLP),
rounding feasible solutions to the nearest integer. Although
this relax-and-round method is computationally efficient, it
cannot guarantee optimality of the final solution [27], [28].
Richards et al. have suggested that the MINLP for online
control should be simplified by using knowledge of the control
problem[29]. To this end, a warm-starting strategy has been
proposed for the branch-and-bound algorithm that exploits
the sequential nature of the problem to propagate information
from previous branch-and-bound trees [30]. Early branching
is another problem-specific technique used for fast solutions.
In [31], an early branching rule is performed right after a
single Quadratic Programming (QP) iteration of the Sequential
Quadratic Programming (SQP) solver to detect infeasibility of
the QP problem.

In this article, we propose a fuel-optimal eco-coasting
controller for the eco-coasting problem by considering look-
ahead road grade information from digital maps. We formulate
two coasting frameworks, fuel cut-off, and engine start/stop,
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in addition to the engine-idling powertrain model commonly
used for eco-driving research, considering the engine drag
torque and extra cost to restart the engine. By analyzing
the results with the globally optimal one (i.e., benchmark
result) derived by the dynamic programming, we choose
engine start/stop as the best coasting mechanism due to the
significant performance advantage with respect to a criterion
that weighs trip time and fuel consumption. But given the
DP solution’s computationally prohibitive nature and inability
to handle uncertainty and model mismatch in real-world
applications, the eco-coasting control problem is reformulated
following an MPC scheme that explicitly incorporates the
vehicle coasting dynamics, road information, and cruise speed
tracking performance into the energy minimization. Then,
a holistic framework integrating the branch-and-bound and
SQP algorithms is proposed for real-time implementation.
Finally, a comprehensive comparison is conducted to assess
the proposed MPC-based method, dynamic programming,
and a rule-based controller. Simulation results show that the
proposed eco-coasting method using road information preview
can achieve significant fuel consumption reduction without
compromising the travel time, close to the globally optimal
solution. The novelties of this paper are summarized below:

1) We analyze the fuel optimal performance of three
coasting frameworks (engine-idling, fuel cut-off, and engine
start/stop) for the cruise control system under various road
conditions to determine the best coasting method.

2) We develop a novel MPC-based eco-coasting controller
with inequality constraints applied to the integer coasting
variable to handle the frequent switch of the engine start/stop
behaviors.

3) We demonstrate the fuel-saving performance and
real-time capability of the proposed eco-coasting controller
using the tailored mixed-integer programming algorithm.

The remainder of this paper is organized as follows: Sec-
tion II provides background information on different vehicle
coasting models; Section III presents the offline evaluation
of the proposed coasting strategies; Section IV details the
online implementation of the proposed eco-coasting methods
with MPC scheme and the tailored mixed-integer programming
algorithm; Section V discusses performance evaluation results
and insights based on the simulation. Finally, conclusions and
future work are concluded in Section VI.

II. BACKGROUND AND DIFFERENT VEHICLE COASTING
MODELS

In this section, we begin by presenting the model of the
test-bed vehicle, as well as the different coasting methods and
formulations for calculating fuel consumption. For the purposes
of this study, we utilize a conventional sports utility vehicle
(SUV) that is powered by a combustion engine and a 6-speed
automatic transmission, which allows us to demonstrate the
specific design requirements of an eco-coasting controller under
highway conditions. The proposed eco-coasting strategy can
be integrated with the predictive cruise control system that was
previously developed in our work [32]. As depicted in Fig. 1,

the eco-coasting function is activated based on feedback from
the vehicle’s sensors and state.

A. Vehicle Model

Consider the longitudinal vehicle model described as

ṡ = v,

v̇ =
1

meff
[Ft − Fr(s, v)] ,

(1)

where s is the distance traveled and v is the velocity, ṡ and
v̇ are the derivative with respect to time t, meff is the total
mass of the vehicle, Ft is the traction force and Fr is the total
resistance force.

Table 1
PARAMETERS OF VEHICLE

Symbol Description Value
meff Effective mass of the vehicle 1870 kg
Cd Coefficient of drag 0.373
A Frontal projected area of vehicle 2.58 m2

ρ Air density 1.205 kg/m3

fr Rolling resistance coefficient 0.011
g Gravitational constant 9.8 m/s2

η Gearbox efficiency 0.94
rw Wheel radius 0.364 m
Gg Gear ratio of gearbox 0.672
Gf Final driver ratio 4.103
Tdrag Engine drag torque 30 N·m
Iengine Engine inertia 0.15 kg ·m2

α1 Coefficient 0.2159
α2 Coefficient 0.005676
α3 Coefficient 0.0004349
α4 Coefficient 8.899E-07

The total resistance force, Fr, consists of the aerodynamic
resistance, the grade resistance, and the rolling resistance, as
calculated by

Fr(s, v) = meffg (sin(ϕ(s)) + fr cos(ϕ(s))) +
CdρA

2
v2, (2)

where g is the gravitational constant, ϕ(s) is the slope data in
the distance domain, fr is the coefficient of rolling resistance,
Cd is the drag coefficient, ρ is the air density, and A is the
frontal projected area of the vehicle.

Assuming no slip on the wheel, the wheel rotational speed
ωw and traction force Ft can be calculated as:

ωw =
v

rw
,

Ft =
1

rw
Tfinal,

(3)

where Tfinal ∈ {Tfinal ,1, Tfinal ,2, Tfinal, 3} is the final driveshaft
torque for engine-idling, fuel cut-off, and engine start/stop
methods respectively, and rw is the wheel radius.

The vehicle dynamic equations in (2) are defined in the
time coordination. However, the slope information represented
in the digital map is location-specific and is more naturally
correlated to spatial information. To that end, we adopt the
spatial-based model, as shown below

dv
dt

=
dv
ds

ds
dt

=
dv
ds

v. (4)
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Figure 1. Illustration of different coasting methods and eco-coasting implementation with a digital map

The model in the spatial domain can be given as
dv
ds

=
1

meffv
[Ft − Fr(s, v)] . (5)

By applying Euler forward method and sampling in the
s-domain, the vehicle dynamic model is discretized as

v(k + 1) = g (v(k), Te(k), Tb(k))

= v(k) +
1

meffv(k)
[Ft − Fr(k∆s, v(k))]∆s,

(6)

where ∆s is the discretization distance in each step.

B. Different Coasting Methods

To quantify fuel consumption, a polynomial fuel consump-
tion model is fitted using measurements obtained from the
manufacturer’s engine dynamometer. In-field tests are also
conducted to measure the idle fuel mass flow rate, which
is not included in the dynamometer measurements. The
computational complexity and fuel cut-off mechanism are taken
into consideration when constructing the following model:

ṁf = α1 + α2ωeTe + α3ω
2
eTe + α4ωeT

2
e , (7)

where ṁf [g/s] is the instantaneous fuel consumption rate,
and α1∼4 are the constant coefficients as shown in Table 1.
The comparison between the real and modeled maps of Brake
Specific Fuel Consumption (BSFC) for the polynomial fuel
consumption model is shown in Fig. 2. The BSFC map was
measured by the engine manufacturers and provided by the
OEM with whom we collaborated.

Note that:
▶ The polynomial equation includes a constant term to

represent the idle fuel consumption;
▶ To avoid over-fitting and reduce computation burden, a

3rd-order polynomial is used;
▶ Engine torque affects every term in the equation, except

for the constant one.

Figure 2. Comparison of the real (solid red) and modeled (dashed blue) BSFC
[g/s] for the fitted polynomial fuel consumption model.

The reformulated fuel consumption in the distance domain
is represented as

Mf (k) =
ṁf (Te(k))

v(k)
, (8)

where Mf (k) is the fuel consumption over the discretization
step.

As shown in Fig. 1, three different coasting methods are
considered and compared in this study.

1) Engine-idling Method: The high-efficiency area in the
BSFC map corresponds to the highest gear setting of the
transmission when the vehicle is cruising on the highway.
The lock-up clutch remains engaged during this operation.
Thus, taking into account the underlying physics and empirical
knowledge, we formulate the control-oriented powertrain model
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Figure 3. Field test data in Wuhan, China, with post-processed FCO signal.
The FCO signal is represented by 0 when activated, and 1 when inactive, to
facilitate the optimal control problem formulation.

as follows:

Tfinal,1(k) = ηGgGfTe(k)− Tb(k),

ωw(k) =
ωe(k)

GgGf
,

(9)

The torque of the final driveshaft, engine, and brake are denoted
as Tfinal, Te, and Tb, respectively, while ωe represents the
rotational velocity of the engine, η represents the transmission
efficiency, and Gg and Gf are the gear ratios of the gearbox
and final driveshaft, respectively. The engine torque, which is
the "flywheel torque" of the engine, is obtained through the
vehicle Controller Area Network (CAN). It is worth noting
that the fuel consumption model (7) accounts for engine idling
fuel consumption when the engine goes idle.

2) Fuel Cut-Off Method: The application of the fuel cut-off
(FCO) strategy in engines has proven to be an efficient way to
reduce fuel consumption. Fig. 3 displays the vehicle driving
data collected on a test platform, where FCO is activated
when the requested engine torque is zero. During FCO, the
transmission is held in the highest gear by engaging the clutch
while coasting. The negative engine torque observed in Fig. 3,
as measured based on the experimental data, signifies the
engine drag torque, which results from the resistance caused
by pumping/throttling losses during fuel cut-off.

Based on the analysis of the field test data, the coasting
dynamics with the FCO method can be discretized as

Tfinal,2(k) = ηGgGf (Te(k)− (1− z)Tdrag )− Tb(k), (10)

where z ∈ {0, 1} is the FCO signal representing the activation
and inactivation of fuel cut-off, respectively. When the FCO is

activated, the engine drag torque Tdrag is constant, as shown
in Fig.3. The fuel consumption model is modified as follows:

Mf (k) =

{
ṁf (Te(k))

v(k) ∆s, z(k) = 1 (fuel injected),
0, z(k) = 0 (fuel off).

(11)
(11) reflects that there is no idle fuel consumption when fuel
is cut off.

3) Engine Start/Stop Method: For a conventional vehicle,
another fuel-efficient strategy during coasting is to turn off
the engine and disengage the clutch. Then, the engine will
be restarted by leveraging the slipping of the clutch powered
by vehicle inertia. This clutch start method is superior to
belt-driven starter systems or electric motors mounted on the
engine’s crankshaft in the high-speed cruising condition [16].
For simplicity, “Engine Start/Stop” refers to “Engine Start/Stop
coordinated with the engagement or disengagement of the
clutch”. The powertrain model with engine start/stop mecha-
nism is formulated as

Tfinal,3(k) = ηGgGfTe(k)− Tb(k), (12)

where the engine drag torque is eliminated thanks to the
disengaged clutch.

After turning off the engine and disengaging the clutch,
the engine’s rotational speed decreases to zero, while the
transmission’s rotational speed becomes proportional to the
vehicle speed due to the mechanical connection. To ensure a
smooth re-engagement process, the transmission is kept in the
highest gear, minimizing the speed difference of the clutch.
High-speed cruise conditions typically require the highest
gear for an efficient operation area of the engine, validating
the assumption of a constant gear during this process. This
assumption is supported by the experimental data in Fig. 3.

This restart process can be regarded as using the vehicle’s
kinetic energy to "recharge" the engine. The additional cost
incurred to restart the engine is modeled based on the energy
balance

∆Eengine =
1

2
Iengine

(
ω2
e(k)− 0

)

ωe(k) =
GgGfv(k)

2πrw
,

(13)

where ∆Eengine represents the energy required for cranking the
engine from rest to the synchronization speed of transmission.
The engine’s inertia is denoted as Iengine, and ωe(k) is the
engine speed after synchronization, which is proportional to
the vehicle speed due to the engaged lock-up clutch. We assume
that the engine start/stop and clutch engage/disengage process
can be completed within one sampling interval in this study.
When the engine is turned on at the kth step, the partial inertia
energy of the vehicle will be transformed into engine inertial
energy based on the energy balance. This transformation is
formulated as
1

2
meffv

2(k + 1) =
1

2
meffv

2(k) + [Ft − Fr] ∆s+ δEv(k),

(14)
∆Eengine (k) = δEv(k) =

1

2
meff

(
v̄2(k + 1)− v2(k)

)
. (15)

Here, the partial inertia energy of the vehicle is denoted by
δEv , and v̄(k+1) is the corresponding partial velocity variation
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caused by the engine start process within the current sampling
interval. Thus, the velocity reduction caused by the engine start
is formulated as

∆v(k) =

{
v̄(k + 1)− v(k) if d(k) = 1 and d(k − 1) = 0

0 else .
(16)

where d ∈ {0, 1} is the engine start/stop signal, with 0 and
1 representing that the engine is turned off and turned on
respectively.

The coasting dynamic with the engine start mechanism in
the distance domain after the discretization can be expressed
as

v(k + 1) = g (v(k), Te(k), Tb(k))

= v(k) +
1

meffv(k)
[Ft − Fr] ∆s−∆v(k).

(17)

III. EVALUATION OF VARIOUS ECO-COASTING METHODS

The main objective of the offline evaluation is to select the
optimal coasting method, which will form the foundation for
developing the MPC-based eco-coasting controller. This section
summarizes the optimization problems related to the three
coasting methods, and their performance is evaluated using DP
under various slope profiles extracted from the digital map. The
DP solution serves as the benchmark to evaluate the proposed
controller in the next section. Additionally, we analyze the
features of the optimal coasting maneuver when optimizing
with look-ahead information to aid in the development of the
subsequent controller.

A. Engine-idling Method

Given a predefined slope profile with a length of N , an
optimization problem is formulated to find an optimal control
law over the entire driving cycle. To balance fuel economy
and trip time, both metrics are used in the cost function,
and a weighted sum approach is employed to consider these
conflicting objectives simultaneously. Therefore, the control
problem can be formulated as:

min
Te(.),Tb(.)

N∑

i=0

(β(Mf (k)) + (1− β)
1

v(k)
)∆s, (18)

subject to the system dynamic constraints (6), (9) and

0 ≤ Te(k) ≤ Te,max, k = 0 : N − 1

0 ≤ Tb(k) ≤ Tb,max, k = 0 : N − 1

vmin ≤ v(k) ≤ vmax, k = 0 : N

v(0) = v0, v(N) = v0,

(19)

where Te,max and Tb,max represent the maximum engine and
brake torque constraints respectively, and vmin and vmax

denote the lower and upper speed limits of the cruise range.
The weight β balances the two conflicting objectives of fuel
economy and trip time, and ranges between 0 and 1. In the
engine-idling method, the vehicle speed v(k) is the only state
variable, while the engine torque Te and brake torque Tb are
the control variables. Given the prior information on the global
road grade, the optimization problem aims to determine the

control inputs u(k) = [Te(k), Tb(k)] that minimize the overall
cost function subject to the state constraints and vehicle
operating constraints. The initial and final speeds are fixed as
v0 to ensure a fair comparison.

B. FCO Method

In comparison to the engine-idling method, the optimal
control problem for the fuel-efficient FCO method includes
an integer control variable, fuel cut-off maneuver. To balance
driving comfort with fuel efficiency, an additional penalty term
is introduced in the cost function to limit the frequency of
FCO signal switching

min
Te(·),Tb(·),z(·)

N∑

i=0

(βMf (k) + (1− β)
1

v(k)

+ α(z(k + 1)− z(k))2)∆s,

(20)

where the additional term (z(k + 1) − z(k))2 penalizes the
switching frequency of the FCO signal throughout the entire
trip. To control the frequency, a weight coefficient α is used.
The cost of (20) subject to the system dynamics (6), (10) as
well as the constraints specified as follow:

0 ≤ Te(k) ≤ Te,max · z(k), k = 0 : N − 1

0 ≤ Tb(k) ≤ Tb,max · (1− z(k)), k = 0 : N − 1

vmin ≤ v(k) ≤ vmax, k = 0 : N

v(0) = v0, v(N) = v0

z(k) ∈ {0, 1}, k = 0 : N − 1.

(21)

The constraints above ensure that Te(k) = 0 when FCO
is activated, and Tb(k) = 0 when FCO is inactivated. This
condition automatically ensures that Te and Tb will not be non-
zero simultaneously. In the eco-coasting optimization problem,
the vehicle speed v(k) is the only state, while the engine torque
Te, brake torque Tb, and fuel cut-off signal z(k) are considered
as control variables.

C. Engine Start/Stop Method

Since the cost of engine restart is already incorporated in
the dynamic equations (12) and (17), the penalty term (d(k +
1)−d(k))2 intended to limit frequent switching is unnecessary.
Therefore, the cost function for engine start/stop control consists
only of fuel consumption and trip time, and can be expressed
as:

min
Te(·),Tb(·),d(·)

N∑

i=0

(βMf (k) + (1− β)
1

v(k)
)∆s, (22)

and the optimal solution should be subject to the vehicle
dynamics

v(k + 1) = g (v(k), Te(k), Tb(k))

= v(k) +
1

meffv(k)
[Ft − Fr] ∆s−∆v(k).

(23)
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where the ∆v(k) is the velocity reduction caused by the engine
start

∆v(k) =

{
v̄(k + 1)− v(k) if d(k) = 1 and d(k − 1) = 0

0 else .
(24)

The optimization problem formulation for the engine
start/stop method is subject to the same state and control
variable constraints as the fuel cut-off method described in
(21), with the exception that the fuel cut-off signal z(k) is
replaced by the engine start/stop signal d(k).

D. Dynamic Programming

To prove the eco-coasting strategy leveraging the engine
start/stop mechanism outperforms the other two strategies,
Dynamic Programming [17], as a global optimization approach,
is used to derive the timing and duration of the coasting signal
along with the engine torque and brake torque.

In this section, the optimal control problem is formulated
in terms of the distance domain, and a distance grid is used
in discrete DP. However, the distance s is not explicitly used
as a state variable. Instead, the velocity v is discretized by
∆v, and it is the only state variable in the optimal control
problem (OCP). The search space is thus composed of the
distance grid and the velocity grid. Backward iteration is
used to solve the optimal control law by minimizing the cost-
to-go function, which represents the cost required to reach
the terminal set speed at the destination. The integer control
variable representing the fuel cut-off signal is integrated into
the backward iteration process naturally. Based on the field
test data shown in Fig. 3, the required engine torque is zero
when the fuel cut-off is activated. Therefore, the fuel cut-off
is activated only if the calculated engine torque is zero during
the velocity transitions from one stage to another.

The chosen grid size affects computational complexity and
accuracy. Here, a 5m distance grid and a 0.1m/s velocity
grid are used, along with other constraint parameters listed
in Table 2. The maximum brake torque is set to 500 Nm to
prevent sudden braking. The study evaluates the performance
of different coasting strategies using DP on three slope profiles,
including urban expressway sections in Chongqing and Wuhan,
China (Fig. 4), and a typical uphill-downhill segment (Fig. 5).

Table 2
PARAMETERS OF OPTIMIZATION PROBLEM

Parameter Description Value
vmin Minimum of velocity 50/3.6 m/s
vmax Maximum of velocity 90/3.6 m/s
Te,max Maximum of engine torque 120 N·m
Tb,max Maximum of brake torque 500 N·m

v0 Initial and terminal velocity 75/3.6 m/s

E. Analysis of the Dynamic Programming Solution

Analyzing the characteristics of the globally optimized
coasting maneuver obtained from the DP solution guides the
subsequent controller development. Varying the weighting
factor β allows for different relative emphases on each

Chongqing Route, Total Distance: 55.01 km

Highway

Urban Road

Highway

Urban Road

Wuhan Route, Total Distance: 65.00 km

Figure 4. Route in Chongqing and Wuhan, China.

attribute to investigate performance trade-offs. The Pareto
fronts provide insights into the trade-off between trip time
and fuel consumption for different coasting methods, allowing
the following remarks to be made.

Remark 1 (Coasting mechanisms): Fig. 5 shows that the
engine start/stop strategy outperforms other strategies, as the
vehicle turns off the engine in advance when approaching
the destination and considering the terminal speed constraints
(Fig. 6). The disengagement of the lock-up clutch during the
engine-off period eliminates engine drag torque, leading to a
moderate deceleration and longer coasting distance. Compared
to the FCO approach, the longer coasting distance of the engine
start/stop strategy results in decreased fuel consumption without
a significant increase in trip time. The FCO strategy performs
similarly to the engine-idling strategy and is activated at 4000
m in the Chongqing route (Fig. 6). However, the existing
engine drag torque caused by the terminated fuel injection
compromises the improvement in performance.

Remark 2 (Weights α and β): In Fig. 5, increasing weight
β results in better performance for FCO and engine start/stop
coasting methods under Chongqing and Wuhan slope profiles,
as more emphasis is placed on fuel consumption in the cost
function. When weight α is decreased in the FCO method
(Fig. 7), more frequent FCO actions occur, leading to decreased
fuel consumption but increased trip time. The cost for restarting
the engine in the dynamic equation (17) is formulated to avoid
frequent engine start/stop switches, providing a fair evaluation
of overall performance while eliminating driving discomfort.

IV. MPC-BASED ECO-COASTING FRAMEWORK

In this section, an online control design framework for the
eco-coasting strategy based on MPC is proposed. Based on the
analysis in Section III-E, the engine start/stop mechanism is
adopted as the best coasting mechanism for the eco-coasting
controller. To mitigate frequent engine start/stop behaviors,
a new constraint is incorporated in the MPC formulation.
Moreover, an integrated branch-and-bound and SQP algorithm
is proposed to enable the proposed eco-coasting controller for
real-world applications.

A. Model Predictive Control

In control systems subject to constraints on inputs and states,
MPC is a technique that embeds optimization within feedback
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Figure 5. DP results for various coasting methods with corresponding Pareto Front: (a) and (d) Standard uphill-downhill slope profile, (b) and (e) Wuhan slope
profile, and (c) and (f) Chongqing slope profile.

Figure 6. DP results for standard uphill-downhill route (left three columns) and Chongqing route (right two columns)
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Figure 7. The performance trade-off with the FCO coasting method by varying
α (left). FCO signal with different α under the Wuhan slope profile (right).

[33]. MPC determines the control action by solving an open-
loop optimal control problem over a finite horizon online at
each discrete instant. Unlike the cost function in DP, which
provides offline results that are unsuitable for the eco-coasting
control system, the eco-coasting system is a sub-system of the
predictive cruise control system, as shown in Fig. 1, and must
be designed to track the reference speed that represents the
driver’s preference and speed limits. Therefore, we formulate
the eco-coasting controller in the MPC scheme to minimize fuel
consumption over the horizon while tracking a time-varying
trajectory vref that represents the driver’s input during cruise
control. Here, v(i|k) denotes the value of variable v at distance
k + i when making a prediction at the current location k. We
define the MIMPC for the engine start/stop method over a
finite-distance horizon (Nh) as follows:

min
Te(·|k),Tb(·|k),d(·|k)

Nh∑

i=0

(βm · (Mf (i|k))+

(1− βm) · (v(i|k)− vref)
2
)∆s,

(25)

subject to the system dynamics and operational constraints:

v(i+ 1|k) = v(i|k)

+
1

meffv(i|k)
[Ft − Fr] ∆s−∆v(i|k), i = 0 : Nh − 1

50km/h ≤ v(i|k) ≤ 90km/h, i = 0 : Nh

0Nm ≤ Te(i|k) ≤ 120Nm · d(i|k), i = 0 : Nh − 1

0Nm ≤ Tb(i|k) ≤ 500Nm · (1− d(i|k)), i = 0 : Nh − 1

d(i|k) ∈ {0, 1}, i = 0 : Nh − 1

v(0) = 75km/h,
(26)

where βm is the weighting parameter that affects the trade-
off between fuel consumption and tracking accuracy of the
eco-coasting controller. Different from the DP formulation, the
terminal speed restriction is removed as the speed tracking is
considered over the horizon as a soft constraint. The removal
of terminal speed constraints will provide more flexibility for
fuel efficiency optimization.

To predict and optimize the future behavior of the vehicle
powertrain system, the proposed eco-coasting controller em-
ploys the engine start/stop coasting model. However, the use
of an integer control variable for engine start/stop maneuver
results in a MIMPC problem. To address the excessive switch

Algorithm 1 : MIMPC with Minimum-Off Constraints

Input: Initialize v0|k, C and dhistory

Output: The augmented constraints added to the original

MIMPC

1 for j = 1, . . . , Nh do

2 for i = 1, . . . , (ddim +Nh) do

3 C := [C, τ(k : min(Nh, i+ ddim − 1)) ≤ τ(i)− τ(i− 1)]T ;

4 end

5 Impose constraints vector C to original MIOCP; Calculate

Te ∈ RNh , Tb ∈ RNh , d ∈ RNh ; Update

dhistory :=
[
dj−dmin

, . . . , dk−1, d1|k
]T

;

6 end

1

problem in the formulation, the following mixed-integer linear
inequalities can express operational constraints on the minimum
number of steps for which an engine must remain off:

δ(τ) ≤ 1− (δ(j − 1)− δ(j)) (27)

with τ = j + 1, . . . ,min (j + dmin − 1, N), dmin = 4
represents the operational constraints on minimum off steps,
j = 2, . . . , N + dmin. Let the extended state be represented by
the vector δ := [dhistory , dcurrent ]

T , where dhistory is the vector
of the previous binary variables with dimension dmin × 1 as

dhistory :=
[
d(k−dmin−1), . . . , dk−1

]T
. (28)

dcurrent is the row vector of the current binary variables with
dimension Nh × 1 as

dcurrent :=
[
d1|k, . . . , dNh|k

]T
. (29)

Algorithm 1 presents the implementation of the mixed integer
linear inequalities in the MPC formulation. For additional
details regarding these constraints, please refer to the works
by Parisio et al. in [24] and [34].

B. Characteristics Analysis of OCPs
Through the analysis of the optimal control problem, the

characteristics that can be used to tailor the solver construction
are listed as follow:

1) Parameterized Road Grade Information: The formulated
optimal control problem parameterizes the road grade infor-
mation obtained from the digital map. The tailored solver
should solve the fuel optimal control problem to obtain the
optimal control sequence with the parameterized road grade
information.

2) Nonlinear Equality Constraints: The optimal control
problem has nonlinear dynamic equation constraints. To
discretize the optimal control problem using the direct multiple
shooting method, the nonlinear dynamic equation constraints
will result in a large, sparse problem.

3) Integer Control Variables: The engine start/stop maneuver
is an integer control variable. As a result, the MPC-based eco-
coasting controller should solve a mixed integer nonlinear
programming problem at each sampling instance. Furthermore,
operational constraints, such as the minimum number of steps
for which an engine must be kept off, should be considered
over the prediction horizon.
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Algorithm 2: Mixed Integer Nonlinear Programming Algorithm

based on Branch and Bound and SQP

Input: Initial guess of co-state variables, slack variables, and

upper bound

Output: Engine torque，brake torque，coasting variables

T ∗
e , T

∗
b , z

∗

1 Solving the relaxed NLP with SQP by relaxing all the binary

variables;

2 while the set of the waiting binary variables is not empty do

3 Solving the relaxed NLP with SQP by relaxing all the binary

variables ;

4 repeat

5 Update the co-state variables, slack variables, and upper

bound ;

6 repeat

7 Calculate the sub-QP;

8 until Satify the terminal condition of QP or maximum

number of iterations exceeded ;

9 Number of iterations + 1 ;

10 until Satify the terminal condition of SQP or maximum

number of iterations exceeded ;

11 end

1

C. Tailored Mixed-integer Programming Algorithm for the Eco-
coasting Strategy

To demonstrate the implementation feasibility of the pro-
posed eco-coasting strategy, a tailored mixed-integer program-
ming algorithm is proposed in this section. A computation
strategy composed of the branch-and-bound method and
sequential quadratic programming (BBSQP) is proposed by
leveraging the characteristics analyzed in Section IV-B.

To solve the MINLP problem, a branch-and-bound strategy
is used to decompose the integer part from the original problem.
Initially, all integer restrictions are relaxed into a range of 0
to 1, and the resulting NLP relaxation is solved. If all the
fuel cut-off signals over the prediction horizon take a binary
value at the solution, the MINLP is solved. Otherwise, one
of the non-binary binary variables is chosen and branched
to create two new NLP problems with additional constraints.
These generated NLP problems are added to the candidate
queue, and the procedure is repeated until the queue is empty.
The whole branch-and-bound procedure can be depicted as
a binary tree, with nodes representing the NLP problem and
edges indicating the added constraints. At each node, SQP is
used to solve the NLP relaxation problem. For more details
on the SQP, see Appendix A. The sub-QP problem is solved
using the FBstab solver, which is known for its numerical
robustness, ability to exploit sparsity, ease of warmstarting,
and infeasibility detection capabilities [35]. This solver, coupled
with infeasibility detection, enables an early-branching rule
to be implemented in the branch-and-bound method, leading
to reduced computation complexity. The proposed BBSQP
algorithm is shown in Algorithm 2.

To select the next sub-problems in the branch-and-bound
method, various criteria can be used, such as depth-first,
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Figure 8. Effect validation of the warmstarting strategy for eco-coasting. Index
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breadth-first, branch on the best/worst cost solution. Non-
binary variables are often present in the obtained optimal
solution of the NLP relaxation, and two common ways to select
the branching variable are based on the most/least fractional
variable. These selection strategies can significantly impact
computational time. In this study, the branch on the best
cost solution and the branch on the most fractional variable
are chosen as the optimized candidate selection strategies
for the eco-coasting problem based on offline simulation
performance. Additionally, two speedup methods are proposed
and incorporated into the eco-coasting controller to further
ease the computation of the BBSQP algorithm.:

1) Warmstarting of the MIMPC: To mitigate computation
overhead, the sequential nature of the problem allows taking
the solution of the last OCP as a starting point for the current
one. In the eco-coasting problem using the branch-and-bound
method, the search path of the previous sampling instance’s
branch-and-bound tree is saved and propagated to the next
sampling instance.

The procedure of warmstarting for the eco-coasting problem
is illustrated with 5 predictive steps in Fig. 8. In this study, the
convergence tolerance of SQP, initial slack variables, maximum
node numbers of the branch-and-bound method, and integer
tolerance are set to tol = 10e − 4, s = 10, maxNodes =
100000, and intTol = 10e−3. As shown in Fig. 8, the optimal
path at the first sampling step is d3 = 0 → d1 = 1 → d0 = 0.
Without the warmstarting strategy, this path information cannot
be used at the next sampling step, so the second and fourth
nodes would be solved repeatedly. With warmstarting, however,
the optimal path from the previous sampling step is propagated
to the current one, after ignoring the first control action of
the engine start/stop sequence. All the leaf nodes of this path
are then solved in order, from the bottom layer to the upper
layer. As a result, only 8 NLP relaxations are solved to find
the optimal engine start/stop sequence, as opposed to solving
all nodes in the branch-and-bound tree.

2) Minimum off constraints: To reduce the number of
"useless" branches, the tree search process incorporates the op-
erational constraints of engine start/stop. Inspired by the mixed
integer linear inequalities in Section IV-A, an augmented vector
is formed by concatenating the history engine start/stop signals
dhistory and engine start/stop signals over the horizon dcurrent .
If there is an engine start/stop activation signal in dhistory ,
the number of consecutive engine start/stop activation signals
num from the back to the front is calculated. Subsequently,
the first Nh − num variables over the horizon dcurrent are
fixed to 0, which keeps the engine start/stop signal active.
To avoid frequent switches of engine start/stop actions over
the horizon, it is assumed that the signal can only switch
once in the prediction horizon. Once the activation variables
are determined, other variables in the prediction horizon are
traversed as switch variables from front to back. The value
of the variable after the switch variable must be the same
as the value of the switch variable. Then, the location of
the switch variable in the predicted time domain is found.
However, it should be noted that this speedup strategy depends
on the prediction-horizon length, resulting in a deterministic
computational footprint, as the number of exploration nodes

Figure 10. Simulation results comparison with engine start/stop method with
the Wuhan slope profile: DP vs MPC
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Figure 11. Control architecture for the rule-based engine start/stop mechanism.
T req
e is the required engine torque, T req

b is the required brake torque, d(k−1)
is the engine start/stop maneuver at the last step.

in the horizon is essentially the same as the prediction steps.
The flowchart of this speedup strategy is illustrated in Fig. 9.

V. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we validate the effectiveness of the proposed
eco-coasting controller in two steps. First, the MPC-based eco-
coasting approach is evaluated with the same Wuhan route in
Section III and compared with the globally optimal DP solution.
Secondly, extensive simulations are performed to compare the
eco-coasting controller with a rule-based controller. Finally,
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Figure 12. Simulation results comparison of the MPC-based eco-coasting controller and the rule-based method on varying slope conditions. (a) Results over
the Wuhan driving cycle. (b) Detailed views of the simulation results in Area A of subfigure (a). (c) Engine operating points when the engine is turned on.

discussions are made regarding the length of the prediction
horizon concerning the use of the eco-coasting controller in
real-world applications.

Table 3
PERFORMANCE COMPARISON WITH ENGINE START/STOP APPROACH: DP

(βm = 0.5) VS MPC (βm = 0.5)

Controller Fuel consumption Trip time
MPC 541.9 g 751.6 s
DP 533.2 g 751.0 s

Comparison +1.63 % +0.04 %

A. Performance Comparison with DP

To validate the performance of the MPC-based eco-coasting
controller in comparison to the DP solution, we apply the
proposed controller to a realistic driving cycle in Wuhan (Fig.4),
with a cruise speed of 70 km/h in consideration of the highway
speed limit. For a fair comparison, we solve the same optimal
control problem for the entire trip using DP, as formulated
in equations (25) and (26). Table 3 summarizes the energy

consumption and trip time obtained using both controllers.
The results show that both controllers drive the vehicle to the
destination within the same trip time by following the reference
speed, with the MPC-based eco-coasting controller achieving
energy efficiency close to the globally optimal solution. This is
because, as shown in Fig. 10, the MPC replicates almost every
engine switched-off action of the globally optimal solution but
may miss some due to local optima and switch constraints.

B. Performance Comparison with Rule-based Engine Start/Stop
Method on Varying Slope Conditions

To further demonstrate the effectiveness of the MPC-
based eco-coasting controller, we propose a rule-based engine
start/stop method. In situations where controller hardware
capability is limited, a rule-based approach is often preferred
because it can achieve comparable performance with low
computational complexity. The control architecture, as shown
in Fig. 11, employs a PI controller to track the cruise speed
set by the driver, followed by an inverse vehicle longitudinal
dynamics model to calculate the required engine torque and
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Figure 13. Simulation results comparison of the MPC-based eco-coasting controller and the rule-based method on varying speed limit conditions. (a) Simulation
results illustration. (b) Simulation setup illustration. (c) Performance comparison.

brake torque. Finally, the engine start/stop maneuver is derived
based on a rule that switches off the engine on a downhill
stretch when the current road grade is less than a certain
threshold (-0.57°) and the current speed is higher than a
threshold (60 km/h) simultaneously. If the engine is turned off
under these conditions, the engine turn-off signal will hold for
10 discretization steps to avoid frequent switches [36]. The
operational constraints on minimum stop steps in this study are
tuned offline to balance tracking accuracy and fuel consumption.
The simulation is also performed on the Wuhan driving cycle,
and the cruise speed is set as 70 km/h. As shown in Table 4,
compared with the rule-based engine start/stop method, the
MPC-based eco-coasting controller achieves 5.95% fuel-saving
performance with even a slightly shorter trip time.

Table 4
PERFORMANCE COMPARISON WITH ENGINE START/STOP APPROACH: MPC

(βm = 0.5) VS RULE-BASED METHOD.

Fuel consumption Trip time
MPC 541.9g 751.6 s

PI(P=0.1,I=0.00001) 576,2g 754.3 s
Comparison -5.95% -0.36 %

The superior performance of the MPC-based eco-coasting
controller compared to the rule-based method can be attributed
to two reasons. Firstly, the MPC-based controller can adapt
coasting to varying slopes in real-time using its forecasting

feature, thereby increasing the coasting distance. For instance,
as illustrated in Fig. 12(b), the controller increases the vehicle
velocity in advance before a steep downhill, allowing the
vehicle to achieve a longer coasting distance of 750 m compared
to that of the rule-based method’s 710 m. Longer coasting
distance means longer engine off duration which results in
better fuel economy. Consequently, the eco-coasting controller
achieves higher fuel efficiency without compromising speed-
tracking performance. Secondly, in addition to the engine turn-
off condition, the MPC controller can optimize the engine work
area adapted to the road slope prediction, as shown in Fig.
12 (c). The increased engine torque of the MPC controller falls
within the engine’s economical range, resulting in improved
fuel economy compared to the rule-based method with the PI
controller.

C. Performance Comparison with Rule-based Engine Start/Stop
Method on Varying Speed Limit Conditions

The advanced performance of the MPC-based eco-coasting
controller is further elaborated on using a new simulation
setup in this study. The reference speed is adapted to the
varying speed limit on the urban expressway, as shown in Fig.
13 (b). The activation condition for the rule-based method is
updated when the required engine torque is zero. Fig. 13 (a)
shows that the MPC-based eco-coasting controller increases
its speed in advance before the drop of the reference speed
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to gain a longer coasting distance. The different coasting
timing and duration of the MPC-based eco-coasting controller
and the rule-based method contribute to the final fuel-saving
performance (2.13% reduction) without compromising the trip
time performance (Fig. 13 (c)).

D. Discussion on the Length of the Prediction Horizon

In this study, the impact of the prediction horizon length
on the performance of the eco-coasting controller is analyzed.
The simulations are conducted using MATLAB R2019a on
an AMD Ryzen 5 2600X 3.60-GHz with 16.0-GB RAM.
As depicted in Fig. 14, the fuel consumption reduces by
5.10% and 8.71% when the prediction horizon increases from
50 m to 100 m and 200 m, respectively. On the contrary,
the trip time increases by 0.60% and 1.02%, respectively.
A longer prediction horizon provides more reference speed
information to the MPC controller to proactively adjust the
coasting timing and duration with respect to the road grade and
speed limit. However, the eco-coasting controller’s performance
does not necessarily improve with a longer prediction horizon,
as shown in Fig. 14, where the eco-coasting controller with
a 400 m prediction horizon only achieves a slight fuel
efficiency improvement, while the computation time increases
dramatically. Additionally, a longer prediction horizon makes
the MPC-based eco-coasting controller more vulnerable to
model mismatch. Fig. 14(d) illustrates the computation time
at each sampling instance of the eco-coasting controller with
a 200 m prediction horizon. The overall computation time is
below 0.1 seconds over the Wuhan driving cycle, indicating
that the eco-coasting controller can be performed with a 10 Hz
control cycle, sufficient for the highway cruise control scenario
without a vehicle in front.

VI. CONCLUSION

In this article, we investigate the eco-coasting control of
gasoline vehicles under cruise conditions. To develop an optimal
control strategy feasible for real-time application, an MPC-
based eco-coasting controller that optimizes the engine torque,
brake torque, and coasting signal simultaneously is proposed.
The key findings of this research are listed as follows:
▶ Based on the results of the offline evaluation, it was

determined that the engine start/stop method is the most
effective coasting method for the eco-coasting controller
when utilizing look-ahead information, outperforming both
the engine idling method and fuel cut-off method;

▶ Integrated the branch-and-bound method and sequential
quadratic programming is a promising way to solve
the mixed integer programming problem of the eco-
coasting controller numerically at each MPC iteration. The
tailored speedup strategies based on the characteristics
of the optimal control problem can guarantee real-time
implementation feasibility of the eco-coasting controller
on computing power-limited ECUs;

▶ Based on the simulation results, it was observed that
the MPC-based eco-coasting controller can achieve near-
optimal fuel efficiency performance when compared to

globally optimal solutions. Furthermore, the proposed
controller outperforms a rule-based engine start/stop
method with a longer coasting distance leveraging the
predictive feature.

Future work will focus on the experimental validation of the
proposed eco-coasting controller on the test-bed vehicle. While
the computational efficiency of the proposed BBSQP solver
was studied and confirmed, a convergence proof of the BBSQP
solver with different speedup strategies is also a subject left
for future research.

APPENDIX A
SEQUENTIAL QUADRATIC PROGRAMMING

Slack variables ṡ = [ṡ1 · · · ṡNh
]
T ∈ RNh is inte-

grated into the inequality constraints to increase the fea-
sible set of the NLP. The state variables are x =
[v1 · · · vN⋆

]
T ∈ RNℏ and the control variables are u =[

Te,0 Tb,0 z0 · · ·Te,Nh−1 Tb,Nh−1 zNh−1

]
∈ RNh×3.

We defined ż =
[
uTxT ṡT

]T
to denote the collected primal

variables. Then, the eco-coasting problem is cast as an NLP
with generalized formulation,

min
ż

f(ż)

s.t. g(ż) = 0

c(ż) ≤ 0,

(30)

The Lagrangian for this problem is

L(ż, λ, v) = f(ż) + λT g(ż) + vT c(ż) (31)

where λ ∈ Rm and v ∈ Rq are dual variables. At the kth
iteration, the sub-QP problem have the form

min
∆ż

1

2
∆żTHk∆ż + rTk ∆ż

s.t. Gk∆ż + gk = 0

Ck∆ż + ck ≤ 0

(32)

where Hk = ∇2
żL (żk, λk, vk), rk = ∇żL (żk), G = ∇żg (żk),

gk = g (żk), Ck = ∇żc (żk), and ck = C (żk). The SQP
iteration will be finished when the natural residual

FNR(x) =




∇żL(ż, λ, v)
g(ż)

min(−c(ż), v)


 (33)

reaches the convergence tolerance. Note that the Hes-
sian/Jacobian matrices of the Lagrangian are generated and
assembled using MATLAB’s symbolic toolbox. A scaled
identity matrix is added to the Hessian matrices of the
Lagrangian to ensure its positive semidefinite property and
then guarantee the sub-QP problem is convex.
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