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Abstract— Improving endurance is important for autonomous
underwater vehicles (AUVs) as it affects the operational cost and
application range of the vehicle. In this article, we propose an
economic model predictive control (EMPC)-based controller to
reduce the control energy of AUVs while performing waypoint
tracking. The proposed EMPC controller optimizes stage costs
capturing the control energy consumed within the prediction
horizon and a terminal cost approximating the energy-to-go,
the energy required to reach the desired waypoint from the
end of the prediction horizon. To approximate the energy-
to-go, we partition it into the dynamic and static segments
based on the operational characteristics of the optimal vehicle
maneuver obtained from off-line trajectory optimization using
direct collocation (DC). To account for the disturbances caused
by ocean currents, we adopt the energy-to-go to a virtual
Earth-fixed frame that transforms the drift in the vehicle
location to the drift in the desired waypoint. Theoretical and
numerical analyses of the approximated energy-to-go reveal that
the proposed controller can balance the tradeoffs among energy
components spent for vehicle surge, heave, and yaw controls in
consideration of vehicle dynamics. Simulations under different
flow conditions are conducted to compare the proposed approach
with DC and a line-of-sight (LOS) guidance-based approach that
optimizes vehicle surge speed for energy minimization. Through
simulations, it is shown that the proposed approach achieves
near-optimal performance as DC and outperforms the LOS-based
approach.
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control-oriented AUV model, economic model predictive control
(EMPC), energy management, energy-efficient maneuver, energy-
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NOMENCLATURE

α Coefficient in the thruster power model.

β Control parameter affecting the sharpness of
the turn.

�ψ Difference between the desired and present
course directions of the vehicle [rad].

�d Travel time in the dynamic part of the
energy-to-go [s].

�s Travel time in the static part of the energy-
to-go [s].

φ, θ,ψ Roll, pitch, and yaw angle in the Earth-fixed
frame [rad].

ψd Variation in the course direction of the vehi-
cle during the dynamic mode [rad].

B,W Vehicle buoyancy and weight [N].

h p(·) Relationship between thrust and power
consumption.

Izz Moment of inertia around the heave direc-
tion [kg · m2].

K ṗ,Mq̇ , Nṙ Roll, pitch, and yaw added mass [kg ·
m2/rad].

K p,Mq , Nr Roll, pitch, and yaw damping coefficient
[kg · m2/(s · rad)].

li Distance between vertical thrusters and the
midship (i = 1), distance between horizontal
thrusters and the center line of the vehicle
(i = 2), and vertical distance between hor-
izontal thrusters and the vehicle center of
gravity (i = 3) [m].

m Vehicle total mass [kg].
p, q, r Roll, pitch, and yaw rate in the body-fixed

frame [rad/s].
Pi Power for nullifying positive buoyancy (i =

PB) and overcoming surge drag force (i =
SD) [W].

T i Left (i = 1), right (i = 2), back (i = 3), and
front (i = 4) thruster inputs [N].

u, v,w Surge, sway, and heave velocity in the
body-fixed frame [m/s].

uc, vc, wc Ocean current velocity along the surge,
sway, and heave direction [m/s].
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ur , vr , wr Relative surge, sway, and heave veloc-
ity with reference to the currents in the
body-fixed frame [m/s].

V i
c Ocean current velocity along the x , y, and z

direction (i = x, y, z) [m/s].
x, y, z x , y, and z position in the Earth-fixed frame

[m].
Xu̇,Yv̇ , Zẇ Surge, sway, and heave added mass [kg].
Xu,Yv , Zw Surge, sway, and heave damping coefficient

[kg/s].

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) have
advanced and accelerated underwater explorations due to

their ability to operate in hazardous and unstructured environ-
ments [1]. Yet, more than 80% of the underwater areas on the
Earth remain unexplored [2]. One of the major reasons for this
low exploration rate is the limited vehicle endurance, which
restricts the travel range and increases the operational costs
of AUVs. For improved endurance, a wide variety of AUVs
has been developed, e.g., buoyancy-driven vehicles and hybrid
vehicles with both buoyancy- and propeller-driven propulsion
mechanisms. Although buoyancy-driven vehicles (e.g., under-
water gliders) have become central to oceanographic mis-
sions [3], their low maneuverability (e.g., restricted steering
and acceleration) limits their application for tasks, such as
benthic survey and mapping [4]. Extending the endurance of
propeller-driven AUVs for underwater survey and mapping
research remains an active and important research topic, which
will be the focus of this article.

A common approach for improving AUV endurance is
to plan energy-optimal references (e.g., waypoints, paths,
or trajectories) in consideration of ocean currents [5]–[7].
By leveraging the favorable currents while avoiding the
adverse ones [8], the optimized vehicle references reduce
the vehicle operational energy, thereby increasing vehicle
endurance. However, due to the intensive computation of plan-
ning algorithms [9], reference planning is typically performed
based on simplified vehicle models (e.g., kinematic model)
and predicted ocean conditions. Consequently, a reference-
following controller is required to account for the uncertainties
in the vehicle model and ocean currents, and the vehicle energy
efficiency achieved by following the planned reference relies
critically on the energy-saving performance of the reference-
following controller.

To reduce the energy consumed by following the planned
reference, various optimal control approaches were adopted.
For example, the cost function of the model predictive con-
trol (MPC) in [10] and [11] was formulated as a combination
of reference-following error and control efforts to save energy
during AUV horizontal maneuvers. In [12], a linear quadratic
regulator was developed using a cost containing a control
effort term to balance the AUV depth tracking performance
and energy consumption. Reinforcement learning-based strate-
gies were proposed in [13]–[15] to achieve energy-efficient
maneuvers for unmanned surface and aerial vehicles. These
controllers can reduce vehicle energy use by generating thrusts

that minimize the weighted sum of reference-following error
and control efforts. Nevertheless, constant weighting cannot
accommodate the tradeoff in reference-following performance
and energy consumption under different operational condi-
tions. Consequently, the energy-saving potential of these con-
trollers is not fully explored.

In this article, considering waypoints as the planned refer-
ences, we design an energy-optimal controller for a waypoint
tracking problem. We propose an energy-optimal AUV control
design based on economic model predictive control (EMPC)
that explicitly incorporates the vehicle dynamics, ocean cur-
rents, and reference-following performance into the energy
minimization. In particular, we formulate the terminal cost of
EMPC in terms of the energy required to reach the destina-
tion beyond the prediction horizon, referred to as energy-to-
go. By analyzing the energy-optimal solution obtained from
off-line trajectory optimization using direct collocation (DC),
we partition the energy-to-go into the dynamic and static parts
and parameterize each part with its duration. The effects of
ocean currents on the energy-to-go are further incorporated
by accounting for the drift in vehicle locations due to the
ocean currents. The proposed approach is first compared with
the optimal solution from DC to show its near-optimal perfor-
mance. Then, an extensive comparison is conducted between
the proposed approach and a line-of-sight (LOS) guidance-
based control approach that optimizes vehicle surge speed for
energy minimization based on vehicle kinematics. Simulation
results under various current conditions demonstrate that the
proposed approach could substantially improve energy effi-
ciency.

This article extends our conference articles [16], [17] with
its main contributions given as follows.

1) It presents an energy-optimal control framework that can
optimize vehicle energy by explicitly considering vehicle
dynamics and ocean currents.

2) It provides an approach to formulate the terminal cost
in EMPC for enhanced energy efficiency by leveraging
off-line trajectory optimization solutions.

3) It analyzes the approximated energy-to-go to reveal the
tradeoffs among energy components spent for control-
ling the vehicle motions in different degrees of free-
dom (DOFs) and provides insights for controller design.

The remainder of this article is organized as follows.
Section II introduces the vehicle models and formulates the
energy-optimal control problem of AUVs under currents.
In Section III, DC is applied to address the energy-optimal
control problem. In Section IV, the EMPC design is proposed
with the analysis of its cost function. Section V verifies
the proposed approach with simulation results obtained using
different current conditions. Finally, conclusions and future
work are given in Section VI.

II. BACKGROUND

In this section, we first provide the details of our test-bed
AUV to facilitate the subsequent modeling of the control
authorities and vehicle power consumption. Based on the spec-
ifications of the test-bed AUV, we then introduce a six-DOF
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Fig. 1. Schematic of DROP-Sphere.

motion model and an experimentally validated power con-
sumption model. Finally, the energy-optimal control problem
of AUVs under ocean currents is formulated.

A. DROP-Sphere Platform

A propeller-driven AUV, DROP-Sphere, developed by the
DROP Lab at the University of Michigan for underwater
benthic optical mapping [18], is adopted for the study in this
article. The vehicle is an open-source and low-cost platform
with an elliptical body of 0.86-m length, 0.43-m width, and
0.25-m height (as shown in Fig. 1). In the middle of the
vehicle, a 0.2-m-diameter borosilicate glass sphere is used to
house electronic equipment, such as the inertial measurement
unit, an embedded computer, batteries, and cameras. For vehi-
cle propulsion, four identical flooded brushless bidirectional
motors with a maximum thrust of 7.86 N each are utilized.
Two horizontal thrusters (T 1, T 2) control the surge and yaw
motion of the vehicle, and two vertical ones (T 3, T 4) control
its heave and pitch motion. DROP-Sphere has positive buoy-
ancy, i.e., the vehicle’s buoyancy (B = 201.586 N) exceeds
its weight (W = 200.116 N), which guarantees the recovery
of the vehicle in the case of thruster or battery failures [19].

B. Vehicle Motion Model

To capture the vehicle motion under ocean currents, two
reference frames are used, as shown in Fig. 2. The velocities
(ν = [u, v,w, p, q, r ]T ∈ R

6) and control inputs (τ ∈ R
6)

are represented in a body-fixed frame. The positions and
orientations (η = [x, y, z, φ, θ, ψ]T ∈ R

6) are given in an
Earth-fixed frame. Assuming that the ocean current is constant
and irrotational, the velocity of ocean currents expressed in the
Earth-fixed frame is denoted as Vc = [V x

c , V y
c , V z

c , 0, 0, 0] ∈
R

6. The velocity of ocean currents in the body-fixed frame
is denoted as νc = [uc, vc, wc, 0, 0, 0]T ∈ R

6, which satisfies
V c = J(η)νc with the coordinate transformation matrix J(η) ∈
R

6×6. Then, with reference to the current, the relative velocity
of the vehicle in the body-fixed frame is computed as νr =
ν − νc = [ur , vr , wr , p, q, r ]T ∈ R

6.
Based on the defined notations, the vehicle kinematic and

dynamic relationships (see [20], [21]) are given as

η̇ = J(η)νr + Vc (1a)

mt ν̇r + fc(νr )+ fhνr + fg(η) = τ (1b)

Fig. 2. Reference frames and notations.

where mt = mrb + ma is the vehicle total mass matrix with
matrices of the rigid body mass mrb ∈ R

6×6 and the added
mass ma ∈ R

6×6. fc(νr ) ∈ R
6, fh ∈ R

6×6, and fg(η) ∈ R
6

represent the Coriolis and centripetal force, the hydrodynamic
damping force, and hydrostatic force matrices, respectively.
The added mass and hydrodynamic damping matrices are
considered as

ma = diag
(
Xu̇,Yv̇ , Zẇ, K ṗ,Mq̇ , Nṙ

)
(2a)

fh = diag
(
Xu,Yv , Zw, K p,Mq , Nr

)
(2b)

where diag(·) denotes a diagonal matrix. Xu̇ , Yv̇ , Zẇ, K ṗ,
Mq̇ , and Nṙ are the added mass coefficients, and Xu , Yv , Zw,
K p, Mq , and Nr are the hydrodynamic damping coefficients.
The assumption that the hydrodynamic damping forces and
moments are linear with respect to vehicle relative velocities
generally only holds when the vehicle relative velocities are
low, as in energy-efficient maneuvers when the speed is typi-
cally less than 0.5 m/s to avoid large power consumption [16],
[22].

The control input vector τ relates to the DROP-Sphere
thrusts as

τ =

⎡
⎢⎢⎢⎢⎢⎢⎣

T 1 + T 2

0
T 3 + T 4

0(
T 1 + T 2

)
l3 + (

T 3 − T 4
)
l1(

T 1 − T 2
)
l2

⎤
⎥⎥⎥⎥⎥⎥⎦

T

(3)

where l1 is the distance between vertical thrusters and the
midship, l2 is the distance between horizontal thrusters and the
center line, and l3 is the vertical distance between horizontal
thrusters and the center of gravity. The pitch moment (T 1 +
T 2)l3 is induced by the misalignment between the horizontal
thrusters and the depth of the vehicle gravity center. For all
the numerical values of the coefficients in the models, see
Appendix I.

C. Thruster Power Consumption Model

In this work, the thruster propulsion energy is the major
energy consumption for vehicle operation. The following
empirical model captures the power consumed by each thruster

h p
(
T i

) = α
(
T i

)2
, for i = 1, 2, 3, 4 (4)
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Fig. 3. Validation of the thruster power consumption model.

and the energy consumption is calculated by integrating (4).
The power conversion ratio α = 0.4364 is derived from the
DROP-Sphere experimental data collected at the towing tank
located at the University of Michigan. During the experiment,
two horizontal thrusters were commanded to drive the vehicle
for consecutive straight-line and turning maneuvers in the
horizontal plane. The thrusts and the power consumption
of two horizontal thrusters are measured. The comparison
between the power consumption from the experimental data
and that from the model in (4) is provided in Fig. 3. The mean
absolute error between the true and predicted power is 1.4 W.
As seen in the zoomed-in plot of Fig. 3, the empirical model
can well capture the thruster power consumption except in
extremely high-power regions.

D. Energy-Optimal Control Problem

Consider an underwater exploration mission for an AUV
with a sequence of Nw waypoints, WP = {WPi ∈ R

2, i =
0, . . . , Nw}, given by the planning algorithm, where WPi =
(WPx

i ,WPy
i ) contains the x and y locations of the i th way-

point, and WP0 corresponds to the initial location of the
vehicle. All the waypoints are assumed to be at the same
depth as the vehicle initial depth, and the vehicle is initialized
with zero relative velocities and a heading toward WP1. The
energy-optimal control problem is formulated as

min{T 1
k },{T 2

k },{T 3
k },{T 4

k }
J =

N f −1∑
k=0

4∑
i=1

h p
(
T i

k

)
�t (5a)

s.t. χ k+1 = fdt (χ k, T i
k ,Vc,k), χ0 = χ init (5b)

|T i
k | ≤ T̄ , |�zk | = |zk − z0| ≤ z̄ (5c)

|φk | ≤ φ̄, |θk | ≤ θ̄ (5d)

∀WP j ∈ WP, ∃χm j
, where m j ∈ [

0, N f
]

and m0 ≤ m1 ≤ · · · ≤ m Nw , such that√(
xm j − WPx

j

)2 +
(

ym j − WPy
j

)2 ≤ rCOA (5e)

where χ = [νr , η] is the states of the vehicle, fdt (·) is the
discrete-time vehicle kinematics and dynamics obtained by
discretizing (1) with time step �t , {T i

k } denotes the input
sequence of the i th thruster, N f is the total number of time
steps, T̄ is the thruster limit, χ init is the initial condition of

the vehicle, and rCOA is the radius of the circle of acceptance
(COA). z̄, φ̄, and θ̄ are the upper bounds of the devia-
tion in depth, roll angle, and pitch angle, respectively, The
constraint (5e) is included to ensure that the vehicle will
sequentially visit all the waypoints by entering the COA of
each waypoint.

For simplicity, we make the following assumptions about the
environment: 1) the vertical velocity component of ocean cur-
rents is negligible compared to the motion of the vehicle [23];
2) the environment is obstacle-free; and 3) the magnitude
of ocean currents is less than the maximum surge speed of
the vehicle to guarantee complete reachability. In the case of
strong currents or the presence of obstacles, the waypoints can
be replanned to ensure the satisfaction of assumptions 2) and
3). In addition, we assume that the knowledge of the vehicle
states and the ocean flow velocity at the vehicle location con-
tains negligible errors, which can be achieved with advanced
sensor fusion algorithms and appropriate sensors [24], [25].

III. GLOBALLY OPTIMIZED VEHICLE MANEUVER

SIMULATION AND ANALYSIS

In this section, we first solve the energy-optimal control
problem formulated in Section II-D using off-line trajectory
optimization. The solution will provide a benchmark for
evaluating the performance of the proposed approach. Then,
we analyze the characteristics of the optimal maneuver to
facilitate the subsequent controller development.

A. Trajectory Optimization Using Direct Collocation

To solve the energy-optimal control problem in Section II-D,
we apply DC [26] for trajectory optimization, which employs
the following steps to compute the optimal vehicle thrust
sequences. First, the vehicle input and state trajectories from
the initial condition to the desired end condition are equally
discretized with a constant time step size. Based on the
discretization, the trajectory optimization problem is reformu-
lated as a nonlinear programming (NLP) problem using the
discretized states and inputs as the decision variables. For the
NLP, the objective function is the sum of propulsion energy
evaluated using the discretized inputs, and the constraint is that
two adjacent states and the corresponding inputs should satisfy
the vehicle dynamics. Finally, the NLP is solved numerically
to obtain the optimal vehicle thrust sequences.

To examine the energy-optimal vehicle motion and behavior
using DC, we consider a case study where an AUV is required
to sequentially visit two waypoints, as shown in Fig. 4(a). The
parameters for the constraints are chosen as T̄ = 7.86 N,
z̄ = 0.005 m, φ̄ = 0.7 rad, θ̄ = 0.02 rad, and rCOA =
2 m. Considering that the ocean currents are modeled as
disturbances in vehicle kinematics, and they will not change
the nature of vehicle dynamics, especially in terms of the
relative velocity, we study the case where the velocity of
ocean currents is zero to facilitate the analysis of the dynamic
characteristics of the energy-efficient maneuvers. The insights
from this case study can be extended to arbitrary ocean current
velocities, as to be discussed in Section IV.
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Fig. 4. Vehicle trajectories from the DC (green arrows in (a) indicate the
sequence of the waypoints; �z denotes the deviation from the desired depth).

In this case study, a waypoint tracking problem is decom-
posed and solved as multiple waypoint tracking problems
between two sequential waypoints. For each waypoint tracking
problem, we first compute the optimal vehicle trajectories from
the current vehicle location to the desired waypoint using DC.
Then, the DC solution is executed until the vehicle reaches the
COA of the desired waypoint. By considering only two way-
points at a time, the solution may have deteriorated energy effi-
ciency compared to the global optimal solution that considers
all waypoints at the same time. However, it makes the problem
computationally more tractable, especially for long missions.
Moreover, this approach is less likely to suffer from robustness
issues (e.g., missing the waypoint) or performance degradation
under model uncertainties and waypoint replanning [27]. With
discretization of the trajectories for each waypoint tracking
problem into 100 segments, the optimal solution from the DC
is given in Fig. 4, which shows that the DC can drive the
vehicle to sequentially visit the waypoints while maintaining
its depth, roll angle, and pitch angle. However, the computation
for solving each NLP in the above case study is intensive
(e.g., about 200 s for each segment on a 2.9-GHz Intel Core
i5 processor with 16-GB RAM), making it prohibitive as a
real-time energy-optimal control strategy for resource-limited
AUV platforms.

B. Analysis of the Optimal Maneuver

Since the DC solution represents a globally optimized
maneuver for each waypoint tracking problem, we analyze
the characteristics of the optimal maneuver to guide the sub-
sequent controller development. The vehicle relative velocities
of the DC solution are given in Fig. 5, and the vehicle power
consumption and horizontal thruster inputs are given in Fig. 6.
According to Figs. 5 and 6, we make the following remarks
on the desired energy-optimal maneuvering:

Remark 1 (Pitch and Heave Control): The pitch power
and relative heave velocity are nearly zero over the entire
operation, indicating that the pitch control energy and the
heave motion are negligible. The constant heave power is
mainly used for overcoming the vehicle’s positive buoyancy.
Thus, the energy-saving potential for optimizing heave and
pitch control is minimal.

Fig. 5. Vehicle relative velocities of the DC solution (red dashed line indicates
the instance when the vehicle switches its destination to the second waypoint).

Fig. 6. Vehicle power consumption and thrusts of the DC solution (red
dashed line indicates the instance when the vehicle switches its destination to
the second waypoint; the power for overcoming surge drag and the power for
nullifying positive buoyancy are derived with 2h p(Xuur/2) and 2h p((B −
W )/2), respectively).

Remark 2 (Surge Control): The surge power is mainly used
for overcoming the surge drag force over the entire operation
except when the vehicle performs the initial acceleration.

Remark 3 (Static and Dynamic Modes): Two distinctive
modes can be identified, which we refer to as static mode and
dynamic mode. In the static mode, the vehicle has a constant
surge speed with minimal motion in other DOFs, and yaw
and pitch power consumptions are negligible. In the dynamic
mode, the vehicle has a nonzero yaw rate, and energy is
used for surge, heave, and yaw controls. The dynamic mode
happens only when the vehicle needs to change its direction
(e.g., waypoint switch). Typically, the vehicle first turns to its
desired heading then keeps its course (i.e., first dynamic mode
and then static mode). The characteristics of the two modes
can also be observed from the variations in the difference
between horizontal thrusts over the entire operation.

IV. ENERGY-OPTIMAL EMPC FOR AUV
ENERGY-OPTIMAL CONTROL

In this section, we propose an online control design that
addresses the energy-optimal control problem formulated in
Section II-D. Based on the analysis in Section III-B, we first
propose a decoupled controller design with an EMPC to con-
trol the vehicle horizontal thrusters. Then, the terminal cost of
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the EMPC is derived. Finally, we present the overall schematic
of the energy-optimal EMPC and provide an analysis of the
EMPC to show the tradeoffs in vehicle control energy.

A. Control Decoupling

Since the energy-saving potential of heave and pitch con-
trols is minimum for horizontal vehicle maneuvers (see
Remark 1), the heave and pitch controls from the vertical
thrusters are decoupled from the energy-optimal control prob-
lem and achieved with two individual PID controllers to reduce
the computation complexity. For the control of horizontal
thrusters, we adopt the EMPC for the following reasons [28].
First, EMPC can explicitly minimize vehicle control energy
with consideration of vehicle dynamics and thruster limits,
assuring the feasibility of the control. Second, it can account
for the long-term effect of control inputs on vehicle energy
with the terminal cost.

Following the standard EMPC formulation, we optimize
the horizontal thruster sequences {T 1

k|t } and {T 2
k|t } within the

prediction horizon by minimizing the cost given as

J =
H−1∑
k=0

Lk|t + E (6)

where (·)k|t is the k-step ahead prediction made at time instant
t , H is the prediction horizon, and E is the terminal cost. The
stage cost Lk|t is formulated as

Lk|t =
(

2∑
i=1

h p
(
T i

k|t
) + PPB

)
δtL (7)

where δtL is the time step size within the prediction horizon,
and the heave and pitch control power PPB are approximated
as

PPB = 2h p((B − W )/2). (8)

The optimization in (6) is performed subject to: 1) hori-
zontal thrust limits (T̄ ) and 2) control-oriented model derived
from (1) based on the vehicle geometry and the energy-optimal
maneuver observed in Section III-B (i.e., by assuming wr =
p = q = φ = θ = 0)

(m − Xu̇)u̇r = vr rm − Xuur + T 1 + T 2 (9a)

(m − Yv̇ )v̇r = −ur rm − Yvvr (9b)

(Izz − Nṙ )ṙ = −Nr r + (
T 1 − T 2)l2 (9c)

ẋ = cosψur − sinψvr + V x
c (9d)

ẏ = sinψur + cosψvr + V y
c (9e)

ψ̇ = r (9f)

where (9a)–(9c) are the surge, sway, and yaw dynamics, (9d)–
(9f) are the x , y, and yaw kinematics, m is the vehicle total
mass, and Izz is the moment of inertia around the heave
direction.

Fig. 7. Illustration of the virtual Earth-fixed frame to account for the drift
effect of ocean currents Vc represented by the black arrow (the solid black
line is the vehicle trajectory beyond the prediction horizon in the Earth-fixed
frame; the dashed gray line is the vehicle trajectory beyond the prediction
horizon in the virtual Earth-fixed frame; and the gray arrow indicates the drift
in the desired waypoint).

B. EMPC Terminal Cost Formulation

To retain energy efficiency close to that from the DC
solution, we design the terminal cost E in (6) to capture
the energy-to-go, the energy required to reach the destination
(i.e., the desired waypoint) beyond the prediction horizon. For
computationally efficient numerical optimization, we derive
an analytical expression for the energy-to-go through the
following steps.

1) Accommodation of Ocean Currents: Motivated by [29],
a virtual Earth-fixed frame {ev} is introduced to account for
the effect of ocean currents on the vehicle motion (see Fig. 7).
Define the virtual Earth-fixed frame as a frame that moves with
the current such that the ocean current will be seen as zero
in the virtual Earth-fixed frame. The vehicle motion in the
virtual Earth-fixed frame and body-fixed frame under current
can be captured with (1). Meanwhile, a fixed waypoint in the
Earth-fixed frame will become a moving virtual destination in
the virtual Earth-fixed frame, moving at the velocity equal to
the opposite of the ocean current velocity. Finding the thrust
profile that can drive the vehicle to the waypoint WPi+1 in the
Earth-fixed frame in time �t is then equivalent to finding the
thrust profile that can drive the vehicle to the following virtual
destination in the virtual Earth-fixed frame in time �t :{

x f = WPx
i+1 − V x

c �t

y f = WPy
i+1 − V y

c �t .
(10)

Consequently, the problem of approximating the energy to
reach WPi+1 under currents can be reformulated as approxi-
mating the energy to (x f , y f ) under no current.

2) Energy-to-go Partition: To approximate the energy-to-go
in the virtual Earth-fixed frame, recall the characteristics of
the static and dynamic modes observed from the DC solution
(see Remark 3). We then partition the energy-to-go into the
dynamic and static parts and express the terminal cost as

E = Ed + Es (11)

where Ed and Es approximate the dynamic and static parts in
the energy-to-go, respectively. See Fig. 8 for an illustration of
the two components in energy-to-go. To derive the dynamic
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Fig. 8. Illustration of the dynamic and static parts (blue line indicates the
vehicle trajectory beyond the prediction horizon).

and static parts, given that the vehicle control energy is closely
related to its travel time, the travel time in the dynamic
and static parts, denoted by �d and �s , respectively, are
introduced as extra decision variables in EMPC, where �t =
�d + �s . Meanwhile, constraints on these decision variables
are included in the optimization to ensure that a meaningful
solution can be derived.

3) Energy Approximation in the Static Mode: In the sta-
tic mode, the thruster power is mainly used for surge and
heave controls, and the surge speed is nearly constant. Thus,
we approximate the total power as

Ps = PPB + PSD (12)

where PSD = 2h p(Xuur,H |t/2) is the power for overcoming
the surge drag force under constant surge speed. Then, the
static part of the energy-to-go is approximated with

Es = Ps�s . (13)

To ensure that the vehicle can move from the location at the
end of the dynamic mode (xm, ym) to the destination in �s with
constant surge speed and heading, we need a constraint on �s .
Considering that the vehicle trajectory is nearly a straight line,
an equality constraint is imposed as

�s =
√(

y f − ym
)2 + (

x f − xm
)2

Uv
(14)

where Uv = ur,H |t approximates the vehicle total speed in the
virtual Earth-fixed frame.

4) Energy Approximation in the Dynamic Mode: In the
dynamic mode, the thruster energy is consumed for surge,
heave, and yaw controls. The heave power is for nullifying
the positive buoyancy and, thus, can be approximated with
PPB. The thrusts required for the surge and yaw controls can
be derived from (9a) and (9c) given by⎧⎪⎪⎨

⎪⎪⎩
T 1

k|t = Xuur,k|t
2

+ (Izz − Nṙ )ṙk|t + Nr rk|t
2l2

T 2
k|t = Xuur,k|t

2
− (Izz − Nṙ )ṙk|t + Nr rk|t

2l2

(15)

for k ≥ H . Note that the surge power is mainly consumed
for overcoming the surge drag force in the dynamic mode

Fig. 9. Approximation of the yaw rate profile during the dynamic mode.

(see Remark 2). Thus, the thrusts for the surge control in the
dynamic mode share the same parameterization as that in the
static mode.

To obtain the thrusts from (15), we then assume ur,k|t =
ur,H |t for k ≥ H . Namely, the thrusts for surge control are
assumed to remain the same beyond the prediction horizon.
Denote the variation in the course direction of the vehicle
during the dynamic mode as ψd (see Fig. 8). To achieve the
desired change in the heading, the yaw rate is assumed to
increase to a maximum yaw rate (rmax) in the first half of the
dynamic mode and then decreases to zero in the rest of the
dynamic mode, as shown in Fig. 9. Mathematically, the yaw
rate is expressed as

rk|t

=

⎧⎪⎪⎨
⎪⎪⎩

rH |t +a1(k−H )δtd , H ≤ k ≤ �d

2δtd
+H

rmax+a2

(
(k−H )δtd −�d

2

)
,

�d

2δtd
+H ≤ k ≤ �d

δtd
+H

(16)

where rmax = 2ψd/�d − 0.5rH |t , a1 = 2(rmax − rH |t)/�d

represents the ṙ in the first half of the dynamic mode, a2 =
−2rmax/�d represents the ṙ in the second half of the dynamic
mode, and δtd is the time step size in the dynamic mode.

With (15) and (16), we can derive the surge and yaw
power in the dynamic mode with arbitrary δtd . To permit
a computationally-efficient implementation, δtd is chosen as
half of the travel time in the dynamic mode, i.e., �d/2. Then,
following the trapezoid rule, the power in the dynamic mode
is approximated using the power to generate the thrusts at the
end of the prediction horizon (T i

H |t), the middle of the dynamic
mode (T i

H+1|t), and the end of the dynamic mode (T i
H+2|t) as

Pd = PPB +
2∑

i=1

h p

(
T i

H |t
)

+ 2h p

(
T i

H+1|t
)

+ h p

(
T i

H+2|t
)

4

= PPB + PSD + Pyaw (17)

where h p(T i
H+1|t) is the average of the power to generate the

thrust at the middle of the dynamic mode when ṙ = a1, and
when ṙ = a2, Pyaw is the power for yaw control given as

Pyaw = c0 + c1

�d
+ c2

�2
d

+ c3

�3
d

+ c4

�4
d

(18)

and ci (i = 0, . . . , 4) are coefficients of the approximated yaw
power. See Appendix II for the detailed derivation of (17) and
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(18). Consequently, the dynamic part of the energy-to-go can
be expressed by

Ed = Pd�d . (19)

To ensure that the vehicle can move from (xH |t, yH |t) to
(xm, ym) in �d with the approximated thrusts, we may need
to evaluate the vehicle dynamics, which can be nontrivial.
In this study, we make the following assumptions to derive
the relationship between (xH |t, yH |t) and (xm, ym). First, ψd is
assumed as 2β�ψH |t , where �ψH |t = atan2(y f − yH |t, x f −
xH |t)−tan−1(vr,H |t/ur,H |t)−ψH |t is the difference between the
desired and present course directions of the vehicle at the end
of prediction horizon, and atan2(y,x) generalizes tan−1(y/x) to
consider the signs of x and y and returns an angle between
−π to π . Second, (xm, ym) is assumed to be located on the
line between (xH |t, yH |t) and (x f , y f ). Then, (xm, ym) can be
given based on vehicle kinematics (i.e., constant surge, sway,
and yaw velocities) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xm = xH |t + Uv�d sin

(
β�ψH |t

)
cos

(
γp

)
β�ψH |t

ym = yH |t + Uv�d sin
(
β�ψH |t

)
sin

(
γp

)
β�ψH |t

(20)

where γp is the course direction between (xH |t, yH |t) and
(x f , y f ). Note that β will be a tuning parameter of the
control that affects the sharpness of the turn, and an extensive
discussion on the effect of β will be made in Section V-C.

C. Energy-Optimal EMPC Formulation and Analysis

By incorporating the approximated energy-to-go presented
in Section IV-B, the proposed EMPC is given as

min{
T 1

k|t
}
,
{

T 2
k|t

}
,�d ,�s

J =
H−1∑
k=0

Lk|t + Pd�d + Ps�s (21a)

s.t. ζ k+1|t = fh
dt (ζ k|t , T 1

k|t , T 2
k|t ,Vc,k|t ), ζ 0|t = ζ t (21b)

|T 1
k|t | ≤ T̄ , |T 2

k|t | ≤ T̄ , 0 < ur,k+1|t (21c)

Uv

(
�d sin

(
β�ψH |t

)
β�ψH |t

+ �s

)
= d (21d)

where ζ = [ur , vr , r, x, y, ψ] is the states of the
vehicle in the horizontal plane, fh

dt (·) is the discrete-time
vehicle kinematics and dynamics in the horizontal plane
obtained by discretizing (9) with time step δtL , and
d = ((y f − yH |t)2 + (x f − xH |t)2)1/2 is the required traveling
distance in the virtual Earth-fixed frame. From (21), it can be
seen that we parameterized the energy-to-go with �s and �d

while enforcing a constraint (21d) on �s and �d to guarantee
the satisfaction of vehicle motion model. The constraint (21d)
is obtained from merging the kinematic constraints in (14)
and (20).

The energy-optimal EMPC (EO-EMPC) is then proposed by
combining the EMPC for controlling the horizontal thrusters
and PIDs for controlling the vertical thrusters (see Fig. 10).
By regrouping the terms in the approximated energy-to-go, the

Fig. 10. Control architecture for the proposed EO-EMPC (z f and θ f are
the desired depth and pitch angle, respectively).

terminal cost is expressed as

E = Pd�d + Ps�s

= (
PPB + PSD)

(�d + �s)︸ ︷︷ ︸
Surge & Heave Energy

+ Pyaw�d︸ ︷︷ ︸
Yaw Energy

. (22)

From (22), we can see that two tradeoffs in vehicle control
energy are captured by the approximated energy-to-go.

1) Surge Versus Heave: The tradeoff between the energy
components for surge and heave controls appears in both
dynamic and static modes. Since heave power PPB is
constant, a shorter travel time is desirable for reducing
heave energy. However, considering that surge power is
proportional to the squared surge speed, a shorter travel
time will lead to larger energy spent for surge control.

2) Surge Versus Heave Versus Yaw: In the dynamic mode,
the tradeoff between the energy components for surge
and heave controls will also be affected by the energy
component for yaw control. Since a lower turning rate
requires smaller yaw moments, a slower turn (i.e., larger
�d ) consumes less yaw power, as is demonstrated with
(18). However, an overly slow turn will lead to an
extremely long travel time. Since the energy is the time
integral of power, the yaw energy can also be large for an
overly slow turn (i.e., c0�d dominates the yaw energy).
Therefore, the minimum yaw energy is achieved with a
neither too large nor too small travel time.

These two tradeoffs imply that we have to balance the energy
components for surge, heave, and yaw controls with an optimal
travel time to minimize the total energy used.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we validate the effectiveness of the proposed
approach in two steps with different current conditions. First,
the proposed approach is evaluated with the same scenario
in Section III and compared with the DC solution. Secondly,
extensive simulations are performed to compare the proposed
approach with a LOS-based control scheme for AUVs on a
more realistic mission profile. Finally, discussions are made
in terms of the tuning parameters and possible extensions of
the proposed EMPC.
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TABLE I

ENERGY CONSUMPTION COMPARISON BETWEEN THE DC AND EO-EMPC

A. Comparison With the DC

To validate that the EMPC based on approximated energy-
to-go leads to performance close to the DC solution, we apply
the proposed approach to the same mission profile in
Section III. We select the following four conditions with
constant ocean current velocity to make the problem com-
putationally manageable for the DC.

1) Uc = 0 m/s and ψc = 0◦.
2) Uc = 0.160 m/s and ψc = −66.21◦.
3) Uc = 0.105 m/s and ψc = −135.41◦.
4) Uc = 0.054 m/s and ψc = 141.92◦.

Here, Uc = ((V x
c )

2 + (V y
c )

2)1/2 and ψc = atan2(V y
c , V x

c ) are
the magnitude and direction of the ocean currents, respectively.
For EMPC, the time step sizes within the prediction horizon
and the prediction horizon are 0.1 and 1 s, respectively.
We choose β = 1. The optimization in EMPC is solved with
fmincon in MATLAB. The simulation of the vehicle motion
is performed in MATLAB with the six-DOF model presented
in Section II-A. The energy consumption from the EO-EMPC
and DC is summarized in Table I, and the vehicle trajectories
are given in Fig. 11. It can be observed that both controllers
drive the vehicle to visit all the waypoints with a satisfactory
vehicle pose, and EO-EMPC can achieve near-optimal energy
efficiency under different flow conditions. Meanwhile, it is
noteworthy that a significant reduction in computation time
is achieved by EO-EMPC (i.e., the average CPU time for
EO-EMPC is about 0.1 s) by using approximated energy-to-
go. The comparison of the vehicle relative velocities from
both approaches for the flow condition #1 is also provided
in Fig. 12. From Fig. 12, we see that EO-EMPC mimics the
DC solution, e.g., it reduces the relative surge velocity during
turning to save energy.

B. Comparison With a LOS-Based Approach

To further demonstrate the effectiveness of EO-EMPC,
we consider a lawnmower-type mission where the x and
y locations of the waypoints are WPi ∈ {(0, 0), (50, 0),
(50, 10), (0, 10), (0, 20), (50, 20), (50, 30), (0, 30), (0, 40),
(50, 40), (50, 50), (0, 50), (0, 0)} m. This lawnmower path
represents a mission where the vehicle surveys or maps an
area (e.g., [30], [31]). Five different current conditions are
selected for performance comparison. The current condition
#5 has zero current velocity over the entire operating domain.
The current conditions #6–#9 are selected among the ocean
current data obtained from U.S. Integrated Ocean Observing
System High Frequency Radar Network (HFRNet) [32]. The

Fig. 11. Vehicle trajectories from the DC and EO-EMPC under different
flow conditions (�z denotes the deviation from the desired depth). (a) Flow
condition #1. (b) Flow condition #2. (c) Flow condition #3. (d) Flow
condition #4.

flow data for the region near Long Island in New York from
March 24, 2019, to March 25, 2019, are linearly interpolated
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Fig. 12. Vehicle relative velocities from the DC and EO-EMPC under flow
condition #1 (red dashed line indicates the instance when the vehicle switches
its destination to the second waypoint).

Fig. 13. Setup of the mission. (a) Current conditions. (b) Mission profile;
green arrows indicate the sequence of the waypoints.

between spatial and temporal grid points to simulate the flow
field. The patterns of the chosen current conditions and the
setup of the waypoints are given in Fig. 13.

Since solving the above mission profiles using the DC
is computationally prohibitive, the LOS guidance-based
approach is adopted for comparison as it represents a con-
ventional solution for the mission. In particular, the energy-
optimal LOS-based approach of [33] is implemented, which
uses an MPC to control the horizontal thrusters for tracking an
energy-optimal surge speed setpoint and a yaw angle setpoint
from the LOS guidance. Two individual PID controllers are
employed for the vertical thruster control to maintain zero
pitch angle and a constant depth. The yaw angle setpoint is
computed as [34]

ψs = γd − tan−1

(
vr + vc

ur + uc

)
(23)

where γd = γc − tan−1(ye/dlos) represents the desired course
direction of the vehicle, γc is the course direction between the
present and past waypoints, ye is the distance from the vehicle
location to the line linking the present and past waypoints
(i.e., cross-track error), and dlos is the lookahead distance. The
second term on the right of (23) compensates for the drift
effect from currents. See Fig. 14 for an illustration of the LOS
geometry. The lookahead distance is chosen as 2 m in this
study. The setpoint for the relative surge velocity is computed
by minimizing the energy for surge and heave controls within

Fig. 14. Illustration of the LOS geometry.

Fig. 15. Thrusts from the LOS-based approach and EO-EMPC under no
current (i.e., flow condition #5).

Fig. 16. Effect of β on the performance of EO-EMPC under different flow
conditions and with different sway damping coefficients. (a) Flow condition
#1. (b) Flow condition #2. (c) Flow condition #3. (d) Flow condition #4.

unit travel distance given as

us = arg min
ur

PSD + PPB

Urd
(24)

where Urd is the vehicle speed projected onto γd expressed as

Urd =
√

u2
r + v2

r − (Uc sinψcd)
2 + Uc cosψcd (25)

and ψcd = ψc − γd . The optimization in (24) is subject to the
constraint that the vehicle relative surge velocity must be large
enough to permit a positive Urd.

Based on the above setup, we simulate the EO-EMPC
and the LOS-based approach, and summarize the vehicle
performance in Table II. The average cross-track error is com-
puted by averaging vehicle deviations from the line between
the present and past waypoints when the vehicle is outside
the COA. From Table II, it is verified that EO-EMPC can
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Fig. 17. Vehicle trajectories of EO-EMPC with different choices of β under flow condition #2. (a) Yv = 5 kg/s (50% of the nominal). (b) Yv = 10 kg/s
(nominal). (c) Yv = 15 kg/s (150% of the nominal).

TABLE II

PERFORMANCE COMPARISON BETWEEN THE LOS-BASED APPROACH AND EO-EMPC

significantly reduce the vehicle control energy when following
the waypoints. To further illustrate the advantage of EO-
EMPC, the horizontal thrusts from the LOS-based approach
and EO-EMPC under the current condition #5 are compared
in Fig. 15. It can be seen that EO-EMPC reduces the energy
consumption by avoiding the spikes in the thruster inputs dur-
ing the vehicle turning. On the downside, the EO-EMPC has
a slightly longer traveling time and larger average cross-track
error than that from the LOS-based approach across all cases
as the EO-EMPC only aims at minimizing the vehicle energy
consumption.

C. Discussions

Discussions are made in the following aspects concerning
the use of the proposed approach in real-world applications.

1) Choice of the Parameter β: When formulating the
EMPC, β is introduced as a tuning parameter to characterize
the relationship between the required heading variation in the
dynamic mode (ψd) and the difference between the desired
and present course directions of the vehicle at the end of the
prediction horizon (�ψH |t). As shown in Fig. 8, the vehicle
has to change its heading by at least �ψH |t to head toward
the destination. In reality, since the vehicle will be moving
forward and subject to induced sway motion while turning,
ψd must be larger than �ψH |t to compensate for the drift
during the turning, i.e., β > 0.5. Meanwhile, the performance
of the control will be affected by the choice of β. In particular,
a too large or too small β will lead to a sharp or a slow turn,
respectively, resulting in deteriorated energy efficiency.

To illustrate the effect of β on the control performance, the
energy consumed by EO-EMPC with different β’s on the mis-
sion profile in Section V-A under different flow conditions and
sway damping coefficient values is compared in Fig. 16. The
vehicle trajectories of EO-EMPC with different β’s under flow
condition #2 are also provided in Fig. 17. Figs. 16 and 17 show
that a constant value of β ≈ 1 yields near-optimal vehicle
energy efficiency under different conditions, suggesting that it
may be used for different real-world applications.

2) Regulation of the Cross-Track Error: In this work,
we investigate the waypoint tracking problem, and the pro-
posed EO-EMPC takes no consideration of the cross-track
error. However, the proposed approach can be modified to
address the path following problem by including a term related
to the cross-track error in the terminal cost of EMPC as
follows:

E = Pd�d + Ps�s +wct y
2
e,H |t (26)

where wct is a constant factor penalizing a large cross-track
error and ye,H |t is the cross-track error of the vehicle state
at the end of the prediction horizon. Since the vehicle will
be performing the waypoint transition inside the COA, the
cross-track error is not considered (i.e., ye,H |t = 0) when the
vehicle is in the COA. The performance of the EO-EMPC
using the terminal cost in (26) with different choices of wct

on the mission profile in Section V-A under flow condition
#2 is summarized in Fig. 18. It can be seen that a smaller
average cross-track error can be achieved with a larger wct in
the modified terminal cost. Meanwhile, energy efficiency will
be compromised for a larger wct as the vehicle may need to
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turn drastically to reduce the cross-track error. In real-world
applications, the value of wct can be determined by the user
to satisfy different mission requirements and reflect the proper
tradeoff between energy efficiency and path following.

VI. CONCLUSION

In this article, we investigate the energy-optimal control
problem of AUVs under ocean currents. To develop an optimal
control strategy feasible for onboard applications, an EO-
EMPC that uses EMPC for horizontal thruster control and
PIDs for vertical thruster control is proposed. In order to
obtain energy efficiency close to that of the DC, the terminal
cost in EMPC is formulated as the approximated energy-to-go.
Based on the characteristics of the optimal maneuver in the
DC solution, we partition the energy-to-go into dynamic and

static parts, and parameterize them based on their durations,
the destination, vehicle dynamics, and ocean currents. Exten-
sive analysis of the approximated energy-to-go shows that
it captures the tradeoffs among different energy-consuming
components for surge, heave, and yaw controls. Simulation
evaluation is first conducted by comparing EO-EMPC with the
DC and demonstrates that EO-EMPC can achieve near-optimal
energy efficiency. Further simulation analysis is performed
on a lawnmower path under different current conditions.
By comparing EO-EMPC with the LOS-based approach, it is
demonstrated that EO-EMPC can achieve substantial energy
reductions by leveraging the vehicle dynamics and current
information.

Future work will focus on the experimental validation of the
proposed approach on the test-bed AUV, DROP-Sphere. In this

Pd = PPB +
2∑

i=1

h p

(
T i

H |t
)

+ 2h p

(
T i

H+1|t
)

+ h p

(
T i

H+2|t
)

4

Substituting (15) and (16):

= PPB + α

4

((
Xuur,H |t

2
+ mr a1 + NrrH |t

2l2

)2

+
(

Xuur,H |t
2

− mr a1 + Nr rH |t
2l2

)2

+
(

Xuur,H |t
2
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2l2

)2

+
(
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2
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(
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(
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�d
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�d
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:
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+
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r
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2
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α
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mr Nr r2
H |t + N2

r ψdrH |t
)

2l2
2

, c2 =
α
(

5m2
r r2

H |t + 2N2
r ψ

2
d

)
2l2

2

(28a)

c3 = −α
(
8m2

r rH |tψd
)

l2
2

, c4 = 8m2
rψ

2
d

l2
2

(28b)

and mr = Izz − Nṙ .
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Fig. 18. Performance of the EO-EMPC modified for path following with
different choices of wct under flow condition #2. (a) Vehicle trajectory.
(b) Energy and average cross-track error comparison.

work, it is assumed that the knowledge of the vehicle states
and ocean currents is perfect, which can be difficult to achieve
on some low-cost AUV platforms. Therefore, in the future,
we will investigate the robustness of the proposed approach
under uncertainty in the state estimation and ocean current pre-
diction. Finally, for typical AUVs, the vehicle hydrodynamic
coefficients can vary depending on the vehicle payloads and
environmental conditions. Thus, validating the vehicle models
used in this study and investigating the adaptation of the
proposed control to handle the model mismatch will also be
our future focus.

APPENDIX I
DROP-SPHERE MODEL PARAMETERS

m = 20.42 kg Ixx = 0.1205 kg · m2

xg = 0 m yg = 0 m

l1 = 0.2794 m l2 = 0.1694 m

Yv̇ = −20 kg Zẇ = −40 kg

Nṙ = −2 kg · m2/rad Xu = 15 kg/s

K p = 10 kg · m2/(s · rad) Mq = 5 kg · m2/(s · rad)

Iyy = 0.9431 kg · m2 Izz = 1.0061 kg · m2

zg = 0.00178 m zb = −0.009 m

l3 = −0.0204 m Xu̇ = −10 kg

K ṗ = −2 kg · m2/rad Mq̇ = −2 kg · m2/rad

Yv = 10 kg/s Zw = 10 kg/s

Nr = 5 kg · m2/(s · rad).

APPENDIX II
DERIVATION OF THE APPROXIMATED POWER IN THE

DYNAMIC MODE

(27), (28a), and (28b), as shown at the bottom of the
previous page.

ACKNOWLEDGMENT

The authors would like to thank Dr. C. Barbalata of
Louisiana State University, and Dr. E. I. Rüland for providing
details of the AUV model during the course of this article.

REFERENCES

[1] J.-S. Wang and C. S. G. Lee, “Self-adaptive recurrent neuro-fuzzy
control of an autonomous underwater vehicle,” IEEE Trans. Robot.
Autom., vol. 19, no. 2, pp. 283–295, Apr. 2003.

[2] K. Zwolak and A. Felski, “Current state of deep ocean bathy-
metric exploration,” Annu. Navigat., vol. 24, no. 1, pp. 257–267,
Dec. 2017.

[3] D. Chang, F. Zhang, and C. R. Edwards, “Real-time guidance of
underwater gliders assisted by predictive ocean models,” J. Atmos.
Ocean. Technol., vol. 32, no. 3, pp. 562–578, 2015.

[4] S. Williams et al., “Monitoring of benthic reference sites: Using an
autonomous underwater vehicle,” IEEE Robot. Autom. Mag., vol. 19,
no. 1, pp. 73–84, Mar. 2012.

[5] D. Kruger, R. Stolkin, A. Blum, and J. Briganti, “Optimal AUV
path planning for extended missions in complex, fast-flowing estuarine
environments,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 2007,
pp. 4265–4270.

[6] J. Witt and M. Dunbabin, “Go with the flow: Optimal AUV path
planning in coastal environments,” in Proc. Austral. Conf. Robot. Autom.,
2008, pp. 1–9.

[7] A. Alvarez, A. Caiti, and R. Onken, “Evolutionary path planning for
autonomous underwater vehicles in a variable ocean,” IEEE J. Ocean.
Eng., vol. 29, no. 2, pp. 418–429, Apr. 2004.

[8] D. N. Subramani, T. Lolla, P. J. Haley, and P. F. Lermusiaux,
“A stochastic optimization method for energy-based path planning,”
in Proc. Int. Conf. Dyn. Data-Driven Environ. Syst. Sci., 2014,
pp. 347–358.

[9] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots:
A review,” Int. J. Phys. Sci., vol. 7, no. 9, pp. 1314–1320, Feb. 2012.

[10] C. Shen, Y. Shi, and B. Buckham, “Integrated path planning and tracking
control of an AUV: A unified receding horizon optimization approach,”
IEEE/ASME Trans. Mechatronics, vol. 22, no. 3, pp. 1163–1173,
Jun. 2017.

[11] S. Heshmati-Alamdari, G. C. Karras, P. Marantos, and
K. J. Kyriakopoulos, “A robust predictive control approach for
underwater robotic vehicles,” IEEE Trans. Control Syst. Technol.,
vol. 28, no. 6, pp. 2352–2363, Nov. 2020.

[12] B. Claus and R. Bachmayer, “Energy optimal depth control for
long range underwater vehicles with applications to a hybrid
underwater glider,” Auto. Robots, vol. 40, no. 7, pp. 1307–1320,
Oct. 2016.

[13] N. Wang, Y. Gao, and X. Zhang, “Data-driven performance-prescribed
reinforcement learning control of an unmanned surface vehicle,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5456–5467,
Dec. 2021.

[14] N. Wang, Y. Gao, H. Zhao, and C. K. Ahn, “Reinforcement learning-
based optimal tracking control of an unknown unmanned surface
vehicle,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7,
pp. 3034–3045, Jul. 2021.

[15] E. Bohn, E. M. Coates, S. Moe, and T. A. Johansen, “Deep reinforcement
learning attitude control of fixed-wing UAVs using proximal policy
optimization,” in Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS),
Jun. 2019, pp. 523–533.

[16] N. Yang, M. R. Amini, M. Johnson-Roberson, and J. Sun, “Real-time
model predictive control for energy management in autonomous under-
water vehicle,” in Proc. IEEE Conf. Decis. Control (CDC), Dec. 2018,
pp. 4321–4326.

[17] N. Yang, D. Chang, M. R. Amini, M. Johnson-Robersor, and J. Sun,
“Energy management for autonomous underwater vehicles using eco-
nomic model predictive control,” in Proc. Amer. Control Conf. (ACC),
Jul. 2019, pp. 2639–2644.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 22,2022 at 17:18:15 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

[18] E. Iscar, C. Barbalata, N. Goumas, and M. Johnson-Roberson, “Towards
low cost, deep water AUV optical mapping,” in Proc. OCEANS,
Oct. 2018, pp. 1–6.

[19] L. Lapierre, “Robust diving control of an AUV,” Ocean Eng., vol. 36,
no. 1, pp. 92–104, 2009.

[20] W. Caharija et al., “Integral line-of-sight guidance and control of
underactuated marine vehicles: Theory, simulations, and experiments,”
IEEE Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1623–1642,
Sep. 2016.

[21] A. M. Lekkas and T. I. Fossen, “Line-of-sight guidance for path
following of marine vehicles,” in Advanced in Marine Robotics, O. Gal,
Ed. San Francisco, CA, USA: Academic, 2013, ch. 5, pp. 63–92.

[22] T.-H. Joung, K. Sammut, F. He, and S.-K. Lee, “Shape optimization
of an autonomous underwater vehicle with a ducted propeller using
computational fluid dynamics analysis,” Int. J. Nav. Archit. Ocean Eng.,
vol. 4, no. 1, pp. 44–56, Mar. 2012.

[23] B. Garau, A. Alvarez, and G. Oliver, “AUV navigation through turbulent
ocean environments supported by onboard H-ADCP,” in Proc. IEEE Int.
Conf. Robot. Autom., May 2006, pp. 3556–3561.

[24] O. Hegrenæs and Ø. Hallingstad, “Model-aided INS with sea current
estimation for robust underwater navigation,” IEEE J. Ocean. Eng.,
vol. 36, no. 2, pp. 316–337, Apr. 2011.

[25] L. Medagoda, S. B. Williams, O. Pizarro, J. C. Kinsey, and M. V. Jakuba,
“Mid-water current aided localization for autonomous underwater vehi-
cles,” Auton. Robots, vol. 40, no. 7, pp. 1207–1227, Oct. 2016.

[26] O. Stryk, “Numerical solution of optimal control problems by direct col-
location,” in Optimal Control: Calculus of Variations, Optimal Control
Theory and Numerical Methods, vol. 129. Basel, Germany: Birkhaüser,
1993.

[27] C.-K. Ryoo, H.-S. Shin, and M.-J. Tahk, “Energy optimal waypoint
guidance synthesis for antiship missiles,” IEEE Trans. Aerosp. Electron.
Syst., vol. 46, no. 1, pp. 80–95, Jan. 2010.

[28] J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of economic
model predictive control,” in Proc. IEEE 51st IEEE Conf. Decis. Control
(CDC), Dec. 2012, pp. 3851–3861.

[29] T. G. McGee and J. K. Hedrick, “Optimal path planning with a kinematic
airplane model,” J. Guid., Control, Dyn., vol. 30, no. 2, pp. 629–633,
Mar. 2007.

[30] D. W. Caress et al., “High-resolution multibeam, sidescan, and subbot-
tom surveys using the MBARI AUV D. Allan B.,” in Marine Habitat
Mapping Technology for Alaska. Fairbanks, AK, USA: Alaska Sea Grant
College Program, Univ. Alaska Fairbanks, 2008, pp. 47–69.

[31] S. B. Williams et al., “Autonomous underwater vehicle-assisted sur-
veying of drowned reefs on the shelf edge of the Great Barrier Reef,
Australia,” J. Field Robot., vol. 27, no. 5, pp. 675–697, Sep. 2010.

[32] D. Barrick, V. Fernandez, M. I. Ferrer, C. Whelan, and Ø. Breivik,
“A short-term predictive system for surface currents from a rapidly
deployed coastal HF radar network,” Ocean Dyn., vol. 62, no. 5,
pp. 725–740, May 2012.

[33] N. Yang, D. Chang, M. Johnson-Roberson, and J. Sun, “Robust energy-
optimal path following control for autonomous underwater vehicles
in ocean currents,” in Proc. Amer. Control Conf. (ACC), Jul. 2020,
pp. 5119–5124.

[34] S. Moe and K. Y. Pettersen, “Set-based line-of-sight (LOS) path follow-
ing with collision avoidance for underactuated unmanned surface vessels
under the influence of ocean currents,” in Proc. IEEE Conf. Control
Technol. Appl. (CCTA), Aug. 2017, pp. 241–248.

Niankai Yang (Graduate Student Member, IEEE) received the B.S. degree in
naval architecture and ocean engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2016. He is currently pursuing the Ph.D. degree in naval
architecture and marine engineering with the University of Michigan, Ann
Arbor, MI, USA.

His current research interests include machine learning for condition mon-
itoring of lithium-ion batteries, model predictive control and its application,
and planning and control of autonomous vehicles.

Dongsik Chang (Member, IEEE) received the B.S. degree from Hanyang
University, Seoul, South Korea, in 2007, and the M.S. and Ph.D. degrees
from the Georgia Institute of Technology, Atlanta, GA, USA, in 2010 and
2016, respectively, all in electrical and computer engineering.

He spent about two years in the industry, working with Samsung Electron-
ics, Seoul, as a Senior Engineer. He held a Research Fellow position with the
University of Michigan, Ann Arbor, MI, USA. He is currently a Post-Doctoral
Scholar with Oregon State University, Corvallis, OR, USA. His research lies
at the intersection of systems and control, and robotics. His research interests
include marine robotics, active perception, intelligent autonomous systems,
control theory, mobile sensor networks, multiagent systems, and machine
learning.

Matthew Johnson-Roberson received the B.S. degree from Carnegie Mellon
University, Pittsburgh, PA, USA, and the Ph.D. degree from the University of
Sydney, Sydney, NSW, Australia, in 2010.

He has held post-doctoral positions with the KTH Royal Institute of
Technology, Stockholm, Sweden, and the Australian Center for Field Robotics,
Sydney, Australia. He was a Faculty with the University of Michigan, Ann
Arbor, USA. He is currently a Professor in the Robotics Institute in the School
of Computer Science at Carnegie Mellon University. His current research
interests include the processing and interpretation of three-dimensional data,
specifically 3-D reconstruction, segmentation, machine learning, and robotic
vision.

Dr. Johnson-Roberson was a recipient of the NSF CAREER Award in
2015.

Jing Sun (Fellow, IEEE) received the Ph.D. degree from the University of
Southern California, Los Angeles, CA, USA, in 1989.

She is currently the Michael G. Parsons Collegiate Professor with the
Department of Naval Architecture and Marine Engineering, with joint appoint-
ments with the Department of Electrical Engineering and Computer Science,
and the Department of Mechanical Engineering, University of Michigan,
Ann Arbor, MI, USA. Her research interests include modeling, control, and
optimization of dynamic systems, with applications to marine and automotive
systems.

Dr. Sun is a fellow of the National Academy of Inventors, the International
Federation of Automatic Control (IFAC), and the Society of Naval Architects
and Marine Engineers. She was a recipient of the 2003 IEEE Control System
Technology Award.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 22,2022 at 17:18:15 UTC from IEEE Xplore.  Restrictions apply. 


