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Abstract— Inertial navigation for autonomous underwater
vehicles (AUVs) is challenging because of the drift error caused
by the noise and measurement errors of inertial sensors, typically
packaged as an inertial measurement unit (IMU), integrated over
time. To mitigate the drift error, recent AUV state estimation
approaches incorporate external references or environmental
information obtained from exteroceptive sensors, with increased
costs and limited operational domains. For improved navigation
under sensor constraints, this article proposes an active per-
ception framework that exploits vehicle motion to estimate the
flow state together with the vehicle state using IMU and depth
sensors only. The proposed framework uses the estimated flow
state as external information to improve vehicle state estimation.
We construct a linear time-varying system for the flow state,
separated from a nonlinear system for the vehicle state. This
formulation allows us to analyze uniform complete observability
for the flow state, which is found to depend on vehicle motion.
Then, along with vehicle and flow state estimators, we design
a vehicle controller to enable vehicle motion to maximize an
information metric pertaining to estimation performance based
on either observability or constructability Gramian for the flow
state. The proposed framework is validated through simulations
for a case study with a vehicle descending through the water
column in a time-varying flow field. The effectiveness of the
framework is demonstrated by comparing results obtained from
its four implementations with those from baseline approaches
without active perception.

Index Terms— Active perception, inertial navigation, mid-
water localization, underwater localization, underwater
navigation.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) have sig-
nificantly advanced in their capability of collecting data

for environmental monitoring and exploration in coastal areas
and deep oceans [1]. However, since the global positioning
system (GPS) is not available underwater, AUV navigation
has been challenging. A conventional approach for underwater
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navigation is inertial navigation based on dead reckoning using
inertial sensors, typically packaged as an inertial measurement
unit (IMU), that is, the position and orientation of the vehicle
are calculated by integrating linear acceleration and angular
velocity measurements from an IMU. However, due to the
sensor noise and measurement errors integrated over time,
inertial navigation suffers from the position error that grows
over the course of the mission unless the error, also known
as the drift error, is corrected using external references, e.g.,
through GPS updates.

Since regular surfacing of a vehicle for GPS updates is
not desirable for many underwater missions, other approaches
have been proposed to mitigate the drift error using informa-
tion obtained from exteroceptive sensors as references [2]–[4].
For example, acoustic positioning systems can provide vehicle
position information relative to beacons, but they require either
the presence of a dedicated surface vessel during the mission
or the deployment of transponders prior to the mission. Optical
and acoustic sensors, such as cameras and sonar sensors, are
used to capture environmental information, such as features
of static landmarks to calculate the vehicle position relative
to the landmarks. Doppler velocity logs (DVLs) measure
vehicle velocity relative to the sea bottom, which is used to
estimate vehicle position. However, these sensors are typically
expensive and provide effective information only when the
vehicle stays close to the landmarks or the sea bottom.

In addition to positional reference information, another
information available from exteroceptive sensors is the veloc-
ity of ocean flow (e.g., ocean currents) around a vehi-
cle. Since ocean flow introduces perturbations to vehicle
operations [5]–[7], flow velocity estimation combined with
vehicle pose estimation has been studied to improve vehicle
navigation. For example, flow estimation has been studied
by using vehicle position information obtained from acoustic
positioning systems (e.g., [8], [9]) and also by using measure-
ments of surrounding water velocity relative to the vehicle
obtained from acoustic Doppler current profilers (ADCPs)
(e.g., [10]–[14]). The latter approaches with ADCPs may
work effectively in unstructured regions without limiting the
operational domain of a vehicle, but they incur significant
costs.

With further analysis on the coupling between vehicle
motion and ocean flow, our previous work [15] has found
that this coupling provides a mechanism to obtain information
about ocean flow from vehicle motion, in which by leveraging
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spiral motion of a vehicle (e.g., [16]–[18]) which generates
a three-dimensional (3-D) helical trajectory through the water
column, flow velocity is estimated from the IMU measurement
through active perception (e.g., [19], [20]). Then, this flow
estimate is used to improve vehicle localization using IMU and
depth sensors only. This finding is consistent with the analysis
in [16], which shows that the spiral motion with an acoustic
positioning system can ensure observability, and [10], which
demonstrates that increased complexity of vehicle motion with
DVL and depth sensor measurements helps to reduce the
unobservable subspace. However, the aforementioned studies
employ exteroceptive sensors, and neither take the coupling
between vehicle motion and ocean flow into account nor
incorporate ocean flow estimation in vehicle navigation.

Extending our previous work [15], this article proposes an
active perception framework for underwater navigation that
exploits vehicle motion to estimate the flow state together
with the vehicle state without requiring spiral motion and
exteroceptive sensors. The study in this article assumes sensor
constraints in the sense that only IMU and depth sensors
are used. To facilitate flow state estimation, we construct a
linear time-varying system for the flow state, separated from a
nonlinear system for the vehicle state. While the vehicle and
flow states are estimated by separate estimators, the coupling
between vehicle motion and ocean flow is explored in the
design of the estimators. In addition, this coupling causes
the observability for the flow state to depend on vehicle
motion, thereby providing an opportunity for active perception
to enhance flow state estimation. Active perception in this
article specifically refers to improving flow state estimation
through active vehicle motion control.

For the perception part of active perception, we consider
the following two information metrics for the flow state:
1) observability Gramian and 2) constructability Gramian.
These two metrics are connected in terms of uniform complete
observability, which is a property related to the convergence
of state estimation. For the action part, we design a vehicle
controller to minimize the maximum variance of flow state
estimation based on either observability or constructability
Gramian. Then, the estimated flow is incorporated in vehi-
cle state estimation to improve navigation performance. The
proposed framework is validated through simulations for a
case study in which a vehicle, modeled as our testbed AUV
with a commercial-grade IMU, descends through the water
column in a time-varying flow field. In this case study, the
control objective is to improve flow estimation without goal
and depth constraints. By using simulated IMU and depth
sensor measurements, the proposed framework simultaneously
estimates the vehicle and flow states, while two baseline
approaches without active perception estimate the vehicle state
only. The effectiveness of the active perception framework
is demonstrated by comparing results obtained from its four
implementations with those from the baseline approaches.

Active perception for AUVs has been leveraged for various
applications, including information gathering [21], simultane-
ous localization and mapping [22], target tracking [23], and
plume source localization [24]. Previous work on active per-
ception has focused on improving navigation by maximizing

Fig. 1. Body- and Earth-fixed frames for the vehicle motion model.

information collected from exteroceptive sensors. To the best
of our knowledge, this is the first work on underwater nav-
igation that incorporates active perception to design vehi-
cle control for improved flow estimation and subsequently
enhanced navigation without using exteroceptive sensors, such
as ADCP/DVLs and acoustic positioning systems. While the
proposed framework is demonstrated for a simple case study,
please note that the framework can be extended to various nav-
igation tasks where the dependence of flow state observability
on vehicle motion can be identified and exploited in control
design.

The rest of this article is organized as follows. Section II
introduces the preliminaries for the research work presented
in this article and Section III details the active perception
problem. Next, Section IV presents systems for vehicle and
flow state estimation and analyzes observability for the flow
state in relation to vehicle motion. Then, Section V presents
our proposed active perception framework for underwater nav-
igation, and Section VI discusses simulation results. Finally,
Section VII concludes this article.

II. PRELIMINARIES

This section presents preliminaries for our study. First,
a general vehicle motion model in the presence of ocean flow
is introduced. Then, a short description of our testbed AUV,
which motivated our study, is provided.

A. General Vehicle Motion Model

For our analysis on the coupling between vehicle motion
and ocean flow, we use a six-degree-of-freedom (DOF) vehicle
motion model. The pose and velocity of the vehicle are
described using two coordinate frames: Earth-fixed, which is
also often referred to as inertial, and body-fixed (see Fig. 1).
The origin of the Earth-fixed frame, OI , is often fixed at a
reference position at the surface of water, e.g., the position
of a mother ship. The origin of the body-fixed frame, OB ,
is the reference position of the vehicle and often conveniently
chosen as the center of mass of the vehicle.

Let us denote the position and orientation of the vehicle
in the Earth-fixed frame by η1 = [x, y, z]T ∈ R

3 and η2 =
[φ, θ,ψ]T ∈ R

3, respectively. Together, the pose of the vehicle

is defined by η = [ηT
1 , η

T
2 ]T ∈ R

6. With the linear and angular
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velocities of the vehicle in the body-fixed frame denoted by
ν1 = [u, v,w]T ∈ R

3 and ν2 = [p, q, r ]T ∈ R
3, respectively,

the velocity of the vehicle is represented by ν = [νT
1 , ν

T
2 ]T ∈

R
6. For coordinate transformation from the body-fixed frame

to the Earth-fixed frame, we define

J (η2) =
�

I
B R(η2) 03×3

03×3 T�(η2)

�
∈ R

6×6 (1)

where I
B R(η2) ∈ R

3×3 and T�(η2) ∈ R
3×3 transform linear

velocity and angular velocity, respectively (see [25], [26] for
details).

While underwater, the motion of the vehicle is affected
by ocean flow. Let us define flow velocity that affects vehi-
cle motion, expressed in the body-fixed frame, by f =
[ fu, fv , fw, f p, fq , fr ]T ∈ R

6 with its linear and angu-
lar components defined as f1 = [ fu, fv , fw]T ∈ R

3 and
f2 = [ f p, fq , fr ]T ∈ R

3, respectively. The corresponding
flow velocity in the Earth-fixed frame, denoted by f I =
[ fx , fy, fz , fφ, fθ , fψ ]T ∈ R

6, is obtained by f I = J (η2)f .
The linear and angular components of f I are defined by
f I
1 = [ fx , fy, fz ]T ∈ R

3 and f I
2 = [ fφ, fθ , fψ ]T ∈ R

3,
respectively.

With the notations defined above, the motion of the AUV
can be generally described by

η̇ = J (η2)ν (2)

MRBν̇+MAν̇r +CRB(ν)ν+CA(νr )νr + D(νr )νrσ (η) = τ

(3)

where νr = ν − f is the vehicle velocity relative to flow
(see [25] for details). Equations (2) and (3) represent vehicle
kinematics and dynamics, respectively. Terms MRB ∈ R

6×6

and MA ∈ R
6×6 are the rigid body and added mass matrices,

respectively, CRB ∈ R
6×6 and CA ∈ R

6×6 are the Coriolis
and centripetal matrices induced by the rigid body and added
mass, respectively, D ∈ R

6×6 is the hydrodynamic damping
matrix, σ ∈ R

6 is the vector of restoring forces and moments,
and τ = [τu, τv , τw, τp, τq , τr ]T ∈ R

6 is the vector of input
forces and moments.

For simplicity, we only consider the diagonal terms in MA

and quadratic diagonal terms in D such that

MA = −diag(Xu̇,Yv̇ , Zẇ, K ṗ,Mq̇ , Nṙ ) (4)

D = −diag(X |u|u,Y|v|v ,Z |w|w,K|p|p,M|q|q ,N|r |r )·|νr | (5)

where diag represents a matrix formed with the elements being
its diagonal entries. Terms Xu̇ , Yv̇ , Zẇ , K ṗ, Mq̇ , and Nṙ are the
linear added mass coefficients, and X |u|u , Y|v|v , Z |w|w, K|p|p,
M|q|q , and N|r |r are the quadratic damping coefficients.

As can be seen from (2) and (3), vehicle motion and
ocean flow are tightly coupled. Their interplay serves as the
analytic foundation for the formulation of the proposed active
perception framework, which is shown in Fig. 2.

B. Testbed AUV: DROP-Sphere

This study is motivated by deep-sea research being con-
ducted in the Deep Robot Optical Perception (DROP) Labora-
tory, University of Michigan. Our testbed AUV, DROP-Sphere

Fig. 2. Block diagram of the concept of active perception in our approach.

Fig. 3. Image of DROP-Sphere.

(see Fig. 3), developed by the DROP Laboratory, is open-
source, low-cost, and rated for 6000-m operational depth for
optical benthic mapping in the deep sea. The major electronic
and computing devices (e.g., battery, camera, and microproces-
sor) are mounted inside a transparent sphere located at the
center of the vehicle. The vehicle carries an IMU (Xsens
MTi-30) and a depth sensor (TE MS5837) as its primary
navigational sensors. The vehicle has two pairs of thrusters
for horizontal and vertical motions. With the four thrusters,
control input τ in (3) is given by τ = B × [T1, T2, T3, T4]T

where

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

0.279 −0.279 0 0
0 0 0.169 −0.169

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
6×4 (6)

is a thrust allocation matrix and Ti ∈ R, i ∈ {1, 2, 3, 4} is thrust
input with {1, 2} for vertical thrust and {3, 4} for horizontal
thrust.

Tables I and II show the specifications and model parameters
of DROP-Sphere, respectively. The dimension of the vehicle
is 0.86 m long, 0.43 m width, and 0.25 m height, and its
mass and displacement are 20.42 and 20.57 kg, respectively.
Note that the vehicle is positive buoyant with its weight
and buoyancy approximated as 200.3202 and 201.7917 N
for gravity g = 9.81 m/s2 in this article, respectively. Its
centers of buoyancy and gravity are rB = [0.0, 0.0, 0.0]T

and rtrue
G = [0.00295, 0.00054, 0.00219]T m, respectively.

The water density ρ is set to 1025 kg/m3 in this article.
For benthic mapping, we make this positive buoyant vehicle
temporarily negative buoyant by attaching a drop weight at
rw = [0.431, 0.0, 0.0]T m so that the vehicle can descend
through the water column without using its active propulsion
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TABLE I

SPECIFICATIONS OF DROP-SPHERE

TABLE II

MODEL PARAMETERS OF DROP-SPHERE

to save energy. With a corrodible wire, the weight will be
released from the vehicle at the sea bottom after the wire
corrodes away.

The asymmetric center of gravity of the vehicle, rtrue
G , in the

y-axis induces spiral motion while descending. Spiral motion
has been studied as one of the steady-state gliding motions
for underwater gliders [17], [18]. Our previous work [15]
has exploited spiral motion to estimate ocean flow as active
perception and presented preliminary results on improved
mid-water localization using IMU and depth sensors only.
In this article, we further investigate the interplay between
vehicle motion and ocean flow and develop an active per-
ception framework for AUV navigation that exploits gen-
eral vehicle motion, not limited to spiral motion. To this
end, we adjust the center of gravity of DROP-Sphere from
rtrue

G = [0.00295, 0.00054, 0.00219]T m to radj
G = [0.00295, 0,

0.00219]T m and use radj
G instead of rtrue

G for analysis and
simulations throughout this article.

III. ACTIVE PERCEPTION FOR AUV NAVIGATION

Let us consider a vehicle with IMU and depth sensors as its
primary navigational sensors. Motivated by our testbed AUV
introduced in Section II-B, we consider a scenario in which
this vehicle, with a drop weight attached, descends without
using active propulsion due to its temporary negative buoyancy
through the water column over a time interval [t0, t f ], t f > t0
in the presence of time-varying flow. Given vehicle motion
model (2) and (3), our primary goal is to estimate the vehicle
state for navigation and localization using IMU and depth
sensors only. In addition, simultaneously with the primary
goal, we want to estimate the flow state and incorporate
the estimated flow in vehicle state estimation as external
information to mitigate the drift error.

In state estimation, the ability to determine the initial state
of a system using knowledge of the system input and output
sequences is represented by the notion of observability. For
vehicle state estimation, we have a nonlinear system with
vehicle motion model (2) and (3). A common tool for checking
local weak observability for a nonlinear system is the observ-
ability rank condition [27], [28]. With sensor constraints,
the system does not in general meet the observability rank
condition. In addition, augmenting the vehicle state with the
flow state will increase the complexity of state estimation.

In this section, we first introduce vehicle and flow motion
models separated from the general vehicle motion model pre-
sented in Section II-A. This separation allows us to formulate
our active perception problem for AUV navigation addressed
in this article. A detail of the problem is provided later in this
section.

A. Vehicle and Flow Motion Models: Simplification
and Discretization

The vehicle dynamic model (3) can be simplified by assum-
ing irrotational and nearly constant flow in the Earth-fixed
frame (i.e., fφ = fθ = fψ = 0 and ḟ I ≈ 0), which is a
widely used approach in the literature (e.g., [25]). In fact,
the rotational component of ocean flow is often ignored for
simplification and the assumption on irrotational flow may
be reasonable if a vehicle does not stay at a fixed position.
However, the assumption on nearly constant flow may be
valid only for spatiotemporally local regions around the initial
deployment time and location of a vehicle. To account for spa-
tiotemporal variability of flow, we consider time-varying flow
as noise-driven for estimation, which is a general approach in
the case with no prior knowledge of flow (e.g., [29]).

With these assumptions on the flow, flow motion in the
body-fixed frame can be derived as

ḟ1 = −S(ν2)f1 = −S(νr2)f1 (7)

ḟ2 = 0 (8)

where S(x) ∈ R
3×3 is a skew-symmetric matrix defined with

elements of x ∈ R
3 (see [25] for details of the derivation).

Please note that ν2 = νr2 for irrotational flow. In addition,
since f2 = 0 and f I

2 = 0 at all times for irrotational flow, f2 is
omitted in our problem throughout the article. Then, the flow
motion model (7) is discretized as

f1,k+1 = f1,k − hS(νr2,k)f1,k

= (I − hS(νr2,k))f1,k

= Ff1(νr,k)f1,k (9)

where k is the time step and h is the time step size. In this
article, we use the Euler method with small time step size h
for discretization.

By using (7) and (8) along with a parameterization of CRB,
(3) can be simplified to describe vehicle motion relative to
flow as

M ν̇r + C(νr )νr + D(νr )νr + σ (η) = τ (10)
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where M = MRB + MA and C = CRB + CA. Then, the vehicle
motion model (2) and (10) is discretized as

ηk+1 = ηk + h J (η2,k)(νr,k + fk)

= Fη(ηk, νr,k, f1,k) (11)

νr,k+1 = νr,k + hM−1
τ k − C(νr,k)νr,k − D(νr,k)νr,k

− σ (ηk)
�

= Fνr (ηk, νr,k , τ k) (12)

respectively.

B. Problem Formulation

By using the vehicle and flow motion models obtained in
Section III-A, we separate vehicle and flow state estimation,
allowing us to employ a linear time-varying system for flow
state estimation and associated uniform complete observability
notion, discussed in detail in Section IV. For self-contained
presentation, we restate the definition of uniform complete
observability [30], [31].

Definition 1: A system, given by

χ k+1 = Fkχ k + ξ
χ
k (13)

ζ k = Hkχ k + ξ
ζ
k (14)

is uniformly completely observable if there exist positive
constants K , α1, and α2 such that

α1 I ≤ Guco(k, k − K ) ≤ α2 I (15)

where

Guco(k, k − K ) =
k�

j=k−K

	( j, k)T HT
j R−1

j H j	( j, k) (16)

is the observability Gramian, 	(k, j) = Fk−1Fk−2, . . . ,F j is
the state transition matrix from time step j to k for k > j ,
which satisfies 	(k, j) = 	( j, k)−1 and 	(k, k) = I , and
R j is the covariance matrix for observation noise ξζ for time
step j .

Due to the coupling between vehicle motion and ocean
flow, observability Gramian Guco for the flow state depends
on vehicle motion, which will be discussed in detail in
Section IV-C. In this article, we extend our previous work [15],
which exploited spiral motion, to establish more rigorous
criteria pertaining to the interplay between vehicle motion and
ocean flow for active perception considering general vehicle
dynamics. In this context, we define the problem of active
perception, i.e., to design vehicle control to improve flow
estimation, for underwater navigation as follows.

Problem 1: Given observation data from IMU and depth
sensors with known noise statistics, build a vehicle controller
such that

τ 	k = argmax
τ k

F ap(Guco(k + 1, k − K + 1)) (17)

s.t. (11), (12) (18)

where (11) and (12) are the discretized vehicle motion model
and F ap is the information metric regarding observability and
estimation performance for active perception.

Problem 2: Given vehicle control obtained through
Problem 1, design state estimators for the vehicle and flow
states so that the estimated flow can help improve vehicle
state estimation.

Through solving Problem 1, the optimization variable,
which is the control input τ k , is chosen such that vehicle
motion maximizes F ap. Please note that τ k is embedded in
constraint (12). In this article, since we assume that our
vehicle descends without active propulsion, we choose F ap

only to improve flow state estimation without goal and depth
constraints. The solution of Problem 1 will provide more
favorable conditions to solve Problem 2. Therefore, we refer
to the control strategy in Problem 1 as active perception
control. The control objectives are typically mission-specific
and vary by applications. If other control objectives need to be
considered, we may regard active perception control as input
injection as long as it is not canceled out by other control
objectives. Therefore, the framework has a potential to be
extended to various navigation tasks as long as the dependence
of flow state observability on vehicle motion is leveraged.
Details about the systems for vehicle and flow state estimation
and our choices for F ap are discussed in Sections IV and V.

IV. ACTIVE PERCEPTION-ORIENTED SYSTEM MODELING

In this section, we present the system models used for active
perception. First, for vehicle and flow states governed by the
corresponding motion models presented in Section III-A, indi-
vidual system models for their estimation are formulated with
separate observation equations based on the measurements
from IMU and depth sensors. Then, flow state observability
in relation to vehicle motion is discussed to show how active
perception can be established using the constructed system
models.

A. System Equations for Vehicle State Estimation

With the vehicle and flow motion models derived in
Section III-A, let us define the vehicle state as χv =
[ηT , νT

r ]T ∈ R
12, governed by (11) and (12), and the flow

state as χ f1
= f1 ∈ R

3, governed by (9). While conventional
state estimation approaches augment the state variable by
combining the vehicle and flow states, we separate estimation
of the vehicle and flow states to facilitate flow state estimation.
The vehicle state equation is constructed as

χv,k+1 =
�
Fη(χv,k,χ f1,k)

Fνr (χv,k, τ k)

�
+ ξ

χv
k (19)

where ξ
χv
k ∈ R

12 is the process noise assumed to be zero-mean
Gaussian with known covariance Qχv

k ∈ R
12×12.

In inertial navigation, the angular velocity and linear accel-
eration measurements from the gyroscope and accelerometer
of an IMU are the fundamental data. Let νimu

2 ∈ R
3 and

ν̇
imu.g
1 ∈ R

3 denote the measurements from the gyroscope and
accelerometer, respectively, which are expressed for time step
k as

ν imu
2,k = ν2,k + bgyro

k + ξ
gyro
k (20)

ν̇
imu.g
1,k = ν̇1,k + B

I R(η2,k)g + bacc
k + ξ acc

k (21)

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 22,2022 at 17:14:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

where bgyro
k ∈ R

3 and bacc
k ∈ R

3 are biases, and ξ
gyro
k ∈ R

3

and ξ acc
k ∈ R

3 are measurement noise described as zero-mean
Gaussian with known covariance Rgyro

k ∈ R
3×3 and Racc

k ∈
R

3×3, respectively. The term g = [0, 0, g]T ∈ R
3 is the vector

of gravity with g being the gravity of the Earth in the z-axis
of the inertial frame. We obtain the vehicle linear acceleration
denoted by ν̇ imu

1 ∈ R
3 for time step k as

ν̇ imu
1,k = ν̇

imu.g
1,k − B

I R(η2,k)g. (22)

Remark 1: While the estimation of biases in the IMU
measurements is widely studied and can be done by aug-
menting the state with the bias (e.g., [11], [12]), our pro-
posed framework does not consider bias estimation. However,
to understand the influence of bias on the proposed framework,
we test the framework using simulated IMU data with bias.
Suppose that a bias can be simply modeled as a summation
of a constant bias term and a time-varying bias term (see
Section VI-A2 for details). We assume that the constant bias
term is zero for simplicity of analysis and focus on evaluating
the effect of the time-varying bias term on the performance of
the framework. To extend the framework to nonzero constant
bias cases, a constant bias term can be augmented to the
state so that it can be estimated together with the other state
variables, as discussed in [11] and [12].

Remark 2: The rotation matrix B
I R in (22) is computed by

using the estimated orientation since the true orientation is
typically unknown in underwater applications. Note that the
accuracy of the estimated orientation can significantly affect
the accuracy of ν̇imu

1 .
The orientation of a vehicle can be estimated using the

measurement from an IMU by attitude estimation algorithms
(e.g., [32]–[35]). We denote the estimated orientation by ηatt

2 ∈
R

3, which is expressed for time step k as

ηatt
2,k = η2,k + batt

k + ξ att
k (23)

where batt
k ∈ R

3 is a bias and ξ att
k ∈ R

3 is the measurement
noise, which includes estimation error and IMU measurement
noise, described as zero-mean Gaussian with known covari-
ance Ratt

k ∈ R
3×3. In addition, the measured depth, denoted by

zdepth ∈ R, is expressed for time step k as

zdepth
k = zk + ξ

depth
k (24)

where ξdepth
k ∈ R is the measurement noise assumed to be zero-

mean Gaussian with known covariance Rdepth
k ∈ R. Please note

that in this article, we assume that the IMU and depth sensors
have the same sampling frequency.

The observation vector for vehicle state estimation is con-
structed as ζ v = [zdepth, (ηatt

2 )
T , (νimu

2 )T , (ν̇ imu
1 )T ]T ∈ R

10. For
time step k, the observation equation is given by

ζ v,k =

⎡
⎢⎢⎣

zk

η2,k
ν2,k

ν̇r1,k + ḟ1,k

⎤
⎥⎥⎦ + ξ

ζ v
k

=

⎡
⎢⎢⎣

zk

η2,k
ν2,k

ν̇r1,k − S(νr2,k)f1,k

⎤
⎥⎥⎦ + ξ

ζ v
k

= Hv(χv,k,χ f1,k)+ ξ
ζ v
k (25)

where measurement noise ξ
ζ v
k = [ξdepth

k , (ξ att
k )

T , (ξ
gyro
k )T ,

(ξ acc
k )T ]T ∈ R

10 is assumed to be zero-mean Gaussian
with known covariance matrix Rζ v

k = diag(Rdepth
k ,Ratt

k ,Rgyro
k ,

Racc
k ) ∈ R

10×10.

B. System Equations for Flow State Estimation

Along with the system for vehicle state estimation con-
structed in Section IV-A, a system for flow state estima-
tion enables our active perception framework. With vehicle
state χv and flow state χ f1

, the flow state equation is
expressed as

χ f1,k+1 = Ff1(χv,k)χ f1,k + ξ
χ f1
k (26)

where ξ
χ f1
k ∈ R

3 is process noise represented as zero-mean
Gaussian with known covariance Q

χ f1
k ∈ R

3×3. From the depth
sensor, the depth rate żdr ∈ R for time step k is approximated
as follows:

żdr
k = żk + ξdr

k

≈ zdepth
k+1 − zdepth

k

h
(27)

where zdepth
k is the depth measurement at time step k, described

by (24), and ξdr
k ∈ R is measurement noise assumed to be

zero-mean Gaussian with known covariance Rdr
k ∈ R.

The observation vector for flow state estimation is con-
structed as ζ f1

= [(ν̇imu
1 )T , zdr]T ∈ R

4. For time step k, the
observation equation is given by

ζ f1,k =
�

ν̇r1,k + ḟ1,k

żk

�
+ ξ

ζ f1
k

=
�

ν̇r1,k − S(νr2,k)f1,k

[0, 0, 1] × I
B R(η2,k)(νr1,k + f1,k)

�
+ ξ

ζ f1
k

= Hf1(χv,k,χ f1,k)+ ξ
ζ f1
k (28)

where measurement noise ξ
ζ f1
k = [(ξ acc

k )T , ξdr
k ]T ∈ R

4 is
assumed to be zero-mean Gaussian with known covariance
matrix R

ζ f1
k = diag(Racc

k ,Rdr
k ) ∈ R

4×4. While the accelerome-
ter measurement already provides the information about the
flow for all DOF in the body-fixed frame, the depth-rate
measurement provides complementary information about the
flow in the inertial frame. This complementarity can improve
observability and state estimation, which will be discussed in
Sections IV-C and VI-C.

Assuming that the vehicle state is given, we reformulate the
measurement equation for the flow state (28). By subtracting
the terms that depend on the vehicle state only from (28), the
observation vector ζ �

f1,k
is defined as

ζ �
f1,k = ζ f1,k −

�
ν̇r1,k

[0, 0, 1] × I
B R(η2,k)νr1,k

�

=
� −S(νr2,k)

[0, 0, 1] × I
B R(η2,k)

�
f1,k + ξ

ζ f1
k

= Hf1(χv,k)χ f1,k + ξ
ζ f1
k . (29)
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Then, the system (26) and (29) for the flow state is a linear
time-varying system, which allows us to analyze uniform
complete observability for the flow state.

C. Flow State Observability and Vehicle Motion Design

For notational convenience, let Ff1, j = Ff1(χv, j ) and
Hf1, j = Hf1(χv, j ). The observability Gramian corresponding
to system (26) and (29) for flow state estimation is given by

Gf1
uco(k, k − K ) =

k�
j=k−K

	f1( j, k)T HT
f1, j


R

ζ f1
j

�−1

× Hf1, j	f1( j, k) (30)

where 	f1(k, j) = Ff1,k−1Ff1,k−2, . . . ,Ff1, j is the state tran-

sition matrix from time step j to k, k > j and R
ζ f1
j is the

covariance matrix for noise ξ ζ f1 for time step j . To satisfy the
condition (15), Gf1

uco should be bounded and positive definite
(i.e., all the eigenvalues are positive). Gramian Gf1

uco is bounded
since R

ζ f1
j is bounded by design, and Ff1, j and Hf1, j are

bounded since vehicle angular velocity and orientation are
physically bounded. In addition, Gramian Gf1

uco is positive
definite or positive semidefinite by its structure.

To guarantee the definiteness of Gf1
uco, we should check for

the definiteness of R
ζ f1
j , HT

f1, j Hf1, j , and 	f1( j, k)T 	f1( j, k).

Matrix R
ζ f1
j is positive definite by design, and with small h

and νr2, 	f1( j, k)T 	f1( j, k) is positive definite. Now, let us
consider Hf1, j as a block matrix, such as

Hf1, j =
� −S j

b j

�
(31)

where matrix S j = S(νr2, j ) and row vector b j =
[0, 0, 1] × I

B R(η2, j ). Then, HT
f1, j Hf1, j = ST

j S j + bT
j b j . With

nonzero elements for S, ST
j S j is a positive semidefinite matrix

of rank 2. Now, note that bT
j b j is a rank-1 matrix. If the

nonzero depth-rate measurement leads bT
j b j to have a linearly

independent column to ST
j S j , then HT

f1, j Hf1, j is positive defi-
nite, which shows a qualitative benefit of having the depth-rate
measurement for flow state estimation. However, in case that
the depth-rate measurement is not available or the depth rate
is zero (e.g., a vehicle is staying at a certain depth), we have
bT

j b j = 0 and HT
f1, j Hf1, j is positive semidefinite and has

rank 2.
While the definiteness of each additive term 	( j, k)T HT

j

R−1
j H j	( j, k), j ∈ [k − K , k] in Gf1

uco, is not guaranteed, if the
additive terms have three linearly independent columns, Gf1

uco
is positive definite (i.e., all the eigenvalues of Gf1

uco are nonzero
positive). Due to the dependence of S in Hf1 on vehicle state
νr2, vehicle motion design plays an important role to achieve
observability for the flow state. In this context, we rewrite
Definition 1 to adapt it for our active perception problem as
follows.

Definition 2: System (26) and (29) for flow state estimation
is uniformly completely observable if vehicle motion on
interval [k − K , k] with constant K is designed such that terms
	( j, k)T HT

j R−1
j H j	( j, k), j ∈ [k − K , k], lead Gf1

uco to have
three linearly independent columns (i.e., to have full rank).

Fig. 4. Schematic of our approach.

V. ACTIVE PERCEPTION FRAMEWORK FOR AUV
NAVIGATION UNDER SENSOR CONSTRAINTS

In this section, we propose our active perception framework
for AUV navigation. First, we introduce information metrics
used as F ap. Then, we present our framework, including active
perception control and state estimation strategies. The structure
of the proposed framework is shown in Fig. 4.

A. Information Metrics for Active Perception
As widely known (e.g., [30], [31]), observability Gramian

Guco is an information matrix, that is, for system (26) and (29),
Guco describes the informational difference with respect to the
variation of the vehicle state νr2 (i.e., vehicle motion). Instead
of the matrix form, scalar measures of information metrics
have been preferred in optimization. Please refer to [36]
and [37] for an overview of scalar measures of information
metrics. Among many scalar measures, (1/λmin(·)), where
λmin(·) denotes the smallest eigenvalue of (·), represents the
maximum variance of the estimate. Therefore, we choose

F ap
1 = λmin


Gf1
uco(k + 1, k)

�
(32)

as an information metric for active perception, that is, solving
the optimization problem in (17) with F ap = F ap

1 generates
vehicle control input such that vehicle motion maximizes the
information with respect to vehicle motion and minimizes the
maximum variance of the estimate.

As stated in Section IV-B, having the depth-rate measure-
ment may provide qualitative benefit for flow state estimation,
leading HT

f1,k
Hf1,k to become full rank. In this section, to con-

sider more general cases for analysis purposes, we suppose
that HT

f1,k
Hf1,k is a positive semidefinite matrix of rank 2,

which represents active perception without the depth-rate
measurement or with zero depth rate (i.e., a constant depth
is maintained).

By definition, we have

Gf1
uco(k + 1, k) =

k+1�
j=k

	f1( j, k + 1)T HT
f1, j


R

ζ f1
j

�−1

× Hf1, j	f1( j, k + 1) (33)

which can be expanded as

Gf1
uco(k + 1, k) = FT

f1,kHT
f1,k


R

ζ f1
k

�−1
Hf1,kFf1,k

+ HT
f1,k+1


R

ζ f1
k+1

�−1
Hf1,k+1 (34)
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where we used 	f1(k, k +1) = Ff1,k and 	f1(k +1, k +1) = I .
Note that each term on the right-hand side of (34) is positive
semidefinite and has rank 2, implying that each term has two
linearly independent columns (i.e., λmin of each term is zero).
Since the vehicle state for time step k, χv,k , is given, the
first term on the right-hand side of (34) is constant. On the
contrary, the second term varies as the vehicle state for time
step k +1, χv,k+1, changes by control input τ k . By leveraging
this point for active perception control using (32), we introduce
the following theorem.

Theorem 1: System (26) and (29) is uniformly completely
observable if vehicle motion is generated by control input that
solves the following optimization problem:

τ 	k = argmax
τ k

λmin

Gf1

uco(k + 1, k)
�

(35)

s.t. (11), (12). (36)

Proof : Without loss of generality, we can assume that
żdr

k = 0 and R
ζ f1
k = I . Then, to simplify the analysis for the

linearly independent columns of Gf1
uco(k + 1, k) in (34), let us

consider

Ĝ(k + 1, k) = FT
f1,kHT

f1,kHf1,kFf1,k + HT
f1,k+1Hf1,k+1. (37)

Suppose that τ k = 0 and vehicle state νr2 does not change
such that νr2,k = [a1, a2, a3]T and νr2,k+1 = [a1, a2, a3]T .
Then, the reduced row echelon form of Ĝ(k + 1, k) is⎡

⎢⎢⎢⎣
1 0 −a1

a3

0 1 −a2

a3

0 0 0

⎤
⎥⎥⎥⎦ (38)

implying that λmin[Gf1
uco(k + 1, k)] = 0. In fact, since we

can simply let Hf1,k = −S(νr2,k) without the depth-rate
measurement and we have Ff1,k = [I − hS(νr2,k)], the first
and second terms on the right-hand side of (34) become
merely products of S(νr2,k); therefore, they have the same
linearly independent columns. Suppose that τ k �= 0 and
vehicle state νr2 changes such that νr2,k = [a1, a2, a3]T

and νr2,k+1 = [b1, b2, b3]T . Then, the reduced row echelon
form of Ĝ(k + 1, k) is an identity matrix, implying that
λmin[Gf1

uco(k + 1, k)] �= 0. Through solving (35) and (36) such
that λmin[Gf1

uco(k + 1, k)] is maximized, τ 	k varies vehicle state
νr2 so that the second term on the right-hand side of (34)
has a linearly independent column to the first term, leading
Gf1

uco(k + 1, k) to have full rank. This proves the theorem. �
In addition to observability, another measure relevant to

state estimation is constructability, which represents the ability
of determining the current state of a system using knowledge
of the system input and output sequences. (Note that con-
structability is a property related to observability rather than
controllability.) For system (26) and (29), the constructability
can be determined by using the constructability Gramian [38],
which is given by

Gf1
c (0, k) =

k�
j=0

	f1( j, k)T HT
f1, j


R

ζ f1
j

�−1

× Hf1, j	f1( j, k). (39)

Note that if K = k in (30) for all k, Gf1
c and Gf1

uco could be
interchangeable. However, since K in (30) should be constant,
they are not equivalent.

To see the explicit relationship between Gf1
c and Gf1

uco, let us
consider the following partition of (39):

Gf1
c (0, k)=

k−K−1�
j=0

	f1( j, k)T HT
f1, j


R

ζ f1
j

�−1
Hf1, j	f1( j, k)

+
k�

j=k−K

	f1( j, k)T HT
f1, j


R

ζ f1
j

�−1
Hf1, j	f1( j, k).

(40)

Note that the second term on the right-hand side of the equa-
tion is identical to Gf1

uco(k, k − K ) in (30). Since 	f1( j, k) =
	f1( j, k − K − 1)	f1(k − K − 1, k), we can rewrite (40) as

Gf1
c (0, k) = 	f1(k − K − 1, k)TGf1

c (0, k − K − 1)

× 	f1(k − K − 1, k)+ Gf1
uco(k, k − K ). (41)

In other words, Gf1
c can be interpreted as a function of Gf1

uco
with additional past information of constructability translated
for time step k. This shows that Gf1

uco and Gf1
c are connected in

terms of uniform complete observability.
For implementation of Gf1

c , we first consider Gf1
c (−∞, 0) as

the constructability Gramian for time step k = 0 evaluated by
using prior knowledge. Then, for k = 1, we have

Gf1
c (−∞, 1) = 	f1(0, 1)TGf1

c (−∞, 0)	f1(0, 1)

+ HT
f1,1


R

ζ f1
1

�−1
Hf1,1. (42)

By recursively evaluating Gf1
c , we have

Gf1
c (−∞, k + 1) =

k+1�
j=−∞

	f1( j, k + 1)T HT
f1, j (R

ζ f1
j )−1

× Hf1, j	f1( j, k + 1) (43)

= 	f1(k, k + 1)TGf1
c (−∞, k)	f1(k, k + 1)

+ HT
f1,k+1


R

ζ f1
k+1

�−1
Hf1,k+1. (44)

Along with F ap
1 , we also choose

F ap
2 = λmin


Gf1
c (−∞, k + 1)

�
(45)

as the second information metric for active perception. For
active perception control using (45), we introduce the follow-
ing theorem.

Theorem 2: System (26) and (29) is uniformly completely
observable if vehicle motion is generated by control input that
solves the following optimization problem:

τ 	k = argmax
τ k

λmin

Gf1

c (−∞, k + 1)
�

(46)

s.t. (11), (12). (47)

Proof: If Gf1
c (−∞, 0) in (42) is designed as positive

definite, Gf1
c (−∞, k) is always positive definite over all k

regardless of τ k . If Gf1
c (−∞, 0) is designed as positive semi-

definite, vehicle control τ k helps achieve uniform complete
observability. Without loss of generality, assume that żdr

k = 0
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and R
ζ f1
k = I . For an arbitrary Gf1

c (−∞, 0), Gf1
c (−∞, k + 1)

for time step k = 1 is

Gf1
c (−∞, 2)= 	f1(1, 2)TGf1

c (−∞, 1)	f1(1, 2)

+ HT
f1,2Hf1,2 (48)

= 	f1(1, 2)T

	f1(0, 1)TGf1

c (−∞, 0)	f1(0, 1)

+ HT
f1,1Hf1,1

�
	f1(1, 2)+HT

f1,2Hf1,2

(49)

= 	f1(0, 2)TGf1
c (−∞, 0)	f1(0, 2)+ 	f1(1, 2)T

× HT
f1,1Hf1,1	f1(1, 2)+ HT

f1,2Hf1,2. (50)

Note that the last two terms in (50) is Ĝ(2, 1) as defined in
(37) in the proof for Theorem 1. Now, for arbitrary k, it is easy
to see that Gf1

c (−∞, k + 1) includes Ĝ(k + 1, k). Therefore,
the proof follows the same steps to those in the proof for
Theorem 1. This proves the theorem. �

In Section V-B, we describe our design of active perception
control and state estimation using these metrics. Then, the per-
formance comparison between control strategies in Theorems
1 and 2 will be provided in Section VI.

B. Active Perception Control and State Estimation
Although Theorems 1 and 2 do not show the degree

of observability, note that as discussed earlier, (1/λmin(·))
represents the maximum variance of the estimate, that is,
through control strategies in Theorems 1 and 2, vehicle control
is chosen such that vehicle motion minimizes the maximum
variance of the estimate while maintaining uniform complete
observability for the flow state estimation. With either one of
F ap

i , i = {1, 2} chosen as the information metric, we design
active perception control as follows:

τ 	k = argmax
τ k

F ap
i (51)

s.t. (11), (12). (52)

While in motion with the active perception control, the vehi-
cle and flow states are simultaneously estimated and the
estimate of each state is used as constant for estimation of the
other state. For notational convenience, let Ff1,k = Ff1(χv,k)
and Hf1,k = Hf1(χv,k) since they are evaluated by using the
estimate of χv,k . With the system in (26) and (29), the Kalman
filter for flow state estimation can be derived as

χ̂−
f1,k

= Ff1,k χ̂
+
f1,k−1 (53)

P−
k = Ff1,kP+

k−1(Ff1,k)
T + Q

χ f1
k−1 (54)

Kk = P−
k (Hf1,k)

T


Hf1,kP−
k (Hf1,k)

T + R
ζ f1
k

�−1
(55)

χ̂+
f1,k

= χ̂−
f1,k

+ Kk


ζ �

f1,k − Hf1,k χ̂
−
f1,k

�
(56)

P+
k = (I − KkHf1,k)P

−
k (I − KkHf1,k)

T

+ KkR
ζ f1
k KT

k (57)

where χ̂ f1,k is the optimal estimate of ρk , (·)− is a priori
of the estimate, and ρk , (·)+ is a posteriori of the estimate.
The terms Pk and Kk are the error covariance matrix and the
Kalman gain, respectively. In the following theorem, we prove

the convergence of the designed Kalman filter for flow state
estimation.

Theorem 3: The designed Kalman filter for system (26) and
(29) with control input generated by (51) and (52) is uniformly
asymptotically stable.

Proof: System (26) and (29) with control input generated
by (51) and (52) is uniformly completely observable by
Theorems 1 and 2. Then, the proof follows directly from [30,
Th. 4] or [31, Th. 7.4]. This proves the theorem. �

Remark 3: If the state is augmented with the vehicle and
flow states, observability is not guaranteed for a system with
IMU and depth sensor measurements. By designing a separate
flow state estimator, the flow state becomes observable and the
estimate of the flow state can be used to improve vehicle state
estimation.

For vehicle state estimation, we use the particle filter, which
is popular for the state estimation of nonlinear systems. Let
χv,0:k = {χv,0, . . . ,χv,k} and ζ v,0:k = {ζ v,0, . . . , ζ v,k}. The
particle filter computes an approximation of the posterior
density p(χv,k |ζ v,0:k) for system (19) and (25). At each
time step k, N particles are first sampled from the proposal
distribution, denoted by π , such that

χ i
v,k ∼ π(χv,k |χv,0:k−1, ζ v,0:k), i = {1, . . . , N}. (58)

The proposal distribution is used instead of the true pos-
terior p(χv,k |ζ v,0:k), which is in general impossible to
obtain. We use the vehicle state equation (19) evaluated
with the estimate of χ f1,k as the proposal distribution [i.e.,
π(χ i

v,k |χv,0:k−1, ζ v,0:k) = p(χ i
v,k |χ i

v,k−1)]. Then, the impor-
tance weights are updated as

ŵi
k = wi

k−1

p(ζ v,k |χ i
v,k)p(χ i

v,k |χ i
v,k−1)

π(χ i
v,k |χv,0:k−1, ζ v,0:k)

(59)

= wi
k−1 p(ζ v,k |χ i

v,k), i = {1, . . . , N} (60)

and normalized as

wi
k = ŵi

k�N
j=1 ŵ

( j)
k

, i = {1, . . . , N}. (61)

Finally, the effective number of particles is estimated as

N̂eff = 1�N
i=1



wi

k

�2 (62)

which reflects the variance of the weights. If the effective
number of particles is less than a given threshold as N̂eff <
Nthr , then particles are resampled.

Algorithm 1 shows the procedure of our active perception
design for estimation of the vehicle and flow states.

VI. SIMULATIONS

In this section, we validate our proposed framework through
simulations. First, we briefly introduce our simulation setup
pertaining to the environment, the IMU, and the case study
scenario of vehicle descent motivated by DROP-Sphere. Under
this simulation setup, we evaluate two baseline approaches
followed by four implementations of the proposed framework
for the case study. We provide our analysis on the proposed
framework with comparison to the baseline approaches.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 22,2022 at 17:14:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Algorithm 1 Vehicle and Flow State Estimation Through
Active Perception

A. Simulation Setup

1) Simulation Environment: We simulate environmental
flow by using a two-dimensional (2-D) double-gyre pattern
that occurs often in geophysical flow [39]. For horizontal
position r = [x, y]T and time t , a double-gyre flow field over
(x, y) ∈ [0, 2]×[0, 1] can be described by the stream function

(r, t) = A sin(πξ(x, t)) sin(πy) (63)

where ξ(x, t) = α(t)x2 +β(t)x , α(t) = � sin(ωt), and β(t) =
1 − 2� sin(ωt). The parameter A determines the magnitude of
the flow velocity in the field, ω is the frequency of oscillation,
and � determines approximately how far the separation line at
x = 1 between the two gyres moves to the left or right. Then,
the velocity field is given by

fx = −∂
∂y

= −πA sin(πξ(x)) cos(πy) (64)

fy = ∂

∂x
= πA cos(πξ(x)) sin(πy)

dξ

dx
. (65)

The flow is time-invariant if � = 0, and otherwise,
the gyres periodically expand and contract side to side
along the x-axis within the domain. In this article,

Fig. 5. Time-varying double-gyre flow field. The arrows and the surface color
represent the flow and its magnitude, respectively. The colorbar on the right
displays the scale of the flow. The cyan pentagram represents the deployment
location of a simulated vehicle.

TABLE III

SIMULATED IMU PROPERTIES BASED ON XSENS MTi-30

we use � = 0.3, A = (0.1/π), ω = (2π/T ), and
T = 24 h, and then rescale and translate the domain
to [−7500 m, 12500 m] × [−7500 m, 2500 m] (see Fig. 5).
With these parameters, the gyres move side to side by approx-
imately 3 km in both directions every 24 h and the maximum
flow velocity is approximately 0.1 m/s. We extend this 2-D
flow to the 3-D space by assuming a uniform field along the
z-axis (i.e., fz = 0), and our proposed framework estimates
the 3-D flow.

2) IMU Simulation: The IMU sensor is simulated using the
IMU simulation model provided in MATLAB based on the
noise properties of Xsens MTi-30 used by DROP-Sphere (see
Table III). In our analysis, we set the sampling frequency
of the IMU as 100 Hz. Please note that while assuming
zero constant bias for simplicity, we simulate an IMU with
time-varying bias, described by bias instability in Table III,
to see its influence on the proposed framework. In fact, the
bias instability properties of Xsens MTi-30 may not be trivial
and may affect the performance of our proposed framework
significantly.

To analyze the noise properties in the IMU measurements,
we simulate a vehicle descending through a water column
without control input. Fig. 6 shows the true angular velocity
and linear acceleration of the simulated vehicle, and its noisy
angular velocity and linear acceleration obtained from simu-
lated IMU measurements. From this simulation, we calculate
the mean and variance of the noise in the angular velocity
and linear acceleration measurements (see Table IV). These
statistical values are used for our state estimator design in
simulations. For attitude estimation from the IMU measure-
ments, we use a complementary filter provided by MATLAB
(see Fig. 7).

3) Vehicle Descent Scenario: In the simulation environment
introduced in Section VI-A1, we deploy a virtual vehicle
modeled based on our testbed AUV, described in Section II-B,
with a drop weight of 0.3 kg attached. This drop weight makes
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Fig. 6. True angular velocity and linear acceleration of a vehicle, and
its noisy angular velocity and linear acceleration obtained from simulated
IMU measurements. (a) True angular velocity. (b) True linear acceleration.
(c) Noisy angular velocity from a simulated IMU. (d) Noisy linear acceleration
from a simulated IMU.

TABLE IV

STATISTICAL PROPERTIES OF ANGULAR VELOCITY AND LINEAR

ACCELERATION OBTAINED FROM THE SIMULATED

IMU MEASUREMENTS SHOWN IN FIG. 6

the vehicle negative buoyant temporarily and the vehicle has
IMU and depth sensors as its primary navigational sensors.
Starting from (x, y, z) = (0, 0, 0) (see the pentagram in Fig. 5)
in the environment, the vehicle descends through the water
column without active propulsion over the time interval of 1 h

Fig. 7. Attitude estimation by the complementary filter provided by MAT-
LAB using the noisy IMU data shown in Fig. 6 along with the magnetometer
data (a) True orientation. (b) Estimated orientation. (c) Attitude estimation
error.

Algorithm 2 Dead Reckoning

to reach the sea bottom. In Sections VI-B and VI-C, using IMU
and depth sensor measurements from the vehicle, we eval-
uate dead reckoning and nonactive perception (non-AP) as
two baseline approaches followed by four implementations
of the proposed framework for this case study of vehicle
descent.

B. Vehicle Descent With Baseline Approaches

As the first baseline approach, we evaluate conventional
dead reckoning (see Algorithm 2), for which we set τ k = 0
for all k and keep the same IMU-related conditions applied to
our approach, that is, dead reckoning is performed by using
IMU measurements with time-varying bias and orientation
estimated by complementary filter. Fig. 8 shows the dead-
reckoning results. Even though dead reckoning incorporates
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Fig. 8. Dead-reckoning results. (a) True (blue line) and dead-reckoned (red line) vehicle trajectories descending from (x, y, z) = (0, 0, 0). (b) Dead-reckoning
error. From the top, the position error eη1 and orientation error eη2 are provided. The rms errors in the individual axes are displayed in each plot.

TABLE V

ESTIMATION PERFORMANCE COMPARISON

TABLE VI

SYSTEM NOISE PROPERTIES FOR STATE ESTIMATION

high-accuracy orientation estimates obtained from an attitude
estimation algorithm, the position error grows over time since
dead reckoning just integrates noisy IMU sensor measure-
ments. Therefore, its performance is not desirable even for
only 1-h descending. The localization error for dead reckoning
is provided in Table V and compared with the results based
on our proposed framework.

In addition to dead reckoning, we simulate vehicle state
estimation without active perception control and flow state
estimation as another baseline, referred to as non-AP, to
compare with our proposed framework, that is, we implement
Algorithm 1 while maintaining τ k = 0 and f1,k = f1,0

for all k. System noise properties for state estimation are
summarized in Table VI. For vehicle state estimation, we set
the process noise ξ

χ v
k in (19) to be zero-mean Gaussian with

covariance Qχv
k = 10−12 I12, that is, we assume that the

vehicle dynamics are well represented by the vehicle motion
model. The observation noise ξ

ζ v
k in (25) to be zero-mean

Gaussian with covariance Rζ v
k = diag(Rdepth

k ,Ratt
k ,Rgyro

k ,Racc
k )

with Rdepth
k = 10−10, Ratt

k = 10−4 I3, Rgyro
k = 0.137 × 10−4 I3,

and Racc
k = 0.2029 × 10−4 I3. Note that dead reckoning does

not take the system noise into account while integrating the
inertial sensor measurements.

Fig. 9 shows the results obtained by non-AP. Even though
the estimation errors for the orientation and velocities of the
vehicle are small [see rows 2–4 of Fig. 9(c)], as the growing
error for the flow state [see Fig. 9(b)] is integrated in the
estimation of the vehicle position, the estimation error for
the vehicle position keeps increasing [see the first row of
Fig. 9(c)], emphasizing the importance of flow state estima-
tion. Note that the estimated position in the z-axis has a small
error because it is directly estimated from the depth sensor
measurement and the vertical flow is assumed to be zero. The
norm of the root-mean-square (rms) errors for the flow state
and the localization error along with the percentage of the
distance traveled is shown in Table V.

C. Vehicle Descent With Active Perception
In this section, we present the simulation results generated

through our proposed framework by using Algorithm 1. While
a vehicle is descending, the proposed framework generates
active perception control and estimates the vehicle and flow
states using the IMU and depth sensor measurements. We use
the same noise properties for vehicle state estimation used
for non-AP in Section VI-B (see Table VI). For flow state
estimation, the process noise ξ

χ f1
k in (26) is set to be zero-mean

Gaussian with covariance Q
χ f1
k = 10−10 I3. Since the flow

model (9) is derived under the assumption of time-invariant
flow, we assume that the time-varying component of flow
is driven by noise. Therefore, the covariance of the process
noise for the flow state is set to account for the time-varying
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Fig. 9. Estimation results obtained through non-AP with the constant flow state (non-AP). (a) True (blue line) and estimated (red line) vehicle trajectories
descending from (x, y, z) = (0, 0, 0). (b) Error for the flow state, ef1 . The rms errors in the individual axes are displayed in the plot. (c) Estimation error for
the vehicle state. From the top, the position error eη1 , orientation error eη2 , linear velocity error eνr1 , and angular velocity error eνr2 are provided. The rms
errors in the individual axes are displayed in each plot.

dynamics of flow. The observation noise ξ
ζ f1
k in (29) is to be

zero-mean Gaussian with covariance R
ζ f1
k = diag(Racc

k ,Rdr
k )

with Racc
k = 0.2029 × 10−4 I3 and Rdr

k = 2 × 10−6.
To generate active perception control, we solve the follow-

ing optimization problem:

τ 	k = argmax
τ k

F ap
i (66)

s.t. (11), (12), (67)

|T1|, |T2|, |T3|, |T4| ≤ 0.1 N (68)

where constraint (68) is added to keep control cost for active
perception within a small bound. Please note that constraint
(68) can be added to the cost function with an appropriate
weighting constant using the Lagrangian relaxation [40] and
the optimal solution may vary depending on the choice for
the weighting constant. The optimization problem is solved by
using the sequential quadratic programming in our simulations.
Fig. 10 shows an example of control input generated by active
perception.

To demonstrate the proposed framework, we simulate active
perception with the following four conditions:

1) observability Gramian without the depth-rate measure-
ment (AP-OGwoDR);

2) observability Gramian with the depth-rate measurement
(AP-OGwDR);

3) constructability Gramian without the depth-rate mea-
surement (AP-CGwoDR);

Fig. 10. Control input generated by active perception for the first 60 s of
simulation. Thrusts vary to maximize λmin of the Gramian.

4) constructability Gramian with the depth-rate measure-
ment (AP-CGwDR).

As described in Section V-A, the observability Gramian and
constructability Gramian are related in terms of uniform
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Fig. 11. Estimation results obtained through active perception using constructability Gramian with the depth-rate measurement (AP-CGwDR) (a) True (blue
line) and estimated (red line) vehicle trajectories descending from (x, y, z) = (0, 0, 0). (b) Estimation error for the flow state, ef1 . The rms errors in the
individual axes are displayed in the plot. (c) Estimation error for the vehicle state. From the top, the position error eη1 , orientation error eη2 , linear velocity
error eνr1 , and angular velocity error eνr2 are provided. The rms errors in the individual axes are displayed in each plot.

complete observability. We show how the proposed framework
performs with additional past information incorporated in
constructability Gramian compared to observability Gramian.
In addition, a comparison of these conditions shows how our
framework is affected by additional information of the depth-
rate measurements. Table V shows the norm of the rms errors
for the flow state and the localization error along with the
percentage of the distance traveled.

AP-OGwoDR: Among four implementations of the pro-
posed framework, the performance of AP-OGwoDR is notice-
ably worse. Note that we evaluate the observability Gramian
for only one-step lookahead (i.e., K = 1). Without additional
information of the depth-rate measurement, AP-OGwoDR
does not have sufficient information to improve flow state
estimation, resulting in localization performance in the same
order as non-AP. This result improves significantly when
the depth-rate measurement is incorporated into the proposed
framework.

AP-XXwoDR Versus AP-XXwDR: Let us first compare
AP-OGwoDR and AP-OGwDR. For observability Gramian
with only one-step lookahead, additional information of
the depth-rate measurement enables active perception con-
trol to improve flow state estimation, leading to enhanced
vehicle state estimation and localization. However, compar-
ing AP-CGwoDR and AP-CGwDR, since constructability
Gramian takes past information into account along with one-
step lookahead, incorporating the depth-rate measurement does

TABLE VII

CONTROL COST COMPARISON

not make much difference in flow and vehicle state estimation.
To further analyze the effect of the depth-rate measurement in
the proposed framework, we also compare control cost for the
four active perception schemes (see Table VII). Although
the estimation performance for AP-OGwDR, AP-CGwoDR,
and AP-CGwDR is pretty close, with a combination of the
depth-rate measurement and past information, AP-CGwDR
has significant reduction in control cost for active perception.

Overall: As shown in Table V, since AP-OGwDR,
AP-CGwoDR, and AP-CGwDR have similar estimation
performance, we only provide the results obtained by
AP-CGwDR shown in Fig. 11. Of these three, AP-CGwDR is
the most auspicious considering its low estimation error and
low control cost. The overall results show that the proposed
framework can improve flow state estimation using active
perception control and further achieve the enhanced vehicle
state estimation even using IMU data with time-varying bias.
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Note that the presented results are based on the optimization
problem designed in (66)–(68). Disparate conditions in con-
straints may change the results. Finally, although the frame-
work is validated for a specific case study, it can be extended
as long as vehicle motion can be designed to improve flow
state observability.

VII. CONCLUSION AND FUTURE WORK

This article has proposed an active perception framework
for AUV navigation using IMU and depth sensors only. The
proposed framework is established by employing vehicle and
flow motion models that incorporate the coupling between
vehicle motion and ocean flow. With these models, a nonlinear
system for the vehicle state and a linear time-varying system
for the flow state are separately constructed, facilitating flow
state estimation. Due to coupling, observability for the flow
state depends on vehicle motion. To achieve the observability
for the flow state, active perception control exploits vehi-
cle motion and maximizes an information metric pertaining
to estimation performance based on either observability or
constructability Gramian for the flow state. While a vehicle
is in motion with active perception control, the vehicle and
flow states are estimated by separate filters, in which the
estimated states are jointly used for estimation of the other
state. The simulation results demonstrate the effectiveness of
the proposed framework for AUV navigation.

The proposed framework relies on a model-based analy-
sis, but in real deployments, model uncertainty may signif-
icantly impact its performance. Therefore, we will conduct
a robustness analysis for the framework to address practical
applicability. In addition, for field trials, it is also important
to consider sampling and control frequencies to make the
framework real-time feasible. In extending the framework to
various navigation tasks, we will investigate a more general
formulation of active perception control instead of considering
it as input injection. Finally, we plan to incorporate bias
estimation and also analyze theoretical or empirical bounds
on the estimated variables.
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