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A B S T R A C T

The State of Health (SOH) of lithium-ion batteries is directly related to their safety and efficiency, yet effective
assessment of SOH remains challenging for real-world applications. In this paper, the estimation of SOH
(i.e., capacity fading) under partial discharge with different initial and final State of Charge (SOC) levels
is investigated. The challenge lies in the fact that partial discharge causes the truncation of the data available
for SOH estimation, thereby leading to the loss or distortion of common SOH indicators. To address this
challenge, we utilize the convolutional neural network (CNN) to extract indicators for both SOH and changes
in SOH (𝛥SOH) between two successive charge/discharge cycles. The random forest algorithm is then adopted
to produce the final SOH estimate by exploiting the indicators from the CNNs. Performance evaluation is
conducted using the partial discharge data with different SOC ranges created from a fast-discharging dataset.
The proposed approach is compared with (i) a differential-analysis-based approach and (ii) two CNN-based
approaches using only SOH and 𝛥SOH indicators, respectively. Through comparison, the proposed approach
demonstrates improved estimation accuracy and robustness. Sensitivity analysis of the CNN and random forest
models further validates that the proposed approach makes better use of the available partial discharge data.
1. Introduction

Lithium-ion (Li-ion) batteries have been well established as an
effective energy storage technology for various applications due to
their low self-discharge rate, high energy density, and falling cost [1,
2]. To maintain safe and reliable operation, an accurate and robust
battery State of Health (SOH) estimation is of critical importance.
Generally, the battery SOH is characterized by either its capacity or
its internal resistance [3]. Compared to resistance, capacity is a more
direct indicator for SOH, as it represents the energy storage capa-
bility of a battery [4]. Therefore, the estimation of capacity fading
is the focus of most SOH monitoring works. To assess the SOH of
a battery, one can completely discharge a fully charged battery and
compute its capacity using Coulomb counting [5]. However, fully
discharging or charging the battery for SOH estimation may not be
feasible in some applications (e.g., electric vehicle), and can accelerate
battery degradation [6]. Therefore, for general applications, SOH esti-
mation is performed using battery partial charge or discharge operating
data [7].

To estimate SOH using partial charge or discharge data, a mapping
from the battery operating data (e.g., current, voltage, and temperature
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over time) to SOH needs to be constructed. However, given its high
dimensionality [8], the direct construction of this mapping requires
a large amount of data. Without a comprehensive set of data, this
mapping can be established with a two-step procedure. First, SOH
indicators (e.g., parameters in physics-based models or signatures in
experimental data) are identified from charge or discharge data based
on expert knowledge. Then, a low-dimensional mapping is developed
between these indicators and SOH [9].

Equivalent circuit models (ECMs) were used with different state
estimation techniques such as least squares [10], Kalman filters [11],
and particle filters [12] to obtain open circuit voltage (OCV) versus
State of Charge (SOC) curves. Then, SOH was inferred based on the
relationship between OCV, SOC, and SOH. ECM-based approaches pro-
vide a computationally-efficient SOH estimation under different battery
operating conditions (e.g., partial or pulse charge/discharge [13]).
However, given the complex electrochemical nature of batteries, the
oversimplified ECMs can have significant unmodeled dynamics, leading
to degraded estimation accuracy. In addition, ECM-based approaches
have fundamental difficulties extracting SOH indicators from the flat
region of OCV–SOC curves, i.e., the mid-SOC range [14].
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To better capture the electrochemical mechanisms in batteries, elec-
trochemical models were adopted for extracting SOH indicators [15,
16]. Various physics-informed model parameters, such as solid elec-
trolyte interphase growth and solid state diffusion coefficient, can
be fitted from the battery operating data using the electrochemical
models. SOH is then tracked based on its correlation with these model
parameters [17,18]. The intensive computation of electrochemical-
model-based approaches, however, makes them infeasible for most
real-time applications [19].

For a trade-off between computational complexity and model accu-
racy, differential analysis (DA) was applied to identify SOH indicators.
For example, incremental capacity analysis (ICA), which differentiates
the battery charge capacity versus the terminal voltage, was utilized
in [20,21]. In [22], SOH indicators were extracted by computing the
voltage change per unit charge capacity change (i.e., differential volt-
age analysis). The ratio of the temperature and voltage differentials
(i.e., differential thermal voltammetry) was leveraged in [23] for SOH
indicator extraction. Data-driven DA-based approaches can extract SOH
indicators better representing the true battery condition. However, due
to the use of differential operations, data smoothing is required before
applying DA, which could lead to distortion or loss of information.
Moreover, SOH indicators from DA can be mostly located near the high
or low SOC range, thereby limiting its effectiveness under partial charge
or discharge.

Considering the aforementioned challenges in extracting SOH in-
dicators and the increasing data availability, deep-learning-based ap-
proaches offer a promising alternative to the above methods. By lever-
aging the strong learning ability of neural networks (NNs), deep-
learning-based approaches can directly approximate the mapping from
charge or discharge data to SOH (i.e., end-to-end SOH estimation)
without relying on expert knowledge. For instance, a vanilla recurrent
NN (RNN) was adopted to estimate SOH from the battery charge
and discharge data in [24]. A variant of vanilla RNN, a long short-
term memory network, was utilized in [25] to capture the long-term
dependency of SOH on the past and present battery operating con-
ditions. In [26], a convolutional NN (CNN) was applied to handle
the SOH estimation under partial charge. However, one drawback
for the deep-learning-based approaches that perform end-to-end SOH
estimation is the lack of interpretability, as there is no explicit SOH
indicator extraction procedure. In addition, it is intrinsically difficult to
incorporate expert knowledge into the estimation procedure for these
approaches.

This paper proposes a deep-learning-based SOH estimation algo-
rithm for a single battery cell under partial discharge. The proposed
approach adopts a two-step procedure for SOH estimation to facilitate
better interpretability and the incorporation of expert knowledge. In
the first step, motivated by the work in [8,26], CNNs are utilized to
handle SOH indicator extraction under partial discharge. Two CNNs
are established to extract the indicators related to the SOH and the
change of SOH between two successive discharge cycles (𝛥SOH). In
the second step, considering the potential correlation among indicators
extracted from two CNNs, random forest [27], which uses an ensemble
of decision trees to capture an input–output relationship, is adopted
to produce the final SOH estimate based on the extracted indicators.
To validate the effectiveness of the proposed approach, it is compared
with the following approaches: (i) a DA-based approach using ICA for
SOH indicator extraction, and (ii) two CNN-based approaches using
SOH and 𝛥SOH indicators, respectively, for SOH estimation. Based on
a fast-discharging dataset provided in [28], it has been demonstrated
that the proposed approach can improve both estimation accuracy and
robustness.

The contribution of this paper is as follows.

• It presents a two-step procedure for SOH estimation that uses CNN
for indicator extraction and random forest for indicator fusion.
This framework facilitates the exploitation of both the learning
2

ability of NNs and physics-based knowledge for SOH estimation. o
• Sensitivity analysis of CNN and random forest models is per-
formed to interpret the data-driven models and demonstrate the
effectiveness of the proposed algorithm.

• A novel perspective for SOH estimation based on 𝛥SOH is pro-
posed, which can enhance the SOH detectability under partial
charge/discharge by leveraging the indicators complementary to
the SOH-related indicators.

The remainder of this paper is organized as follows: Section 2 intro-
duces the procedure for partial discharge data collection and formulates
the SOH estimation problem under partial discharge. The limitation of
the DA-based approach under partial discharge is shown in Section 3.
In Section 4, two CNNs extracting indicators related to SOH and 𝛥SOH
are first developed and examined. Based on the sensitivity analysis of
two CNNs, a random forest model is then developed to fuse the outputs
from the CNNs for enhanced SOH estimation performance. In Section 5,
the proposed approach is verified under partial discharge with different
initial and final SOC levels. Conclusions and future work are provided
in Section 6.

2. Background

In this section, the data to be used for developing and validating the
proposed approach is first presented. Then, the SOH estimation prob-
lem under partial discharge is formulated. In this study, an open-source
dataset provided in [28], which contains aging data for 124 commercial
batteries, is used to demonstrate the concept and validate the approach.
The batteries under investigation are lithium–iron-phosphate/graphite
cells manufactured by A123 Systems (model APR18650M1A). The
nominal capacity of the cells is 1.1 Ah, and the lower and upper cut-
off voltages are 2.0 V and 3.6 V, respectively. The battery is cycled in
a temperature-controlled environmental chamber of 30 °C by charging
and discharging the cell repeatedly. A varied charging rate and a
constant discharging rate are adopted for cycling. Since the focus of
this work is to address the SOH estimation under incomplete charge
and discharge (instead of different C rates), the discharge data will be
used for the subsequent algorithm development and evaluation.

The cells are discharged from a fully charged state with a constant
current–constant voltage (CC–CV) policy. In particular, the cell is first
discharged at 4 C until its terminal voltage reaches the low cutoff
voltage (i.e., 2.0 V). Then, a constant voltage discharge is performed
until the cell current reaches the cutoff current (i.e., 1/50 C). The
aging data consists of the discharge capacity, voltage, and cell capacity
of each discharge cycle, where the cell capacity is obtained as the
maximum discharge capacity over the entire cycle. Based on the cell
capacity, the SOH for each discharge cycle is defined as the ratio
between the cell capacity and the nominal capacity. The full voltage-
discharge capacity curves (i.e., full discharge curves) from one sample
cell under different SOH levels are given in Fig. 1.

Using the full discharge curves, a partial discharge dataset is created
by truncating the full discharge curves with different initial and final
depth of discharge (DoD) values. The initial DoD (𝐷𝑜𝐷𝑖) is determined
randomly according to a Gaussian distribution, and the final DoD
(𝐷𝑜𝐷𝑓 ) is obtained as

𝐷𝑜𝐷𝑓 = 𝐷𝑜𝐷𝑖 +
𝑄𝑚𝑎𝑥

𝐶𝑐𝑒𝑙𝑙
, (1)

where 𝑄𝑚𝑎𝑥 is a uniformly sampled maximum incremental discharge
apacity, and 𝐶𝑐𝑒𝑙𝑙 is the cell capacity. Note that, 𝑄𝑚𝑎𝑥 = 0 implies
hat 𝐷𝑜𝐷𝑓 = 𝐷𝑜𝐷𝑖, namely, no discharge. Then, the voltage (V) and
ncremental discharge capacity (Q) sequences from the initial to final
oD values are considered as the partial discharge curve for each cycle

see Fig. 2). The SOH estimation problem under partial discharge is
ormulated as estimating the SOH for the present discharge cycle based

n the present and past partial discharge curves.
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Fig. 1. Full discharge curves under different SOH levels.

Fig. 2. Illustration of data truncation for creating partial discharge curve.

3. DA-based approaches for SOH estimation under partial dis-
charge

In this section, a DA-based approach is applied to estimate SOH un-
der partial discharge to illustrate the limitation of DA-based approaches
and the characteristics of SOH indicators. The DA-based approach that
uses ICA for indicator extraction is adopted given its demonstrated
effectiveness for SOH estimation under partial charge/discharge [29–
32]. Typical ICA takes the following steps to extract SOH indicators
from the discharge curves. First, data pre-processing is performed to
smooth out the measurement noise. In this study, the support vector
regression (SVR) method proposed in [21,30] is utilized, which fits the
discharge curves (i.e., V–Q curves) for smoothing. The choice of SVR is
based on the finding in [21,30] that SVR can effectively remove noise
and has minimal information loss under partial charge/discharge. With
the smoothed discharge curves, the IC values are then computed as the
gradient of V with respect to Q (i.e., 𝛥Q/𝛥V). Finally, by examining
the IC-voltage curves, salient features can be extracted as the SOH
indicators.

Considering that the IC features are mostly in the high SOC (i.e., low
DoD) region [21], a partial discharge dataset with 𝐷𝑜𝐷𝑖 = 0 and
𝑄𝑚𝑎𝑥 ∼  (0.65, 0.75) is created, where  (

̄
𝑄𝑚𝑎𝑥, 𝑄̄𝑚𝑎𝑥) denotes a uniform

distribution with
̄
𝑄𝑚𝑎𝑥 and 𝑄̄𝑚𝑎𝑥 being the lower and upper bounds,

respectively. Note that the distribution for sampling 𝑄𝑚𝑎𝑥 is chosen
such that ICA can effectively extract SOH indicators from the partial
discharge curves. By applying SVR and differentiation, the IC curves
for the same cell in Fig. 1 are shown in Fig. 3. From Fig. 3, we have
the following observations:

• There are multiple IC minima over the available voltage range,
which correlate with SOH.
3

Fig. 3. IC curves under different SOH levels for the cell in Fig. 1 under partial discharge
with the low DoD region.

Fig. 4. The lowest IC minimum vs. SOH from five different cells under partial discharge
with the low DoD region.

• The location of these IC minima shifts irregularly along the volt-
age axis under different SOH levels.

• Only the lowest IC minimum remains identifiable under different
SOH levels.

The above observations indicate that, under partial discharge, the SOH
estimation performance of the DA-based approach that uses ICA heavily
relies on the existence and the quality of the lowest IC minimum.

To examine the quality of the lowest IC minimum for different
cells, we plot the lowest IC minimum of five different cells and its
corresponding SOH levels in Fig. 4, where the dots with the same color
indicate the data from the same cell. It can be seen from Fig. 4 that:

• The lowest IC minimum of the cell may not be consistently
correlated with its SOH.

• The relationship between the lowest IC minimum and SOH can
vary for different cells.

Since the correlation between the lowest IC minimum and SOH is cor-
rupted under partial discharge and sensitive to the cell-to-cell variation,
the DA-based approach can suffer from performance degradation when
estimating the SOH.

To further illustrate the robustness issue with the DA-based ap-
proach under partial discharge, another partial discharge dataset with
𝐷𝑜𝐷𝑖 ∼  (0.2, 1∕900) and 𝑄𝑚𝑎𝑥 ∼  (0.45, 0.55) is created, where
 (𝜇, 𝜎2) denotes a Gaussian distribution with 𝜇 and 𝜎 being the mean
and standard deviation, respectively. The distributions for the sampled
initial and final DoD values are shown in Fig. 5. This partial discharge
setup represents a normal battery operating condition in a typical
electric vehicle application. The IC curves from this dataset for the same
cell in Fig. 3 is plotted in Fig. 6. In Fig. 6, we see that:
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Fig. 5. Initial DoD and final DoD distributions for the partial discharge dataset without
the low DoD region.

Fig. 6. IC curves under different SOH levels for the cell in Fig. 1 under partial discharge
without the low DoD region.

• Due to the data truncation caused by partial discharge, the lowest
IC minimum between 3.15 𝑉 and 3.2 𝑉 disappears.

• The IC minima located between 3.05 𝑉 and 3.15 𝑉 in Fig. 3 also
disappear due to the data smoothing.

4. CNNs and random forest for SOH estimation under partial dis-
charge

In this section, CNNs and random forest are used to address SOH es-
timation under partial discharge. First, we develop a CNN that directly
estimates SOH from the discharge data and evaluate its performance
under partial discharge without the low DoD region. In view of the low
consistency between successive SOH estimates from the CNN for direct
SOH estimation, a CNN for incremental SOH estimation is then pro-
posed. Since both CNNs have pros and cons, a random forest model is
then designed to fuse two CNNs for enhanced estimation performance.

4.1. Direct SOH estimation using CNN

In Section 3, it has been shown that DA-based approaches become
ineffective when the expert knowledge (e.g., IC minima) is not ap-
plicable. In the absence of applicable expert knowledge, NN can be
a promising solution, since it can automatically extract features from
the data that correlate with the desired output. For SOH estimation,
three types of NNs have been investigated, i.e., multilayer perception
(MLP) [33], RNN [24,34], and CNN [26]. In order to select the best
NN for our problem, we recall the observations in Section 3 that the
IC minimum is a local property and may shift when the SOC range
of the partial discharge curves differs. Consequently, CNN is chosen
to extract locally-connected features whose locations in the input data
4

Fig. 7. Architecture of the proposed CNN.

Table 1
Hyperparameters of the proposed CNNs.

Hyperparameter Value

Convolution filter size 3
Convolution filter stride 1
Number of convolution filters 50
Pooling size 3
Pooling stride 3
Layer 6 FC dimension 550
Layer 7-10 FC dimension 200

may shift [35]. The advantage of CNN over MLP and RNN lies in its
convolution and pooling operations. The former enables the extraction
of locally-connected features such as the regional minima in IC curves,
and the latter can identify shifted features by taking the extreme value
within a local region as its output.

We use a ten-layer CNN model with both convolutional and fully-
connected (FC) layers (see Fig. 7). ‘‘Conv1D’’ and ‘‘Maxpool1D’’ denote
the one-dimensional convolution and max-pooling operation. The hy-
perparameters of the CNN are listed in Table 1. The architecture and
hyperparameters of the proposed CNN are designed based on the results
presented in [26] and through trial and error. The output of the CNN
is the SOH of the present discharge cycle. The CNN has two input
channels. The first channel is the sequence of incremental discharge
capacity of the present cycle, i.e., a vector of evenly spaced points
between zero and the upper bound of the uniform distribution for 𝑄𝑚𝑎𝑥

(𝑄̄𝑚𝑎𝑥). The second channel is the sequence of cell terminal voltage of
the present cycle, i.e., a vector of terminal voltage values corresponding
to the points in the incremental discharge capacity sequence. Since
the discharge ends at 𝑄𝑚𝑎𝑥, zero padding is performed in the terminal
voltage sequence from 𝑄𝑚𝑎𝑥 to 𝑄̄𝑚𝑎𝑥. To train the CNN, we use 60%
of the data for training, 20% for validation, and 20% for testing. Five-
folds cross-validation is performed to remove the effect of the dataset
partition on the estimation accuracy. For performance evaluation, the
following definition of mean absolute error (MAE) between the true
SOH (𝑆𝑂𝐻𝑡) and the estimated SOH (𝑆𝑂𝐻𝑒) is adopted:

𝑀𝐴𝐸 =
|𝑆𝑂𝐻𝑡 − 𝑆𝑂𝐻𝑒|

𝑆𝑂𝐻𝑡
× 100%. (2)

The CNN with the above setup (SOH-CNN) is applied to the same
dataset used for DA-based approach, namely, with the initial and final
DoD values located around 0.2 and 0.7 (see Fig. 5). In this study, the
development of CNNs is performed in PyTorch [36] with the Adam
optimizer. The average MAE from SOH-CNN on the testing data (i.e., 27
cells with cycle life ranging from approximately 500 to 2000) is 1.28%,
and its representative SOH estimation performance is presented in
Fig. 8. Fig. 8 shows that satisfactory SOH estimation performance can
be achieved by SOH-CNN without explicitly incorporating the salient
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Fig. 8. Representative SOH estimation performance of SOH-CNN under partial discharge without the low DoD region (Each subplot contains the SOH trajectory of a different cell).
SOH indicator used in the DA-based approach (i.e., the lowest IC
minimum). This is because the indicators that are numerically cor-
related with SOH, but may not be physically interpretable, can be
extracted by SOH-CNN. Moreover, since no additional data smoothing
is required, the potential information loss caused by data processing
can be avoided. Despite its success in handling SOH estimation under
partial discharge, SOH-CNN does not yield consistent SOH estimates in
successive cycles, as shown in Fig. 8. This is due to the following two
reasons. First, the information provided with the partial discharge curve
may not be enough, thereby leading to degraded estimation accuracy.
Second, only the partial discharge data of present cycle is used for
SOH estimation. Consequently, the correlation between present and
past SOH values cannot be captured.

4.2. Incremental SOH estimation using CNN

To enhance consistency amongst successive SOH estimates, we need
an NN formulation that can better capture the accumulative and evo-
lutionary nature of SOH based on the discharge data. Although RNNs
can capture the dependency of SOH on battery operating history, they
are ineffective in extracting locally-connected and shifted features from
discharge curves, which can be important for characterizing battery
degradation [28,37]. Therefore, a CNN that estimates the difference of
SOH between the present and past SOH values (𝛥SOH) is proposed in
an attempt to capture the change in SOH over time. The number of
layers and architecture of each layer of the CNN are the same as those
of the SOH-CNN. The output of the CNN is 𝛥SOH. Since the change of
SOH depends on the degradation history, the CNN is designed to use
both the past and present partial discharge curves. Namely, the CNN
additionally takes in the sequences of incremental discharge capacity
and cell terminal voltage of the past cycle compared to the SOH-CNN.
Note that we do not constrain the 𝛥SOH from the CNN to be strictly
negative for a monotonically decreasing SOH trajectory, as 𝛥SOH can
be positive due to various factors [28]. Based on the estimated 𝛥SOH
from the CNN, the SOH estimate for the present cycle (𝑆𝑂𝐻 𝑡

𝑒) can be
computed as the sum of the SOH estimate for the past cycle (𝑆𝑂𝐻 𝑡−1

𝑒 )
and the estimated 𝛥SOH for the present cycle (𝛥𝑆𝑂𝐻 𝑡

𝑒), i.e.,

𝑆𝑂𝐻 𝑡
𝑒 = 𝑆𝑂𝐻 𝑡−1

𝑒 + 𝛥𝑆𝑂𝐻 𝑡
𝑒. (3)

For the same dataset used in Section 4.1, the average MAE from
using the CNN that outputs 𝛥SOH, i.e., 𝛥SOH-CNN, on the testing data
is 1.57%, and representative SOH estimation results are shown in Fig. 9.
Compared to the SOH estimation results in Fig. 8, 𝛥SOH-CNN improves
the consistency among the successive SOH estimates. This is attributed
to two reasons. First, as both the present and past discharge curves
are used as inputs to 𝛥SOH-CNN, richer information is available for
estimating SOH. More importantly, by formulating the output of the
CNN as 𝛥SOH, 𝛥SOH-CNN could better learn the relationship between
5

successive SOHs by extracting 𝛥SOH-related features, leading to an
improved consistency. On the downside, 𝛥SOH-CNN has a worse MAE
than that of SOH-CNN, as the estimation errors will be accumulated
over time like any integrator-based estimators. Furthermore, since the
𝛥SOH is typically much smaller than SOH, the ground truth 𝛥SOH
used for CNN training is more likely to be corrupted by the noise in
experimental data, which could affect the training and deteriorate the
estimation accuracy. Finally, it should be pointed out that since 𝛥SOH
depends on the degradation mechanism of a cell, the performance of
𝛥SOH-CNN can be more sensitive to the cell-to-cell variation, as is the
case for the 1st and 18th cells in Fig. 9.

4.3. CNN and random forest based SOH estimator

Both SOH-CNN and 𝛥SOH-CNN can handle SOH estimation under
partial discharge and outperform the DA-based approach. The SOH-
CNN has a smaller MAE but a worse consistency in terms of successive
SOH estimates compared to 𝛥SOH-CNN. Motivated by their comple-
mentary characteristics, we investigate if these two CNN models can
supplement each other for SOH estimation. To this end, we analyze the
CNN model sensitivity by computing the partial derivative of the output
with respect to the inputs. In particular, considering that SOH is closely
related to OCV, the sensitivity of the CNN output with respect to the
input voltage curves are studied, as plotted in Fig. 10. It shows that
SOH-CNN has larger partial derivative values in the first half of the
present voltage curve under partial discharge (see Fig. 10(a)), while
𝛥SOH-CNN shows larger partial derivative values in the second half of
the present and past voltage curves (see Fig. 10(b) and Fig. 10(c)). This
observation motivates the use of an ensemble algorithm to combine
these two CNN models for better performance.

In order to combine two CNN models for estimating SOH, we treat
the SOH estimates from two CNNs as two SOH indicators. A regression
model can then be developed to estimate SOH. Considering that the
SOH estimates from CNNs are both produced based on the discharge
curves, there can be strong correlation between these two SOH esti-
mates. Therefore, the random forest algorithm is chosen to mitigate
the potential effect caused by multicollinearity [38]. By combining the
CNNs and random forest models, a random forest-CNN (RF-CNN) SOH
estimator is proposed as shown in Fig. 11. In RF-CNN, two CNNs first
take the partial discharge curves from the past and present cycles to
produce two estimates of SOH. Then, the random forest model fuses
two SOH estimates from the CNNs to provide the final estimate of SOH.

To develop the RF-CNN, the SOH-CNN trained in Section 4.1 and
the 𝛥SOH-CNN trained in Section 4.2 can be directly used. In addition,
a random forest model is developed using the statistics and machine
learning toolbox in MATLAB based on the SOH estimates from the
CNNs and the true SOH values. The random forest model contains
25 regression trees, and each tree uses interaction tests [39] to select
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Fig. 9. Representative SOH estimation performance of 𝛥SOH-CNN under partial discharge without the low DoD region (Each subplot contains the SOH trajectory of a different
cell).
Fig. 10. Sensitivity of the output with respect to the input voltage curves in CNNs (𝑉𝑡
and 𝑉𝑡−1 are the present and past voltage curves, (a) is for SOH-CNN, and (b) and (c)
are for 𝛥SOH-CNN).

Fig. 11. Overall structure of the RF-CNN (SOH1 and SOH2 are the estimated SOH from
SOH-CNN and 𝛥SOH-CNN).

the best split predictor at each tree node. The average MAE from RF-
6

CNN is 0.85% for the same case study in Sections 4.1 and 4.2, and its
representative SOH estimation performance is shown in Fig. 12. Since
the CNNs in the RF-CNN are the same as those developed in Sections 4.1
and 4.2, it can be seen that RF-CNN achieves a better consistency and
a 34% improvement in accuracy compared to SOH-CNN (see Fig. 8).
Compared to 𝛥SOH-CNN (see Fig. 9), RF-CNN has a worse consistency
but suffers less from the cumulative error, leading to a 46% reduction
in MAE. To further illustrate the reason why RF-CNN can enhance
the estimation performance, we study the importance of the outputs
from two CNNs on the SOH estimate from the random forest model.
In particular, the ratios of the importance of the SOH-CNN output to
that of the 𝛥SOH-CNN output over five folds in cross-validation are
reported, which are 1.41, 1.38, 1.87, 1.53 and 1.00. From the reported
ratios, it can be seen that both CNN models contribute substantially to
the final SOH estimate, thereby resulting in better estimation accuracy
than that from each individual CNN.

5. Performance evaluation

In this section, to validate the effectiveness of the proposed RF-CNN,
we first compare it with the DA-based approach discussed in Section 3.
Then, an extensive comparison between RF-CNN, SOH-CNN, and 𝛥SOH-
CNN is performed under partial discharge with different DoD ranges.
Finally, several aspects concerning the practical implementation of the
proposed approach are discussed.

5.1. Comparison with DA-based approaches

To perform comparison with the DA-based approach, the par-
tial discharge data with the low DoD region presented in Section 3,
i.e., 𝐷𝑜𝐷𝑖 = 0, is used. For a fair comparison, the random forest
algorithm is adopted to establish the mapping from the lowest IC
minimum to SOH. By applying the DA-based approach that uses ICA
and random forest (RF–ICA), its average MAE is 2.31%, while the
MAE from RF-CNN is 0.72%. Therefore, it is verified that RF-CNN can
achieve better MAE under partial discharge thanks to the richness and
robustness of the SOH indicators extracted by CNN. Furthermore, as is
shown in Sections 3 and 4.3, RF-CNN has better robustness compared
to the RF–ICA under partial discharge without the low DoD region.

5.2. Comparison with SOH-CNN and 𝛥SOH-CNN

The RF-CNN is further compared with SOH-CNN and 𝛥SOH-CNN un-
der partial discharge with different DoD ranges to demonstrate the ro-
bustness of the RF-CNN. The following four partial discharge conditions
are considered:

(i) 𝐷𝑜𝐷𝑖 ∼  (0.1, 1∕900) and 𝑄𝑚𝑎𝑥 ∼  (0.67, 0.77);
(ii) 𝐷𝑜𝐷 ∼  (0.2, 1∕900) and 𝑄𝑚𝑎𝑥 ∼  (0.45, 0.55);
𝑖
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Fig. 12. Representative SOH estimation performance of the RF-CNN under partial discharge without the low DoD region (Each plot contains the SOH trajectory of a different cell).
Table 2
SOH estimation MAE of different CNN-based estimators under partial discharge with
different DoD ranges.

Method DoD 0.1–0.8 DoD 0.2–0.7 DoD 0.3–0.6 DoD 0.4–0.5

SOH-CNN 0.99% 1.28% 1.61% 2.92%
𝛥SOH-CNN 1.04% 1.57% 1.54% 2.30%
RF-CNN 0.62% 0.85% 1.01% 1.51%

(iii) 𝐷𝑜𝐷𝑖 ∼  (0.3, 1∕900) and 𝑄𝑚𝑎𝑥 ∼  (0.25, 0.35);
(iv) 𝐷𝑜𝐷𝑖 ∼  (0.4, 1∕900) and 𝑄𝑚𝑎𝑥 ∼  (0.05, 0.15).

The resulted final DoD distribution for each condition will approx-
imately be a Gaussian distribution as that in Fig. 5 with its mean
located near 0.8, 0.7, 0.6, and 0.5. On each partial discharge datasets,
a SOH-CNN, a 𝛥SOH-CNN, and a RF-CNN are trained and tested. The
average MAE from different CNN-based estimators is summarized in
Table 2. As can be seen from Table 2, RF-CNN can outperform SOH-
CNN and 𝛥SOH-CNN on all four conditions. In addition, although the
MAE increases as the data range decreases for all three approaches, RF-
CNN maintains better robustness (i.e., smaller MAE increase) compared
to the other two CNN-based estimators due to richer SOH indicators.

5.3. Discussion

Extensive discussion about the proposed approach is provided con-
cerning the following four aspects.

(1) Computational complexity: On a computer with a 2.9 GHz Intel
Core i5 processor and 16 GB RAM, the computation time for SOH-CNN
or 𝛥SOH-CNN is about 0.001 s, and the computation time for random
forest is about 0.05 s. In the future, cloud computing technology may be
used to implement the proposed approach on platforms with limited on-
board computing resources, e.g., electric vehicles and smartphones [40,
41].

(2) Partial charge/discharge condition: Since the charge data in
the adopted dataset is collected under different multi-step charging
policies, the constant-current discharge data is used for developing a
solution to SOH estimation under partial charge/discharge. In real-
ity, it is easier to achieve a constant-current charge than a constant-
current discharge as the battery discharge rate depends on the driver
demand [42]. Considering that both random forest and CNN are model-
free methods, the proposed approach should be applicable to charge
data. For example, it has been shown in [43] that the random forest
model can estimate SOH based on SOH indicators under constant-
current charge. CNNs are proven to be effective for SOH indicator
extraction on charge data in [44]. Meanwhile, when studying the
partial discharge problem, we have investigated the sensitivity of the
proposed modeling approach to the SOC range (e.g., see Table 2). The
7

results show that with limited discharge range of 10%, the proposed
algorithm can still achieve MAE of less than 2%. Unlike SOC, SOH
estimation does not need to run continuously. Consequently, SOH can
be updated with the proposed approach when a period of constant-
current discharge is expected (e.g., the vehicle is moving at a relatively
constant speed).

(3) Battery chemistry: The battery chemistry can impact SOH es-
timation as battery dynamics (e.g., internal resistance and OCV–SOC
curve) can be significantly different [45]. In particular, for batteries
with a flat OCV–SOC curve, the detectability of SOH is inherently
weak [13]. Consequently, the SOH estimation accuracy of the proposed
approach may be impaired. However, the lithium–iron-phosphate bat-
tery considered in this study has a relatively flat OCV–SOC curve when
compared to other chemistries (e.g., NCM/NMC cells) [11]. Therefore,
for batteries with other chemistries, the proposed approach may extract
richer SOH indicators due to its automatic feature extraction ability and
achieve better estimation accuracy.

(4) Battery temperature: The development and evaluation of the
proposed approach are conducted on data collected in a temperature-
controlled chamber of 30 °C. In a real battery application, variations in
the ambient temperature will inevitably exist [46], even with the best
thermal management system. When temperature goes outside the pre-
defined window, the SOH estimation algorithm with the model trained
under constant temperature should be switched off. Meanwhile, tem-
perature variations can be addressed within the proposed framework
if additional degradation data with different temperatures is available.
The SOH-CNN and the 𝛥SOH-CNN of RF-CNN can be retrained with
additional input channels taking in the temperature sequences. Suppose
there is insufficient data for retraining deep learning models. In that
case, a correction mechanism can be developed alternatively which
takes the estimate from the RF-CNN and corrects it based on the
ambient temperature. Experiments are being planned in the future to
collect battery degradation data under different temperature conditions
to explore the applicability of the proposed method.

6. Conclusions and future work

In this paper, we consider the SOH estimation problem for a single
battery cell under partial discharge and propose RF-CNN as a solution.
Two CNNs are used simultaneously to extract the indicators correlating
to SOH and change of SOH between two consecutive discharge cycles
(𝛥SOH) from partial discharge curves. Based on the outputs from the
CNNs, a random forest model is then designed to integrate two CNNs to
produce the final SOH estimate. Evaluation of the proposed approach
is performed based on the partial discharge data with different DoD
ranges created from a fast-discharging dataset. By comparing RF-CNN
with RF–ICA, SOH-CNN, and 𝛥SOH-CNN, enhanced accuracy and ro-

bustness are verified for the proposed approach. The sensitivity analysis
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of the CNN and random forest models further validates that richer
indicators can be extracted by RF-CNN for SOH estimation.

In this work, the proposed approach is evaluated on a fast discharg-
ing dataset with an identical 4 𝐶 discharge rate under 30 °C ambient
temperature. Our future work will focus on evaluating the effective-
ness of the proposed approach under different battery chemistries,
charge/discharge profiles, and ambient temperature conditions using
experimental data. Validation of the proposed approach on parallel-
connected battery cells will also be our focus in the future.
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