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Abstract— We present an integrated spatio-temporal frame-
work for multi-range traction power and speed prediction
for connected vehicles (CVs). It combines data-driven and
model-based strategies to enable CVs energy efficiency opti-
mization. The proposed framework focuses on urban arterial
corridors with signalized intersections, and leverages the histor-
ical and real-time data collected from CVs and infrastructure
to predict location-specific traction loads (e.g. acceleration at
intersections), and augment them with time-specific speed profiles
(e.g., stop duration at intersections). A Bayesian network is
developed to provide a long-term load prediction informed by
probabilistic analysis of historical traffic data at intersections
and between intersections. Moreover, a shockwave profile model
is adopted for modeling the queuing process at intersections
by leveraging vehicle-to-infrastructure (V2I) communications,
providing a short-range prediction of the vehicle speed with an
enhanced accuracy. The benefits of the proposed load prediction
framework are demonstrated for energy management of con-
nected hybrid electric vehicles (C-HEVs). By incorporating the
predicted loads into a multi-horizon model predictive controller
(MPC), integrated power and thermal management of light-duty
C-HEVs is enabled over real-world driving cycles, demonstrating
a near globally-optimal fuel consumption over the entire trip with
a <1% deviation from dynamic programming (DP) results.

Index Terms— Spatio-temporal speed prediction, model pre-
dictive control, connected vehicles.

NOMENCLATURE

Cbat Battery capacity, [A.h].
Ceng Engine specific heat capacity, [J/kg.oC].
Meng Equivalent thermal mass, [kg].
ṁ f uel Fuel consumption rate, [kg/sec].
ṁ f uel,nom Nominal fuel consumption rate, [kg/sec].
Pbat Battery power, [W ].
Paux

bat Battery power for auxiliary systems, [W ].
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Ptrac
bat Battery Power for traction, [W ].

Peng Engine power, [W ].
Ptrac Traction power, [W ].
Q̇air Heat rate rejected by air convection, [W ].
Q̇exh Heat rate rejected in the exhaust, [W ].
Q̇ f uel Heat rate released in combustion, [W ].
Q̇heat Heat rate exchanged for cabin heating, [W ].
SOC Battery state-of-charge, [−].
Rint Battery internal resistance, [�].
Tcl Engine coolant temperature, [oC].
�t Sampling time, [s].
Uoc Battery open circuit voltage, [V ].

ACRONYMS

BSFC Brake specific fuel consumption.
BN Bayesian Network.
CV Connected vehicle.
C-HEV Connected HEV.
DP Dynamic Programming.
EMS Energy management strategy.
HEV/EV Hybrid electric vehicle/electric vehicle.
HVAC Ventilation and air conditioning.
iPTM Integrated power and thermal management.
MPC Model predictive control.
MH-MPC Multi-horizon model predictive control.
SPM Shockwave profile model.
V2V/I Vehicle-to-vehicle/infrastructure.

I. INTRODUCTION

FUTURE vehicle speed prediction can be exploited for
a preview of traction power demand and some of the

thermal loads (e.g., electric battery heat load) needed by
energy management systems (EMS) of conventional and elec-
trified vehicles [1], [2], [3], [4]. The prediction of traction
power demand and thermal loads for vehicles operating in
highly random and uncertain traffic environments, however,
has often been the missing piece of information for executing
optimization-based EMS. With the emergence of connected
vehicles (CVs), new opportunities have been opening up
for enhanced situational awareness [5], [6] through onboard
sensing and data exchanges with surrounding vehicles and
infrastructures.
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Many CV-related technologies, such as eco-driving [1], pla-
tooning [7], cooperative adaptive cruise control [6], and eco-
cooling/heating [8], [9], benefit from look-ahead information
beyond the range of their onboard sensors to fully capitalize
their intended benefits. When assessing the energy-efficiency
of CVs, this look-ahead information has often been assumed
either to be known a priori for a given driving cycle or be
made available over a short-range using learning-based [10],
[11] or model-based techniques [12], [13], [14]. While some
studies have investigated long-range vehicle speed prediction,
those results have mainly focused on the average vehicle speed
on highways [15], [16], over road segments [17], [18], [19]
without intersections or at the city-scale traffic level [20], at a
fixed location [21], or for a single private vehicle [22].

Achieving reliable speed and load predictions for CVs,
especially in arterial corridors with signalized intersections,
is challenging due to the (i) highly dynamic and stochastic
nature of traffic, (ii) wide range of dynamic characteristics of
CVs and associated systems, and (iii) non-uniform distribution
of CVs and varying levels of availability of infrastructure-
based sensors. In addition, the processes in CVs evolve over
timescales spanning from milliseconds (e.g., onboard planning
and computation), to seconds (e.g., traction power), to minutes
(e.g., thermal loads), and potentially hours (e.g., battery charg-
ing) [23], [24], [25]. Hence preview information over differ-
ent prediction horizons with different levels of requirements
for fidelity and accuracy is needed for energy and mobility
optimization.

In [26], [27], [28], and [29] we demonstrated that improved
coordination of power and thermal systems of CVs can be
achieved if a reasonably accurate long-range preview of vehi-
cle speed is available to support the optimization of slow
responding thermal dynamics, including the temperatures of
the engine, battery, and cabin. In particular, for integrated
power and thermal management (iPTM) of a fleet of connected
hybrid electric vehicles (HEVs) traveling through an urban
arterial corridor, it was shown that incorporating long-range
look-ahead information may decrease fuel consumption by
4% on average, as compared to the case with only short-
range look-ahead information [29], [30]. To achieve these
improvements, a rule-based data classification method was
proposed in [13] and [29] to categorize historical traffic
data based on the coordination of vehicle arrival times at
intersections with the traffic signal timing. Compared to more
traditional approaches used for traffic flow estimation [11],
[16], the data classification strategy in [13] showed improved
accuracy in predicting the vehicle speed. It achieved this by
capturing some of the key features of the traffic flow dynamics,
including the average cruise speed between the intersections
and the approximate acceleration/deceleration profiles at the
downstream intersections.

While in [13] we demonstrated the potential of applying
data analytics-based approaches to learn the speed and load
profiles from the historical traffic data, the large variation in the
temporal data causes large uncertainties in the predicted loads.
For instance, while the acceleration profiles of the vehicles
departing from an intersection are similar, the time-average of
acceleration profiles observed in the historical data does not

capture this feature since vehicles depart the intersection at
different times during the same signal cycle. Some features
of the traction load profiles are location-specific, and can
be better represented in spatial domain. On the other hand,
other features such as the average stop times at signalized
intersections can be only inferred from temporal data. Hence,
an integrated spatial and temporal data analysis is needed.

The extraction and exploration of spatio-temporal features
of traffic networks using data-driven and machine learning
methods have been studied in the literature for speed pre-
diction over highways [15] and road segments [17], [20].
For iPTM of HEVs in arterial corridors, accurate prediction
of passing/stopping at intersections, acceleration/deceleration
at intersections, and the stop time at intersections [31] are
critical, in addition to speed prediction within road segments.
Furthermore, the speed forecast needs to be available over a
relatively long range, e.g., the entire 3-4 km urban corridor,
for the best iPTM efficiency and performance. The data-driven
method presented herein is capable of generating long-term
speed prediction over arterial corridors with signalized inter-
sections that satisfy the above iPTM requirements.

The main contributions of this paper are as follows. Firstly,
we develop a new framework for multi-range speed and
load prediction to enable more efficient operation of CVs.
Secondly, we study the application of the proposed speed
prediction framework for iPTM of connected HEVs (C-HEVs)
and demonstrate fuel-savings using extensive simulations over
real-world urban driving cycles with closely-spaced signalized
intersections. Our speed prediction framework can be also
leveraged to enhance (i) the situational awareness of CVs in
arterial corridors, (ii) eco-routing and eco-driving for CVs, and
(iii) traffic signal control with prediction and coordination.

The key innovations of the proposed framework include

• The fusion of spatial-domain data with infrastructure-
based temporal data to fill the information gap in the
spatial-domain, and

• The augmentation of data-driven (Bayesian network-
based) and shockwave profile model-based approaches to
generate a long-range vehicle speed prediction.

Furthermore, they include the integration of short and
long-term speed predictions with multi-horizon model pre-
dictive control (MH-MPC) for integrated power and thermal
management (iPTM).

The rest of the paper is organized as follows: In Sec. II, the
traffic simulation model and spatio-temporal features of traffic
data are described. The data-driven spatio-temporal speed
prediction framework is presented in Sec. III. The shockwave
profile model for queue dynamic estimation and short-term
load prediction/planning is also introduced in Sec. III. The
results of applying the proposed speed prediction framework
for iPTM of C-HEVs using multi-horizon model predictive
controller (MH-MPC) are presented in Sec. IV. Finally, con-
cluding remarks are summarized in Sec. V.

II. SPATIO-TEMPORAL FEATURES OF TRAFFIC DATA

In this section, we introduce the features of traffic data in
temporal and spatial domains that are useful for speed and
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Fig. 1. The schematic of Plymouth Rd. in Ann Arbor, MI, with six
intersections considered for traffic modeling, data generation, and performance
evaluation.

load prediction within our use case. To generate traffic and
vehicle trajectory data, a traffic simulation model of an arterial
corridor is used. In the following subsections, first the utilized
traffic simulation model is described. Next, the collected data
from a large number of simulated vehicles traveling through
the same corridor are analyzed.

A. Real-World Traffic Simulation Model and Data

A model developed in Vissim [14] is used to generate traffic
data for an arterial corridor shown in Fig. 1. The corridor
represents a portion of Plymouth Rd. in Ann Arbor, MI that
connects Ann Arbor downtown to the US-23 Highway. The
length of the corridor is around 3540 m. The corridor has two
lanes in each direction and has six signalized intersections,
as highlighted in Fig. 1. As described in [14], the Vissim
model has been calibrated with real-world data collected
during the afternoon rush hour (4:00-5:00 PM). The collected
data included traffic volume, turning ratio, and traffic signal
timing at each intersection. Furthermore, a queuing profile
algorithm based on shockwave profile model (SPM) [12] was
implemented in [14] for queue length estimation and green
window1 prediction based on the collected data from traffic
signals and vehicles. The SPM will be used for short-term
vehicle speed prediction and planning as will be further
discussed in Sec. III-C.

B. Limitations of Temporal and Spatial Domain Data

Fig. 2 shows the data collected from the vehicles traveling
along the Plymouth Rd. corridor in the time domain, plot-
ted for different numbers of vehicles. Note that the traffic
dynamics do not change during the Vissim simulation, and
the signal timing and phasing policy remain fixed. When the
number of aggregated vehicle trajectories is small (e.g., 10-20
vehicles), it is very hard to visually identify major traffic
events and dynamics, such as passing/braking at intersections,
mainly due to the lack of richness in the data. Once the
number of vehicles increases above 100, some features become
evident. For instance, Fig. 2 shows that the average cruise
speed of the vehicles is different and becomes visible for
the second half of the trip. This is expected since the speed

1Green window is defined as the time interval during which an ego-vehicle
can pass an intersection.

limit of the Plymouth Rd. after the sixth intersection increases.
However, when the number of aggregated trajectories is large,
the average vehicle speed in the time domain does not provide
much useful information for vehicle speed prediction.

The example shown in Fig. 2 highlights the trade-off
between richness and variations in the traffic data. Such
characteristics call for data analytics and machine learning
tools to mine, extract features, and learn from traffic data.
Prior to applying any data-driven strategy to such data, it is
important to understand the sources of variation. To that end,
and without loss of generality, we separate a set of data
that belongs to vehicles that pass the first intersection of the
Plymouth Rd., but stop at the second and third intersections.
The speed trajectories of this set of vehicles are plotted in the
time domain in Fig. 3-(a). The time-average speed for the same
set of vehicles is also computed and plotted in Fig. 3-(a). It can
be seen that the “average” acceleration/deceleration profiles
at the second and third intersections are not representative
of the actual profiles at the same locations. Fig. 3-(a) shows
that the average speed in the time domain exhibits smoother
acceleration/deceleration profiles, underestimating the actual
loads. The primary reason for such observation is the large
temporal variation of the data. According to Fig. 3-(a), while
most of the vehicles accelerate and decelerate at an intersection
in a similar manner, they do so at different points in time.
In fact, acceleration/deceleration values at intersections appear
to be primarily vehicle location-specific. To test the latter
hypothesis, the temporal data in Fig. 3-(a) are plotted in
Fig. 3-(b) in the spatial domain, i.e., versus distance = t ·
velocity. The average of the spatial data is also calculated and
shown in Fig. 3-(b).

Fig. 3-(b) demonstrates that, firstly, the average speed
inferred from the spatial data represents the accelera-
tion/deceleration loads more accurately, compared to the aver-
age speed obtained from temporal data in Fig. 3-(a). Secondly,
if the average speed obtained from the spatial data is converted
back to the time domain, it still provides a much better estima-
tion of the average speed as compared to the one obtained from
the temporal data. Moreover, the location of intersections can
be easily detected from the spatial data even if there is no infor-
mation available about the road topology and infrastructure
distribution. Despite these promising benefits, analysing the
traffic data only in the spatial domain is associated with some
limitations. The main drawback of spatial-domain analysis of
traffic data is the loss of time-specific information, particularly,
the stop periods at intersections where the vehicle locations
remain unchanged. Time-specific information is, in particular,
important for optimization of operation of vehicular thermal
systems such as the engine or the air conditioning (HVAC)
systems. The states of these thermal systems, e.g., battery and
cabin temperatures, vary over time even if vehicle is stopped.

III. SPATIO-TEMPORAL SPEED PREDICTION

To leverage both location-specific and time-specific infor-
mation that are extractable from traffic data, an integrated
spatio-temporal speed prediction is developed in this section.
To that end, we propose to leverage data analytics and
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Fig. 2. The aggregated trajectories of vehicles traveling through Plymouth Rd. in the time-domain.

learning-based algorithms whose application has attracted con-
siderable attention in recent years for transportation systems,
from vehicle localization [32], [33] and traffic flow fore-
cast [34], [35], [36] to pavement assessment [37], [38]. In
particular, our objective is to exploit these data-driven tech-
niques for historical traffic data (e.g., data shown in Fig. 2)
over an arterial corridor with multiple close-spaced signalized
intersections to obtain a long-term prediction of the traction
power load and vehicle speed. In particular, the following
features are extracted and predicted from the traffic data:

• passing/stopping events at intersections, which can be
used to estimate the trip time, arrival time at destination,
the required energy to complete the trip, and the thermal
loads during stops,

• acceleration/deceleration profiles at signalized intersec-
tions, which can be leveraged to maximize the regener-
ative braking energy and enforce the hard constraint on
power and thermal systems,

• average cruise speed between intersections, which can
be capitalized on to estimate the required energy to
complete the trip and the extra thermal and electrical
energy that can be stored in the engine coolant and
battery, respectively.

Towards this end, a data-driven method is developed first
for long-term spatio-temporal prediction of vehicle speed,
in which a Bayesian Network (BN) is used to classify the
traffic data and generate a long-term driving scenario tree.
The BN development is followed by the augmentation of
time-specific information extracted from historical traffic data.
Next, a model-based strategy based on the shockwave profile
model (SPM) is adopted to provide a short-range tempo-
ral prediction for ego-vehicle speed based on the real-time
vehicle-to-infrastructure (V2I) communications. The proposed
spatio-temporal speed prediction framework is shown in Fig. 4.

A. Bayesian Network for Data Classification

We treat passing/stopping events at intersections as stochas-
tic variables (x) dependent on the observed events at upstream

Fig. 3. Trajectories of vehicles travelling over the first three intersections of
Plymouth Rd. in (a) time, and (b) spatial domains. Only the data of those
vehicles that pass the first intersection, but stop at the second and third
intersections are selected for better visualization purpose.

intersections. These events influence the probability distribu-
tions of the variables at downstream intersections. A Bayesian
Network (BN) can take into account the causal relationship
between the variables of interest and represent conditional
independencies between a set of random variables [34]. Such
a BN is developed offline using the historical data and can
be exploited to generate a dynamic scenario tree to obtain
the joint probability distribution of passing/stopping events at
different intersections, based on which the “most probable”
driving scenario is determined. Fig. 5 shows the concept of
BN, in which the most probable driving scenario is constantly
updated over time according to (i) observations obtained
from the actual driving, and (ii) changes in the probability
distribution of passing/stopping events as traffic evolves. In
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Fig. 4. The schematic of spatio-temporal load prediction framework.

Fig. 5. The concept of BN for traffic data classification: Driving scenario tree
with most probable driving scenario that is updated based on actual driving
observation.

particular, while from the beginning the ego-vehicle in Fig. 5
is predicted to stop at the first intersection (Fig. 5-(a)) as
the computed probability of stopping is larger than that of
passing, the actual observation indicates that it passes the first
intersection. Consequently, the most probable driving scenario
is updated once the ego-vehicle passes the first intersection
(Fig. 5-(b)).

In a BN representing an arterial corridor, an arc from
intersection p to p + 1 can be interpreted as stop/pass at
intersection p followed by stop/pass at intersection p + 1. For
a corridor with H intersections, each intersection is considered
as a node represented by xk (k = 1, · · · , H ), where xk takes
the values of “true” for passing and “false” for stopping.
At the beginning of the trip, the joint probability distribution

is calculated as [39]

Pr(x1, x2, · · · , xH ) =
H∏

k=1

Pr(xk |xPk ). (1)

At intersection p, the joint probability distribution for the
remaining trip is updated as

Pr(x p, · · · , xH ) =
H∏

k=p

Pr(xk |xPk ). (2)

Here Pr(xk |xPk ) is the conditional probability distribution
associated with intersection k and Pk is the set of indices
labeling the upstream intersections of the kth intersection [34],
[40]. For instance, Pr(x4|x1 = True, x2 = False, x3 =
False) indicates the probability of the ego-vehicle passing the
fourth intersection after it has passed the first, but stopped
at the second and third intersections. Given the nature of the
problem, the directed arc of the BN should flow forward both
in the time direction and in the traffic flow direction [34].

1) Bayesian Network Case Study: As a case study, we use
the same data shown in Fig. 2 for the development and
training of the BN. The speed profiles of 1478 vehicles
traveling through the entire Plymouth Rd. corridor in the same
direction are collected, and then 90% of these vehicle data
are randomly selected for the training of the BN. Note that
the total number of vehicles traveling through this corridor is
larger than 1478 as some vehicles may have entered or exited
the Plymouth Rd. corridor at any of the intersections shown
in Fig. 1. The conditional probabilities of passing/stopping at
six intersections of the Plymouth Rd. corridor are calculated
by analyzing the data shown in Fig. 2, and the results are
summarized in Fig. 6 as the driving scenario tree. At each
intersection, the most probable driving scenario to complete
the trip is determined as the branch with the highest value of
the product of probabilities according to (1) and (2) and the
current observation of passing/stopping event.

While in this study we utilized simulated traffic data
to develop the BN and demonstrate our speed prediction
approach, we envision that for real-world implementation of
such a data-driven speed prediction method, traffic flow data
could be continuously collected from smart infrastructure and
delivered to the vehicle through any number of communication
technologies, e.g., long-range radio (LoRa), fifth-generation
(5G), and beyond 5G (B5G) wireless networks [41]. Addi-
tional vehicle and cellphone connectivity [11], [16] capabilities
could also be leveraged if available, in accordance with
appropriate consent and privacy legislation. Such data may be
aggregated and analyzed in a central/cloud server, potentially
even in real-time. Further study of the interplay with the data
transmission infrastructure is left to continuing research.

B. Augmentation of Time-Specific Information

We next propose an approach to create a spatio-temporal
prediction of the vehicle speed over a long range. The
data-driven prediction in the time-domain is based on the
average stop duration of vehicles at intersections, that is
obtained from historical data.
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Fig. 6. The Bayesian network developed based on the historical traffic data
over the Plymouth Rd. corridor.

TABLE I

THE AVERAGE, MINIMUM, AND MAXIMUM OF STOP DURATION AT EACH

INTERSECTION OF THE PLYMOUTH RD. CORRIDOR

1) Case Study of Time-Specific Information: The data
shown in Fig. 2 are revisited, for which the average, mini-
mum, and maximum of stop duration at each intersection in
the Plymouth Rd. corridor are calculated. The statistics are
summarized in Table I. The calculated average stop duration
is then fused with the speed and load predictions obtained from
the driving scenario tree. Since the presence of intersections
can be easily detected in the spatial domain data, augmentation
of stop times is straightforward, as summarized in Fig. 7.

C. Shockwave Profile Model

For implementation in each individual ego-vehicle, the
long-range speed predictions obtained from historical data
need to be adapted based on the actually observed ego
vehicle’s current driving profile. Moreover, assuming an
ego-vehicle has access to V2I data, these data can be leveraged
to predict the vehicle speed with higher accuracy over a short
range as compared to the prediction made based on historical
traffic data. Our approach along these lines is to integrate
a short-range (i.e., 10-30 s) speed preview of each vehicle

Fig. 7. The process of augmenting stop-duration information into the speed
predictions informed by the spatial domain traffic data analysis.

Fig. 8. SPM-based queuing profile prediction.

with the long-term look-ahead information gained from data-
driven forecasts. Such integration and adaptation processes for
individual vehicles are shown in Fig. 7.

For a short-range vehicle speed prediction, we exploit a
model-based approach based on the SPM developed in our
previous works [13], [14], which accounted for traffic signal
phasing and queuing dynamics at signalized intersections and
exploited real-time V2I dedicated short-range communica-
tions. The queue length is predicted based on the trajectories
of CVs inferred from onboard vehicle messages and from
loop-detectors installed at the infrastructure side [13], and
with the consideration of vehicle acceleration/deceleration.
A modified SPM model was proposed in [14] to predict
the queuing dynamics and estimate the green window before
an ego-vehicle arrives at an intersection. The green window
prediction horizon starts from the time instant the ego-vehicle
enters the communication range (i.e., 300 m) until it departs
from the intersection. The concept of SPM-based queuing
profile and green window predictions is shown in Fig. 8.
According to Fig. 8, once the start of the green window is
estimated, the speed of the ego-vehicle can be predicted to
fall under one of the following driving categories based on the
current signal status, current speed, distance of the ego-vehicle
from the intersection, and remaining time of the signal phase:
(i) slow down, (ii) speed up, (iii) cruise, or (iv) stop. Once
the driving category and the approach of an ego-vehicle to an
intersection are known, the short-range vehicle speed can be
predicted, or optimized for eco-driving, see [14] and [13] for
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Fig. 9. The average and standard deviation of the vehicle speed data in the time domain over Plymouth Rd., classified into 10 branched using the BN.

more details, as well as for the Plymouth Rd. eco-trajectory
planning case study.

Remark 1: In this paper, we assume the destination is known
a priori. Moreover, for all the case studies considered in the
paper, it is assumed that the destination is at the end of
the corridor from which the traffic data are collected and
the spatio-temporal speed prediction framework is applied to.

D. Spatio-Temporal Speed Prediction Case Study

To illustrate the proposed spatio-temporal speed prediction
framework, the same traffic data of Plymouth Rd. that was
shown in Fig. 2 and classified using BN are considered. Upon
classification of the vehicle data into the ten branches of the
BN (Fig. 6), the vehicle trajectories are aggregated for each
branch. The classified data in the time domain are shown in
Fig. 9, in which the mean value and standard deviation of the
vehicle speed data in each branch are plotted. Compared to the
raw and unclassified data in Fig. 2, Fig. 9 shows that BN-based
classification of the traffic data leads to a significantly better
clustering of the traffic flow and major events. Specifically,
(i) passing/stopping events for all six intersections, (ii) cruising
speed between intersections, and (iii) trip end times can be
estimated using the developed BN. Despite the enhanced load
prediction obtained through BN-based data classification in
the time-domain, Fig. 9 shows that the “average” acceler-
ation/deceleration profiles at intersections do not match the
actual profiles in Fig. 2. This observation is consistent with
the earlier discussion in Sec II-B on the data in Fig. 3, once
again motivating to apply the BN to the historical data in the
spatial domain.

Fig. 10 provides an example that compares the tem-
poral speed predictions obtained via the BN against
the spatio-temporal predictions for the same vehicle.
For the spatio-temporal prediction, the same BN is applied
to the traffic data in the spatial domain, then the results are
converted to the time-domain and augmented with average
stop times according to Table I and Fig. 4. While temporal

predictions can capture the trends in the traffic flow (e.g.,
stop/pass, cruise speed between intersections) via the BN
classification, Fig. 10 shows that the proposed spatio-temporal
load prediction framework enhances the vehicle speed preview
accuracy by providing a more accurate estimation of the
future acceleration/deceleration profiles and stop duration at
intersections. Note that, according to Table. I, the estimated
average stop duration is associated with uncertainties which
are reflected in the examples shown in Fig. 10.

IV. APPLICATION OF SPATIO-TEMPORAL SPEED

PREDICTION FOR IPTM OF CVS

The proposed spatio-temporal speed prediction strategy pre-
sented in Sec III enables optimization-based energy manage-
ment that leverages speed (and consequently load) predictions
while accounting for dynamics of power and thermal systems
of CVs. To that end, in the following subsections, we first
introduce the power and thermal models of an HEV that will
be used to assess the benefits of the proposed speed prediction
strategy on the energy use of C-HEVs. Next, we introduce an
energy management strategy (EMS) based on multi-horizon
model predictive control (MH-MPC) for iPTM of C-HEVs that
incorporates the predicted speed as look-ahead information to
perform predictive optimization.

A. Models of Power and Thermal Systems of C-HEVs

We consider a fleet of light-duty C-HEVs in this paper with
a power-split powertrain configuration. For such C-HEVs, the
combustion engine and electric battery are the two sources of
energy that respond to traction power demand for driving the
vehicle. Additionally, the battery provides power for various
auxiliary loads across the vehicles, e.g., HVAC system. In this
paper, we focus on C-HEV operation at cold ambient temper-
atures, during which heating energy needs to be provided to
the cabin compartment to ensure passengers’ comfort through
the HVAC system. Since the combustion engine is the only
source of energy for cabin heating in HEVs, the operation of
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Fig. 10. The speed look-ahead information obtained from (left) temporal and (right) spatio-temporal domains data.

Fig. 11. Schematic of a power-split HEV with thermal and power loops.

the HVAC system demands more engine power, affecting the
overall energy flow within the vehicle. The overall schematic
of the power and thermal loops of an HEV is given in Fig. 11.
Here, we assume the combustion engine and battery represent
main sources of power, while the thermal behavior of the
system is represented by engine coolant temperature.

1) Battery and Engine Power-balance Model: To meet the
traction power demand (Ptrac) for driving, the output power
of battery (Ptrac

bat ) and engine (Peng) are blended via the
power-split device (PSD):

Ptrac = Ptrac
bat + Peng . (3)

The total battery power (Pbat ) is

Pbat = Ptrac
bat + Paux

bat , (4)

where Paux
bat is the power required for the operation of auxiliary

systems, including the engine and cabin thermal management
systems’ actuators (e.g., electric coolant pump and HVAC
blower). An equivalent circuit model [42] is used to represent
the battery state-of-charge (SOC) dynamics:

˙SOC(t) = fS OC(t) = Uoc(t) − √
U2

oc − 4Rint Pbat (t)

2Rint Cbat
, (5)

with t denoting time, and Cbat , Rint , and Uoc being the
battery capacity, internal resistance, and open-circuit voltage,
respectively. See [42] and [28] for experimental validation
results of the battery SOC model (5).

In (3), Ptrac is computed according to vehicle dynamics and
predicted speed. We treat Pbat as the decision variable to be
determined by the EMS based on Ptrac. Once Pbat is decided,
the demanded engine power Peng = Ptrac−Ptrac

bat is calculated,
based on which, the optimal engine operating states (engine
speed (ωe) and torque (τe)) are determined according to the
brake-specific fuel consumption (BSFC) map. Eventually, the
engine nominal fuel consumption (ṁ f,nom) is obtained as

ṁ f,nom = f f (ωe, τe), (6)

where f f (ωe, τe) is the nominal fuel consumption rate map.
The actual fuel consumption rate (ṁ f ), however, varies as a
function of engine coolant temperature (Tcl ), degrading at low
temperatures, i.e., Tcl < 60oC [42], [43], [44]:

ṁ f = α(Tcl) · ṁ f,nom (7)

where α(Tcl ) ≥ 1 is a multiplier reflecting the fuel consump-
tion sensitivity to Tcl . These functions (BSFC map, f f , α) are
adopted from the Autonomie2 software, also see [42] for more
details.

2) Engine Coolant Temperature Model: To minimize the
fuel consumption, according to (7), it is often beneficial to
maintain Tcl above 60oC so that α ≈ 1. To do so, the engine
has to burn fuel to provide thermal energy to the coolant.
Meanwhile, the cold ambient temperature and the demand for
heating the cabin depletes thermal energy from the coolant,
causing the engine to burn more fuel to catch up with the heat
depletion from the coolant and keep its temperature above
60oC .

2Autonomie® is a MATLAB®/Simulink®-based system simulation tool for
vehicle energy consumption and performance analysis developed by Argonne
National Laboratory (ANL) [44].
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The thermal dynamics of engine coolant are modeled based
on the energy balance [43]:

Ṫcl(t) = fTcl (t)

= 1

Meng Ceng
(Q̇ f − Peng − Q̇exh − Q̇air − Q̇cabin),

(8)

with Meng and Ceng being the equivalent thermal mass and
the specific heat capacity of the engine cooling system,
respectively. In (8), Q̇ f , Q̇exh , Q̇air and Q̇cabin , respectively,
denote the heat rate released from the combustion process,
exchanged through exhaust gases, dissipated by air convection,
and delivered for cabin heating. In particular, Q̇ f is calculated
as a function of the fuel consumption rate as

Q̇ f = L H V · ṁ f , (9)

where ṁ f is obtained from (7) and LHV is the lower heating
value of the fuel (e.g., gasoline). While the cabin heating
power (Q̇cabin) depends on the passenger preference, without
loss of generality, a constant cabin heating power Q̇heat =
1.5 kW is assumed in this paper at the ambient temperature
of -10oC . For the details on the rest of the terms in (8) and
model validation results, see [42], [44], and [43].

Remark 2: There are two special features of the C-HEV
dynamics that are noteworthy. Firstly, there exists a strong
coupling between power and thermal systems and the trac-
tion power demand. Secondly, power and thermal dynamics
respond over different timescales. Accounting for such cou-
pling makes the design of an EMS challenging, as one has
to also take the timescale separation between fast power and
slow thermal systems into account [27], [28]. These features
motivate the use of a multi-timescale predictive optimization
for energy management.

Remark 3: The multi-timescale characteristics of C-HEVs
motivate the use of multi-range vehicle speed predictions. For
optimization of fast HEV powertrain dynamics (e.g., engine
and battery power), a relatively short-range (e.g., 10-30 s)
look-ahead information may be sufficient to achieve near-
optimal responses. For SOC dynamics and thermal dynamics
associated with engine coolant temperature, a much longer
look-ahead information is needed. We showed in our previous
studies [29], [45] that an “approximate” long-range vehicle
speed preview—without a detailed second-by-second vehicle
speed forecast—may be leveraged for optimization of slow
responding dynamics of HEVs as long as it reflects the main
traffic events, e.g., acceleration and deceleration at signalized
intersections, and the average cruise speed between the inter-
sections. An ideal EMS strategy should be able to exploit
both short-range and long-range look ahead information with
different levels of accuracies.

B. Multi-Horizon MPC (MH-MPC) for iPTM of C-HEVs

To facilitate the design of the EMS for iPTM of C-HEVs
according to the special characteristics described in Sec. IV-A,
we adopt an MH-MPC framework [29], [30] to minimize the
fuel consumption while enforcing the coolant temperature and
battery SOC charge sustaining constraints. The MH-MPC is

based on the solution to the following discrete-time optimal
control problem:

min
Pbat (i)

t+N−1∑
i=t

ṁ f (i)�t1 +
tend∑

i=t+N

ṁ f (i)�t2,

s.t. SOC(i + 1) = SOC(i) + �t j · fS OC(i), j ∈ {1, 2}
Tcl(i + 1) = Tcl(i) + �t j · fTcl (i), j ∈ {1, 2}
0.4 ≤ SOC(i) ≤ 0.8,

40oC ≤ Tcl(i) ≤ 90oC,

0.99 × SOC(0) ≤ SOC(tend ) ≤ SOC(0) × 1.01,

Tcl(0) = Tcl,init , SOC(0) = SOCinit , (10)

where fS OC and fTcl are defined in (5) and (8), and Tcl,init and
SOCinit are the initial coolant temperature and battery SOC ,
respectively. The prediction horizon of MH-MPC covers the
entire trip and is divided into two sections (i) a short receding
horizon (from t to (t + N − 1)�t1), and (ii) a long shrinking
horizon (from (t + N)�t1 to the end of the trip tend ), where N
is the length of the receding horizon. In (10), �t1 and �t2 are
the update periods over the receding and shrinking horizons,
respectively, and j ∈ {1, 2} is determined as follows

j =
{

1, if i ≤ t + N − 1,

2, if i ≥ t + N.
(11)

Among the inequality constraints of the MH-MPC in (10),
the first two are incorporated to enforce the hard limits on the
battery SOC and Tcl during the trip, while the third one is
added to enforce SOC charge sustaining constraints. Note that
the final SOC is allowed to deviate by ± 1% from SOCinit to
avoid infeasibility in the solution of the MH-MPC optimization
problem. It is also noted that the cost function of MH-MPC
in (10) reflects the fuel consumption over the entire trip.

For solving the MH-MPC optimization problem, it is
assumed that the engine operates on the curve of optimal
operation points (OOP) on the BSFC map. The optimization
problem (10) is solved using MPCTools package [46], which
exploits the Interior Point OPTimizer (IPOPT) [47] and
CasADi for numerical optimization. The MH-MPC optimiza-
tion problem is solved every �t1 = 1 s and the first element
of the computed control input sequence is applied to the
system. Then, the receding horizon is shifted by �t1. The
simulations are performed on a desktop computer with an
Intel® E-2136@3.30 GHz processor.

Remark 4: One of the main benefits of MH-MPC is that
it reduces the computing time as compared to conventional
MPC [31]. To reduce the computational footprint of the
MH-MPC over the long shrinking horizon, the data and
prediction model incorporated over that horizon are sampled
at a slower rate as compared to the short receding horizon,
i.e., �t2 > �t1, see [29] and [30] for the assessment of the
MH-MPC computational footprint. Moreover, the incorpora-
tion of a short receding horizon and a shrinking long horizon
with different sampling rates in MH-MPC allows for handling
multi-timescale power and thermal dynamics of an HEV.

Remark 5: For the implementation of MH-MPC on real-
time controllers, similar to our previous work on hierar-
chical MPC [26], MH-MPC can be run in closed-loop in
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Fig. 12. (a-1,2,3) Speed profiles of three different vehicles in the time-
domain, and (b) the speed profile of the same three vehicles in the spatial
domain.

Fig. 13. The trajectories of (a) SOC and (b) Tcl in the spatial domain resulted
from solving the iPTM strategy in the time-domain for speed profiles shown
in Fig. 12-(a-1,2,3).

MATLAB/SIMULINK using C-code based on S-function,
and the sequential quadratic programming [48] with
Fischer-Burmeister regularized smoothed quadratic program-
ming solver [49] to numerically solve the optimization prob-
lem. For instance, a long horizon economic and nonlinear
MPC with a sampling time of 5 s and prediction horizon of
24 steps can be implemented on a Speedgoat rapid prototyping
system with an Intel Celeron Core i4@2.0 GHz processor in
real-time with an average computation time of 55.829 ms and
a maximum computation time of up to 62 ms, see [26] for
details.

1) Limitation of Implementing MPC in the Spatial Domain:
While it was shown that the predictions conducted in the
spatial domain result in more accurate estimation of the vehicle
speed as compared to temporal predictions, performing predic-

Fig. 14. The probability density function of the fuel consumption increase
with MH-MPC based on the look-ahead information obtained from temporal
and spatio-temporal domains. The results are compared against a reference
DP case with perfect speed information. 24 vehicles from branched #3, 4,
5 of the BN are randomly selected for fuel consumption evaluation.

tive optimization in the spatial domain is not straightforward
for the following reasons. Consider the following economic
optimization problem that is formulated in the time-domain:

min
Pbat (t)

∫
ṁ f dt,

s.t.
d SOC

dt
= fS OC(t),

dTcl

dt
= fTcl (t). (12)

To incorporate a prediction of the vehicle speed that is obtained
in the spatial domain, the optimization problem in (12) can be
converted to a spatial-domain optimization problem:

min
Pbat (s)

∫
ṁ f

v
ds,

s.t.
d SOC

ds
= fS OC(t)

v
,

dTcl

ds
= fTcl (t)

v
, (13)

where v and s denote vehicle speed and distance, respectively.
According to (13), the main challenge of solving the optimiza-
tion problem in the spatial domain is vehicle speed going to
zero, which causes singularity in the cost function and state
dynamics. While some studies [50], [51] have argued that
solving such an optimization problem in the spatial domain
alleviates high computational complexity due to nonlinearity
in vehicle dynamics, most of the presented results are for
scenarios that vehicle speed rarely goes to zero. However, for
arterial corridors, in which vehicles often experience frequent
stop-and-go behaviors, solving the MPC optimization problem
in the spatial domain may not be always possible due to the
singularity in the cost function and state dynamics.

Another critical issue associated with solving the MPC opti-
mization problem in the spatial domain is the non-uniqueness
of the solutions. Consider three different HEVs that drive with
different speed profiles shown in Fig. 12-(a1,2,3). For these
speed profiles, the MH-MPC in (10) is solved in the time
domain, and the state trajectories of the optimized system are
computed and then plotted in Fig. 13 in the spatial domain.
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TABLE II

FUEL CONSUMPTION RESULTS FROM MH-MPC FOR IPTM WITH
LOOK-AHEAD INFORMATION OBTAINED FROM TEMPORAL AND

SPATIO-TEMPORAL DOMAINS FOR SAMPLE VEHICLES IN

BRANCHES #3, 4, 5 OF THE BN DEVELOPED FOR PLYMOUTH

RD. CORRIDOR

As shown in Fig. 13, the SOC and Tcl trajectories for these
vehicles are different in the spatial domain, thus the total fuel
consumption would be different. On the other hand, Fig. 12-
(b) shows the speed profiles for the same vehicles in the spatial
domain. Since the spatial-domain speed profile is the same for
all three vehicles, the solution of an MH-MPC that is solved
in the spatial-domain is also the same. The latter contradicts
the results in Fig. 13.

Overall, solving MH-MPC in the time-domain is associated
with fewer challenges, but the speed predictions obtained
from the spatial-domain provide look-ahead information with
higher accuracy. To leverage the benefits of both approaches,
this study will solve the MH-MPC in the time domain,
after converting spatial-domain speed predictions into the time
domain.

C. Simulation Results and Discussion

This section reports the simulation results to demonstrate
the benefits of the proposed spatio-temporal speed prediction
strategy to enhance the energy efficiency of C-HEVs. To that
end, 8 vehicles are randomly selected from each of branches
#3, 4 and 5 (shown in Fig. 6), for a total of 24 vehicles.
For each vehicle, the short and long-range predictions of
speed profile are obtained by applying the process shown in
Fig. 4. Next, the predicted speed and traction power profiles
are incorporated in the MH-MPC (10). The same process is
repeated for each vehicle, this time with speed predictions that
are obtained from only temporal data (Fig. 9). Additionally,
the results of applying offline Dynamic Programming (DP) to
solve the iPTM problem are used as the benchmark for each
vehicle. For DP, the exact speed profiles are assumed to be
known a priori, see [42] for the details on the DP formulation
and implementation.

The fuel consumption results for each vehicle are listed
in Table II. For all 24 selected vehicles, Fig. 14 shows
the probability density function for the fuel consumption
percentage increase from MH-MPC cases as compared to DP.
When MH-MPC is incorporated with speed predictions gained
from temporal data, it can be seen that the average increase
in the fuel consumption of C-HEVs is 2.06% when compared
to DP. Such increase for the MH-MPC with spatio-temporal
predictions is much smaller (0.75%), confirming the benefits
of the proposed load prediction framework.

Table II shows the improved performance with the
MH-MPC based on spatio-temporal predictions for individual
vehicles, as well as for each branch on average. It is worth
noting that the standard deviation in the MH-MPC results with
spatio-temporal load prediction is also smaller than the ones
resulted from the MH-MPC with temporal load predictions,
see Fig. 14. The latter confirms the less inherent variability
in the spatial domain, indicating the higher robustness of
MH-MPC with spatio-temporal load predictions against the
variations and uncertainties in the speed data.

V. SUMMARY AND CONCLUSION

We presented a speed prediction framework for energy
management of connected vehicles (CVs) that leverages a
data-driven spatio-temporal speed and traction load prediction
strategy including a shockwave profile model. With a focus
on arterial corridors with multiple signalized intersections, the
goal was to maximize the use of rich traffic and connectivity
data to provide a reliable look-ahead information of the future
vehicle speed, as well as traction and thermal loads, to CVs to
enable their energy-optimal operation. For data-driven predic-
tions, a combination of spatial and temporal traffic data was
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exploited to identify, detect, and predict location-specific (e.g.,
acceleration/deceleration at intersections) and time-specific
(e.g., stop duration at intersections) traffic events. A Bayesian
network was developed and trained based on historical traffic
data to generate a dynamic and stochastic driving scenario tree,
predicting the pass/stop events at signalized intersections over
a relatively long prediction horizon (in this case, the entire
trip). The proposed speed prediction strategy was applied to
integrated power and thermal management (iPTM) of con-
nected hybrid electric vehicles (C-HEVs) traveling through a
real-world arterial corridor. A multi-horizon model predictive
controller (MH-MPC) was adopted to incorporate the speed
prediction and perform iPTM optimizations. Compared to an
ideal benchmark scenario with perfect speed preview, the
simulation results showed that a MH-MPC implemented with
a time-average speed prediction leads to an increase in the
fuel consumption of C-HEVs by more than 2%, on average,
with a maximum deviation of 3.5%. On the other hand, the
MH-MPC with spatio-temporal speed predictions showed an
average increase of only 0.75% in the fuel consumption results,
providing a near-globally-optimal performance.

In addition to iPTM of C-HEVs studied in this paper,
vehicle speed and traffic state predictions enable a multitude of
advanced CVs features, from eco-driving and eco-routing, pla-
tooning, cooperative adaptive cruise control (CACC), to more
accurate ETA (estimated time of arrival) and driving range
estimation for conventional and electrified vehicles, demon-
strating the broader impacts of the speed prediction framework
presented in this paper. At the macroscopic traffic system
level, we envision that the model can be used for traffic flow
modeling, analysis, and control. Our future work will focus on
the sensitivity analysis of the proposed spatio-temporal speed
prediction framework to the number of vehicles involved in
constructing the historical traffic data, as well as expanding
such framework to larger traffic networks and longer driving
cycles.
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