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Abstract— In this article, we propose a multihorizon model
predictive control (MH-MPC) approach with applications to
integrated power and thermal management (iPTM) of connected
hybrid electric vehicles (HEVs). The proposed MH-MPC lever-
ages preview and optimization over a short receding and a long
shrinking horizon, where the accuracy of preview, model, and
integration can be different over different horizons. Compared
with a conventional MPC-based approach with a short prediction
horizon and terminal cost, the MH-MPC improves fuel consump-
tion to a level comparable to dynamic programming (DP) while
still being computationally affordable. A statistical sensitivity
analysis over real-world city driving cycles is conducted to
demonstrate the robustness of MH-MPC to moderate levels of
uncertainty in the long-term preview.

Index Terms— Model predictive control (MPC), multitimescale
optimization, power and thermal management (PTM).

NOMENCLATURE

Cbat Battery capacity [A · h].
Ceng Engine-specific heat capacity [J/kg · ◦C].
ffuel Nominal fuel consumption rate [kg/s].
LHV Lower heating value [J/kg].
Meng Equivalent thermal mass [kg].
ṁfuel Fuel consumption rate [kg/s].
Pbat Battery power [W].
Paux

bat Battery power for auxiliary systems [W].
P trac

bat Battery power for traction [W].
Peng Engine power [W].
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Ptrac Traction power [W].
Q̇air Heat rate rejected by air convection [W].
Q̇exh Heat rate rejected in the exhaust [W].
Q̇fuel Heat rate released in combustion process [W].
Q̇heat Heat rate exchanged for cabin heating [W].
Rbat Battery resistance [�].
SOC Battery state-of-charge [−].
Rint Battery internal resistance [�].
Tcl Engine coolant temperature [◦C].
δt Sampling time [s].
Uoc Battery open-circuit voltage [V].
α Multiplier of fuel consumption rate [−].
λ Penalty weight [−].

ACRONYMS

BSFC Brake-specific fuel consumption.
CAV Connected and automated vehicle.
DP Dynamic programming.
HEV/EV Hybrid electric vehicle/electric vehicle.
HVAC Ventilation and air conditioning.
iPTM Integrated power and thermal management.
MPC Model predictive control.
MH-MPC Multihorizon model predictive control.
NEDC New European driving cycle.
RPM Round per minute.
V2I/V2V Vehicle-to-infrastructure/vehicle.

I. INTRODUCTION

MPC is of interest for a broad range of applications
including mobility, transportation, and aviation sys-

tems [1]. For integrated systems, MPC has to exploit the
complementary characteristics of individual components to
achieve high performance. Many integrated processes have
dynamics responding over different timescales. Such systems
are common in chemical processes [2], [3], micro-grids [4],
mining applications [5], electrified vehicles [6]–[8], and air-
craft [9]. When MPC is applied to such multitimescale sys-
tems, the slower dynamics often dictate that a relatively long
prediction horizon be used which leads to a large compu-
tational footprint. To address that issue, a commonly used
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approach is to exploit the singular perturbation theory [10],
in which a system with explicit timescale separation in the
dynamics is decomposed into two reduced-order subsystems
with different timescales, see [11]–[14]. Next, “fast” and
“slow” MPCs are designed and applied to control fast and
slow dynamics, respectively.

An alternative approach for dealing with multitimescale
systems is hierarchical MPC (H-MPC) [7]–[9], [15]–[17].
Unlike the decentralized fast-slow MPC approach based on
the singular perturbation theory that does not necessarily
require communication between the slow and fast MPCs [12],
an H-MPC computes the optimal reference values for the
“slow” dynamics over a relatively long prediction horizon.
Then, a tracking problem is solved over a much shorter
prediction horizon to track the planned references and compute
the control commands. Note that the tracking controller could
be of PID type [18]. In our previous publications [7], [8],
we developed an H-MPC with an economic MPC implemented
in the top, scheduling layer, with a long prediction horizon
and a long sampling period, and a tracking MPC as the
lower, piloting layer. In this implementation, compared with
scheduling-layer MPC, the tracking MPC is designed with a
shorter horizon and a shorter sampling period. This H-MPC
approach was demonstrated [7], [8] for integrated battery and
cabin thermal management of electrified CAVs.

For the H-MPC framework in [7], [8], and [19], both
scheduling and piloting MPCs were implemented using a
receding horizon scheme. Despite the relatively long predic-
tion horizon considered at the top layer of H-MPC, satisfying
the terminal constraint at the end of the operation cannot
always be guaranteed from the beginning. Such a design
requirement is of great importance for mission-based applica-
tions, where a specific mission/task needs to be accomplished
over a finite time duration while having access to a limited
onboard energy resource. The developments in this article are
motivated by an opportunity to tailor and improve strategies
for MPC in such mission-based applications, which have to
be accomplished over a finite time duration.

As an example, consider an energy management strategy for
HEVs, where the objective is to minimize fuel consumption
over the entire trip, subject to a battery charge sustainability
constraint that needs to be enforced at the end of the mission
(i.e., the trip). If a conventional receding horizon MPC with
a finite horizon is used for energy management of HEVs,
this battery charge sustainability constraint is often enforced
by adding a terminal penalty on the deviation of the battery
SOC from its reference value—which is often set to be a
constant value—at the end of the prediction horizon [20], [21].
Given the finite horizon of the MPC, such a terminal penalty
in the cost may limit the practical range of the battery SOC,
forcing the HEV powertrain to operate in a narrow and less
efficient region [22]. One approach to alleviate this issue
is to precompute the optimal SOC references using offline
optimization approaches (e.g., DP [23]) and design a finite
horizon tracking MPC to follow the optimal trajectory. Such
an approach is computationally expensive and requires prior
knowledge about the entire vehicle speed profile and load
trajectory. While significant efforts to develop approaches for

forecasting these quantities are being made (see [24], [25]
and the references therein), the long-term forecasts are typ-
ically inaccurate. The precomputed SOC references are often
not robust to the uncertainties associated with the long-term
vehicle speed preview, calling for an online SOC reference
optimizer that responds to the feedback from the powertrain
system and changes in the vehicle speed and traffic conditions
in real-time.

In this article, a novel multihorizon model predictive control
(MH-MPC) control strategy is proposed for mission-based
problems. The approach combines a short receding horizon
and a long shrinking horizon. The prediction over the short
receding horizon can be performed with a shorter sampling
period, exploiting more accurate preview information and
models than over the shrinking horizon. The shrinking horizon
cost essentially provides an approximation of the “cost-to-go”
function/terminal cost from the end of the receding horizon
to the end of the mission. Due to the possibility of using
short and long sampling periods, such an approach can handle
multitimescale dynamics. In this article, the application of
the proposed MH-MPC framework is demonstrated for iPTM
of HEVs.

Efficient thermal management of electrified vehicles, includ-
ing that of the combustion engine, battery, exhaust aftertreat-
ment, and cabin temperature, has a significant impact on the
overall fuel economy and driving range. This is especially
true in cold and hot ambient conditions [6], [26], [27],
where: 1) the actuators used for thermal management (e.g.,
compressor, pumps, and fans) can consume a considerable
amount of energy at the rate of up to 2.5 kW [28], [29]
and 2) the efficiencies of the vehicular power and thermal
systems degrade outside of the optimal temperature range.
For HEVs, thermal management priority varies as the ambient
temperature changes. In cold ambient temperature, which is
the focus of this article, the main thermal loads are due to
thermal management of the engine, and cabin heating is the
main thermal load.

Fig. 1 shows the power and thermal loops of a common
power-split HEV. As is seen from Fig. 1, a portion of the
heat generated during the combustion process is absorbed
by the engine coolant, while the rest of the fuel energy is
converted to either mechanical work or wasted through the
exhaust gases. If there is any demand for cabin heating,
the stored thermal energy in the coolant is then used to heat
the cabin air via the heater cores. As a result, cabin heating
reduces the coolant temperature, forcing the engine to run
to generate heat once the coolant temperature drops below a
certain threshold (e.g., 40–50 ◦C [22], [30])—even if there is
no demand for traction power.

The emergence of CAV technologies in recent years has
provided unique opportunities to enhance situational aware-
ness of the vehicle [25], [31], allowing for vehicle speed
and road grade forecasting. Exploiting these forecasts for
energy flow optimization has made MPC a natural choice for
real-time iPTM of HEVs [32]. There are two main challenges
in applying MPC to iPTM:

1) the coupling between power and thermal dynamics that
respond over different timescales,
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Fig. 1. Schematic of a power-split HEV with power and thermal loops.

2) uncertainties associated with vehicle speed forecast that
can influence the MPC performance unfavorably.

Fig. 2 highlights the timescale separation between power and
thermal systems of an HEV using the data collected from a
test vehicle. As can be seen, the response of engine power
[Fig. 2(b)] is relatively fast, for example, within 1–3 − s time
constant. On the other hand, the engine coolant temperature
[Fig. 2(c)], which represents the thermal dynamics of the
combustion engine, responds much slower with a time con-
stant in the order of 30 s. Despite responding over different
timescales, the power and thermal dynamics are strongly
coupled. Fig. 2 shows that when the engine is used to meet the
driver traction power demand, the engine coolant temperature
increases simultaneously.

The multitimescale dynamics and mission-based nature of
an HEV operation motivate the use of the MH-MPC to facili-
tate energy management. To this end, in this article, MH-MPC
is applied to address iPTM challenges in HEVs. We consider
a wintertime condition with cold ambient temperature when
cabin heating is required. In this scenario, and assuming
that the destination is known, the objective of iPTM is to
minimize fuel consumption while enforcing power and thermal
constraints. MH-MPC was first introduced in our preliminary
conference paper [22], in which the performance of the con-
troller was evaluated over a limited number of standard driving
cycles under the assumption of perfect knowledge of future
vehicle speed. In this article, we extend our previous work
by: 1) evaluating the MH-MPC performance over real-world
urban driving cycles and performing statistical analysis for
a large number of vehicles; 2) investigating the sensitivity
of MH-MPC performance and computational footprint to the
length and sampling periods used over the shrinking and
receding horizons; and 3) assessing the MH-MPC robustness
to uncertainties associated with vehicle speed prediction. Addi-
tionally, this article reports a variant of MH-MPC with details,
discussions, and interpretations not available in [22].

The rest of this article is organized as follows: First,
the physics-based and control-oriented models of the power
and thermal systems of an HEV are introduced in Section II.
Next, the design of MPC-based iPTM strategies is discussed
in Section III, including the conventional MPC and the

Fig. 2. Time-scale separation between power and thermal systems in an HEV:
(a) vehicle speed, (b) engine power, and (c) engine coolant temperature. Data
collected from a test HEV.

MH-MPC. Section IV presents the sensitivity analysis of the
proposed MH-MPC to uncertainties in vehicle speed preview
and discusses the MH-MPC robustness. Finally, concluding
remarks are summarized in Section V.

II. MOTIVATION CASE STUDY: HEV POWER AND

THERMAL MODELS

We use the iPTM problem for HEV as a motivating example
to, first, demonstrate the special controller design requirements
for integrated systems with multitimescale dynamics and, sec-
ond, show the need for a new MPC design, that is, MH-MPC,
for such systems. For a HEV powertrain system, as shown
in Fig. 1, the battery SOC and engine coolant temperature
(Tcl) dynamics represent the main dynamics in the power
and thermal systems, respectively. The physics-based models
of SOC and Tcl are introduced in Sections II-A and II-B.
The details of the HEV model considered in this article are
described in [6] and [30].

A. Battery Power-Balance Model

For a power-split HEV, the power provided by battery (P trac
bat )

and internal combustion engine (Peng) is blended to meet the
traction power demand (Ptrac) for driving

Ptrac = P trac
bat + Peng. (1)

Additionally, the battery provides the power for auxiliary
systems (Paux

bat )

Pbat = P trac
bat + Paux

bat (2)

where Pbat is the total battery power. Note that for cold
weather operation, the power required for the operation of
the engine and cabin thermal management system’s actuators
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(e.g., electric coolant pump, radiator fan, HVAC blower) is
considered as the main auxiliary load (Paux

bat ) on the HEV
battery. The battery SOC dynamics are represented using an
equivalent circuit model

˙SOC(t) = fSOC(t) = Uoc − √
U 2

oc − 4Rint Pbat

2RintCbat
(3)

where t denotes time, while Cbat, Rint, and Uoc are the capacity,
internal resistance, and open-circuit voltage of the battery,
respectively.

B. Engine Coolant Temperature Model

In cold ambient temperatures, thermal management of the
engine and cabin heating are the main thermal loads. The
thermal dynamics of engine coolant are modeled based on
the energy balance [26]

Ṫcl(t) = fTcl (t) = 1

MengCeng

× (Q̇fuel − Peng − Q̇exh − Q̇air − Q̇heat) (4)

where Meng and Ceng are the equivalent thermal mass and
the specific heat capacity of the engine cooling system,
respectively. Q̇fuel, Q̇exh, Q̇air , and Q̇heat represent the heat
rate released from the combustion process, exchanged through
exhaust gases, dissipated by air convection, and delivered for
cabin heating, respectively. In particular, Q̇fuel is calculated
using fuel consumption rate and lower heating value (LHV)
of the fuel

Q̇fuel = LHV · ṁfuel (5)

where ṁfuel is the fuel consumption rate calculated as a
function of engine speed (ωe), torque (τe), and Tcl

ṁfuel(ωe, τe, Tcl) = α(Tcl) · ffuel(ωe, τe) (6)

where ffuel(ωe, τe) is the nominal fuel consumption rate and
α(Tcl) is a multiplier reflecting the fuel consumption sensitivity
to the coolant temperature. These functions are adopted from
Autonomie1 software library for a power-split HEV; also
see [30] for more details. When Tcl is 60 ◦C, α = 1.03 and
decreases to α = 1 at Tcl = 100 ◦C, at which point the engine
is fully warmed up. When Tcl is less than 60 ◦C, α increases,
reflecting the engine efficiency degradation at lower coolant
and ambient temperatures. For instance, when Tcl decreases
to 10 ◦C from 60 ◦C, α can increase by up to 50%. The
experimental validation of the control-oriented models in (3)
and (4) can be found in our previous works [29], [30].

III. MPC-BASED IPTM OF HEVS

The objective of iPTM is to minimize the fuel consump-
tion while enforcing the battery SOC and engine coolant
temperature (Tcl) constraints in response to the traction and
cabin heating demands. In the subsequent numerical examples,
the vehicle is considered operating in wintertime when the

1Autonomie is a MATLAB/Simulink-based system simulation tool for
vehicle energy consumption and performance analysis developed by Argonne
National Laboratory (ANL) [6].

ambient temperature is −10 ◦C, and a constant cabin heating
power is given by Q̇heat = 1.5 kW. In this section, we first
evaluate a conventional MPC with a short receding horizon as
the baseline approach. Then, motivated by the limitations of
conventional MPC, the MH-MPC is proposed. In all cases,
the battery SOC and engine coolant temperature (Tcl) are
considered as the system states, with battery power (Pbat) being
the optimization variable.

A. Conventional MPC

As in [20] and [23], the conventional MPC-based strategy
for energy management of HEVs is intended to minimize
the fuel consumption over a finite prediction horizon, while
enforcing the battery SOC charge sustaining constraint. In our
case, there are additional constraints on the coolant tempera-
ture so the discrete-time optimal control solved at each discrete
time instant t becomes

min
Pbat(i)

t+H−1∑
i=t

ṁfuel(i)δt + λ(SOC(t + H ) − SOCr)
2

s.t. SOC(i + 1) = SOC(i) + δt · fSOC(i)

Tcl(i + 1) = Tcl(i) + δt · fTcl (i)

0.4 ≤ SOC(i) ≤ 0.8

40 ◦C ≤ Tcl(i) ≤ 90 ◦C

Tcl(0) = Tcl,init, SOC(0) = SOCinit (7)

where H is the prediction horizon, and δt = 1 s is the
discrete-time step. We used shorthand notations fSOC and fTcl

for functions used in (3) and (4) in the model described in
Section II. In the subsequent simulations, the initial conditions
are SOCinit = 0.6 (60%), and Tcl,init = 50 ◦C, representative
of a typical scenario where the engine is partially warmed-
up. Note that we leave the treatment of cold-start to future
publications as it requires additional, specialized modeling
and control strategies. The weight in the quadratic penalty
term is set to λ = 3 which promotes charge sustainability.
This value has been chosen by trial and error. The reference
value for the battery SOC (SOCr) is set to be the same as
SOCinit . At each time step t , the optimization problem (7) is
solved to determine the optimal battery power [Pbat(t)], which
informs the required engine power [Peng(t)] based on (1).
Additionally, it is assumed that the engine operates on the
curve of optimal operation points (OOP) on the BSFC map.
Based on this assumption, for a given Peng(t), the engine speed
and torque are calculated according to the OOP. The opti-
mization problem (7) is solved using MPCTools package [33],
which exploits the IPOPT solver [34] and CasADi for
numerical optimization. In our simulations, the optimization is
warm-started and the solution achieved in the current time step
is applied as the initial guess solution for the next iteration.
The simulations are performed on a desktop computer with an
Intel E-2136@3.30-GHz processor.

To evaluate the performance of the MPC in (7), a driving
cycle with the speed profile shown in Fig. 4(a) is considered
in this section. This driving cycle is based on the NEDC and
includes a combination of city (with multiple stop-and-go) and
highway driving. Note that in this section, it is assumed that
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Fig. 3. Simulation results of DP and conventional MPCs with different
prediction horizons. (a) Fuel consumption. (b) Average computational time
per time step.

an accurate prediction of the vehicle speed is available over
the prediction horizon, and thus, uncertainties associated with
vehicle speed prediction are not taken into consideration. This
assumption will be relaxed in Section IV and the sensitiv-
ity of the results to the speed preview uncertainty will be
investigated.

As the performance of MPC can be affected by the length
of the prediction horizon [35], the fuel consumption results
for different prediction horizons are summarized in Fig. 3(a).
As the benchmark, the optimal solution computed using DP
is also shown in Fig. 3. As can be seen, while the fuel
consumption decreases as the prediction horizon is extended
from 20 to 100 steps, the MPC still consumes 3.15% more fuel
than DP. Note that as δt = 1 s, the time period of one discrete
step is 1 s. Fig. 4(b) and (c) show the state trajectories of
DP and conventional MPC. One can see that SOC of MPC
solution varies in a limited range of ≈10%. Furthermore,
increasing the prediction horizon has a marginal impact on this
narrow variation range. This is because the conventional MPC
only has the awareness of the future vehicle speed over the
prediction horizon and the quadratic term in the cost function
penalizes the SOC deviation from its terminal reference value.
DP, on the other hand, has access to the entire driving cycle
a priori, and thus, the battery can be used more efficiently by
expanding the operation range of SOC, as shown in Fig. 4(b).
Moreover, as shown in Fig. 4(c), Tcl also responds differently
with MPC versus DP solution. Exploiting the information
about the upcoming long stop (around t = 100 to 180 s) before
entering the highway, DP increases Tcl in advance, thereby
avoiding having the coolant temperature drop below its lower
limit threshold that can trigger engine idling. The conventional
MPC, on the other hand, is able to exploit preview information
only over a short horizon, leading the engine to operate within
the inefficient coolant temperature range, that is, <50 ◦C.

Toward the end of the trip, as highlighted in Fig. 4(c),
the vehicle exits the highway and starts a city driving phase
with low traction power demand and multiple stop-and-go
events. Since DP is able to exploit full trip information,
it manages to store enough electrical energy in the battery
(for traction) and thermal energy in the coolant (for cabin

Fig. 4. State trajectories of conventional MPC with different prediction
horizons and DP: (a) vehicle speed, (b) SOC, (c) Tcl, and (d) engine power.

heating) before exiting the highway at around t = 500 s,
so that the vehicle can reach the end of the trip mainly in
full electric mode. This can be seen from the engine power
trajectory in Fig. 4(d) showing the engine power is demanded
only for few instances after t = 500 s. For the MPCs, on the
other hand, limited electrical energy has been stored in the
battery [Fig. 4(b)], and so the engine is being used more
often after t = 500 s, resulting in unnecessarily high coolant
temperatures by the end of the trip. Note that computing DP
solution took about 8 h and hence is not feasible for real-time
implementation.

Although the fuel consumption can be reduced with a longer
prediction horizon, the MPC computational footprint grows
with the length of the prediction horizon as shown in Fig. 3(b).
In particular, as the prediction horizon increases from 20 to
100 steps, the computational time increases by 313% on
average per time step; thus, longer horizons are prohibitive
from the standpoint of real-time implementation.

Based on the results shown in Figs. 3 and 4, the short-
comings of the conventional MPC (7) can be summarized as
follows:

1) The quadratic penalty term in the MPC cost function
incorporated to enforce the battery charge sustaining
constraint limits the operating range of SOC, resulting
in inefficient use of the battery. This is the main reason
for not observing more substantive improvements in fuel
consumption results as the MPC prediction horizon is
extended.

2) While the fuel consumption is reduced by extending
the MPC prediction horizon, the computational footprint
grows to unaffordable levels.

3) Although in this section the vehicle speed (which
informs traction power demand) over the prediction
horizon is assumed to be known accurately, in the
real-world traffic environment, long-term prediction of
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the vehicle speed is uncertain. This uncertainty can lead
to further degradation of energy efficiency.

To address these challenges, a novel MH-MPC is proposed
in Section III-B to address the tradeoff between energy effi-
ciency, computational footprint, and vehicle speed prediction
uncertainty.

B. Multihorizon MPC (MH-MPC)

The concept of the proposed MH-MPC is illustrated
in Fig. 5. The prediction horizon spans the entire trip, divided
into two horizons: 1) a short receding horizon (red window)
and 2) a long shrinking horizon (green window). Over the short
receding horizon, the vehicle speed preview is assumed to be
accurate. Note that for connected vehicles, a high-accuracy
short-term prediction of the vehicle speed may be obtained
using V2V and V2I communications; see [36] for an example.

Over the long shrinking horizon, an “approximate” vehicle
speed preview is assumed to be available. This approximate
preview does not require a detailed second-by-second forecast
of the vehicle speed. Instead, the time history of the vehicle
speed only consists of main traffic events, for example, accel-
eration and deceleration at signalized intersections and the
average cruise speed between the intersections. Note that for a
specific road segment with multiple intersections, a long-term
vehicle speed preview could be informed by machine learning
from the historic traffic data collected from connected vehicles
driving through the same corridor; see [25] for an example.

Remark 1: Long-term speed prediction in mixed, uncertain,
and dynamic traffic environments is challenging. Real-time
route optimization and real-time traffic flow control can
complicate the speed and trip time prediction even further.
Consequently, it is important to understand the requirements
on vehicle speed prediction accuracy, the impact of the associ-
ated uncertainties, and acceptable uncertainty bounds to make
the iPTM and look-ahead information beneficial for fuel-
saving. To that end, Section IV provides statistical analysis
to: 1) identify key traffic events and 2) assess the impact of
bounded uncertainties in speed prediction on the iPTM results.

The MH-MPC is based on the solution to the following
discrete-time optimal control problem:

min
Pbat(i)

t+N−1∑
i=t

ṁfuel(i)�t1 +
tend∑

i=t+N

ṁfuel(i)�t2

s.t. SOC(i + 1) = SOC(i) + �t j · fSOC(i), j ∈ {1, 2}
Tcl(i + 1) = Tcl(i) + �t j · fTcl (i), j ∈ {1, 2}
0.4 ≤ SOC(i) ≤ 0.8

40 ◦C ≤ Tcl(i) ≤ 90 ◦C

0.99 × SOC(0) ≤ SOC(tend) ≤ SOC(0) × 1.01

Tcl(0) = Tcl,init, SOC(0) = SOCinit (8)

where N is the short receding horizon, tend is the end time
of the trip, �t1 and �t2 are the update periods over the
receding and shrinking horizons, respectively, and j ∈ {1, 2}
is determined as follows:

j =
{

1, if i ≤ t + N − 1

2, if i ≥ t + N.
(9)

The MH-MPC cost function has two terms:

1) the fuel consumption over the short receding horizon
calculated based on accurate vehicle speed preview,

2) an estimate of the fuel consumption over the long
shrinking horizon representing the “cost-to-go” of the
entire remaining trip beyond the receding horizon.

By adding these two terms, the cost function of MH-MPC
reflects the actual fuel consumption over the entire trip. The
conventional MPC (7), however, only minimizes the fuel
consumption over the receding horizon. Moreover, it can be
seen in (8) that a quadratic penalty term in the MH-MPC cost
function is no longer needed. This is because the predicted
cost-to-go over the shrinking horizon includes an approxima-
tion of the SOC evolution until the end of the trip, removing
the need for penalizing its deviation from a reference value
as in (7). Instead, a terminal constraint is applied to enforce
the battery charge sustainability. To improve the feasibility of
the optimization problem, the final SOC [i.e., SOC(tend)] is
allowed to deviate by ±1% from SOCinit . Moreover, due to
the inclusion of the cost-to-go term over the shrinking horizon,
a precomputed SOCr trajectory is no longer needed.

To reduce the computational footprint of the MH-MPC over
the long shrinking horizon, �t2 > �t1 is used. The MH-MPC
problem is solved every �t1 = 1 s and the first element of the
computed control input is applied to the plant. Then, the reced-
ing horizon is shifted by �t1 and the shrinking horizon is
shortened by �t1. Note that when the remaining trip time
is shorter than the receding horizon length, the multihorizon
is no longer needed and there is only one shrinking horizon
remaining in the cost function with the sampling time of �t1.

While not pursued in this article, note that the model
used in the shrinking horizon phase can, in principle, be a
lower fidelity model than in the receding horizon phase.
Furthermore, alternative integration procedures to Euler’s dis-
cretization could be implemented in predicting trajectories in
the shrinking horizon phase to improve numerical stability.

To study the sensitivity of the MH-MPC to the receding
horizon length (N), as well as to the resolution (i.e., sampling
time) over the long shrinking horizon (�t2), the MH-MPC
with different parameters are simulated over the same driving
cycle shown in Fig. 4(a). The fuel consumption and the
average computational time per time step are summarized
in Fig. 6. It can be seen from Fig. 6(a) that decreasing �t2 from
20 to 10 s slightly reduces the fuel consumption. Increasing N ,
however, has a marginal impact on fuel consumption. On the
other hand, as shown in Fig. 6(b), different horizon lengths
and sampling times lead to different computational footprints.
Considering a tradeoff between fuel consumption and com-
puting demands, N = 5 s and �t2 = 10 s are selected and
used in the remainder of this article. Moreover, the selection
of N = 5 s makes the availability of accurate speed preview
over the receding horizon more reasonable. Note that for the
results presented in this section, it is still assumed that a
perfect long-term preview is available. However, its accuracy is
degraded due to the integration of the continuous-time model
with a longer time step.
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Fig. 5. Concept of MH-MPC with short receding horizon and long shrinking horizon.

Fig. 6. (a) Fuel consumption and (b) average computational time for
different short receding horizons and for different sampling times over the
long shrinking horizon.

Fig. 7 shows the comparison of the results of MH-MPC
with DP and conventional MPC. Compared with the conven-
tional MPC, MH-MPC reduces the fuel consumption by more
than 3% [Fig. 7(a)], which is similar to DP. By comparing
the computational time of MH-MPC and conventional MPC
in Fig. 7(b), one can observe that MH-MPC is far less
computationally intensive than longer horizon conventional
MPC while achieving better performance.

The powertrain trajectories with MH-MPC are shown
in Fig. 8 and compared with those of DP and the conventional
MPC (with H = 20 s). Unlike the conventional MPC, the SOC
trajectory of MH-MPC varies over a wider range (>20%) and
shows a similar trend with DP. This is because MH-MPC
has the awareness of the entire driving cycle and accounts
for the cost-to-go beyond the receding horizon. During the
first part of the trip, as the initial engine coolant temperature
is relatively low, to improve the engine efficiency via engine
warm-up, MH-MPC decides to use the engine more frequently

Fig. 7. Simulation results of DP, MH-MPC, and conventional MPC
with different prediction horizons. (a) Fuel consumption and (b) average
computational time per time step.

and at higher power [Fig. 8(c)] to provide traction power while
increasing the coolant temperature. Consequently, the battery
is also being charged during this period using the extra engine
power. Then, when the vehicle exits the highway (around
t = 540 s), similar to DP, the vehicle operates mainly in
electric mode until the end of the trip (t = 540-850 s); see
Fig. 8(c). This is possible since the MH-MPC has stored
enough thermal energy in the coolant to satisfy the cabin
heating toward the end of the trip. Thus, MH-MPC is able
to use the engine coolant as thermal energy storage, providing
an additional degree of flexibility (in addition to the battery as
electrical energy storage) for HEV energy flow optimization.

Remark 2: In this article, the considered driving cycles are
relatively short (<1000 s); thus, the end of the optimization
horizon is set to be the end of the trip. For longer trips,
such a strategy may result in increased computation load for
MH-MPC. This issue can be mitigated by: 1) setting the
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Fig. 8. State trajectories of DP, MH-MPC, and conventional MPC: (a) SOC,
(b) Tcl, and (c) engine power.

end of the optimization horizon to be the end of a long
receding horizon along the trip, and later switching to the
shrinking horizon as the vehicle approaches the destination
to enforce the terminal constraints; or 2) applying a more
intelligent/adaptive sampling procedure over the shrinking
horizon to keep the MH-MPC computational footprint at the
acceptable level while ensuring that the essential look-ahead
information over the long horizon is captured and not missed
due to coarse sampling; and finally 3) the use of lower fidelity
models for prediction over the shrinking horizon could also be
exploited.

IV. ROBUSTNESS OF MH-MPC AGAINST UNCERTAINTIES

IN VEHICLE SPEED PREVIEW

The benefits of the proposed MH-MPC were studied in
Section III under the assumption that the speed preview is
known a priori over both short- and long-range horizons.
In this section, we relax this assumption to investigate the
robustness of the MH-MPC to uncertainties associated with
vehicle speed preview. As will be shown, this sensitivity
analysis helps identify the major traffic events that significantly
affect the energy efficiency improvement and hence need to
be predicted.

A. Real-World Traffic Simulation Data

To generate the real-world traffic data needed to evaluate
the MH-MPC performance, a city corridor was modeled
and simulated in the microscopic traffic simulation software
VISSIM [37]. The simulated corridor is located on Plymouth
Rd., in Ann Arbor, MI, encompassing six intersections as
shown in Fig. 9, where the location of each intersection is
marked by a black circle. This corridor is about 2.2 miles with
two lanes in each direction, connecting the downtown of Ann
Arbor to the US-23 highway. Real-world traffic data, including

traffic flow volume and signal timing at each intersection,
were collected during the rush hour (4:00–5:00 PM) and used
to calibrate and validate the VISSIM model as described in
our previous publications [29], [38]. A coordinated fixed-time
signal timing policy with a cycle length of 150 s has been
used in all intersections. This model was run for two and a
half hours while the parameters of the traffic model were kept
fixed and the traffic congestion-level did not change during
the simulation. The speed profiles of 1478 vehicles driving
through the entire corridor in the same direction (i.e., entering
from the west) were recorded. Note that the total number of
vehicles in the traffic traveling through this corridor was larger
than 1478 as some vehicles may have entered or exited the
corridor at any of the intersections.

B. Sensitivity Analysis of MH-MPC

First, ten vehicles were randomly selected from the pool
of 1478 vehicles. For these vehicles, the results of applying
MH-MPC are compared with the results of applying DP
in Fig. 10. When there is no uncertainty in the speed preview,
Fig. 10 shows that for all ten selected vehicles, the MH-MPC
achieves a comparable fuel consumption to DP with the
difference within 0.9%.

As discussed earlier, uncertainties in the vehicle speed pre-
diction can potentially degrade the fuel consumption. To inves-
tigate the impact of speed preview uncertainties on the energy
efficiency of MH-MPC, three cases are considered over the
long shrinking horizon as follows:

1) Case I: Exact vehicle speed is known a priori.
2) Case II: The only available information is the cruise

speed, that is, the speed at which the vehicle is cruising
after acceleration from stop and before deceleration to
another stop.

3) Case III: In addition to the cruise speed (Case II),
the spatiotemporal distribution of the vehicle stops at
the signalized intersections is known.

Fig. 11 illustrates Cases I and II. It is assumed that the
exact ending location of the trip is known a priori. In Case II,
the vehicle speed over the long shrinking horizon is forecast as
constant equal to the last recorded cruise speed. The trip end
time is calculated by dividing the remaining distance by the
last recorded current cruise speed. When the vehicle comes to
stop, the prediction of the trip end time is based on the last
recorded cruise speed. Note that as shown in Fig. 11, the cruise
speed varies in different segments of the corridor, based on
which the estimated trip end time is also recalculated.

Fig. 12 illustrates the vehicle speed forecast in Case III
and compares it with Case I, for which the entire driving
cycle is known a priori over both receding and shrinking
horizons. Case III assumes that the stop and departure times
at each signalized intersection are known and forecasts the
speed between intersections as equal to constant cruise speed
in that segment. Note that the predictions of the stop events in
Case III can be obtained by analyzing the historical traffic data,
as shown in our previous work [25]. In all these three cases,
the prediction of the vehicle speed over the short receding
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Fig. 9. Plymouth corridor in Ann Arbor used for traffic modeling and simulation.

Fig. 10. Fuel consumption results of MH-MPC and offline DP based on
ten vehicle speed profiles randomly selected from the Plymouth Rd. driving
cycles.

Fig. 11. Case II when compared with Case I and the difference in the
incorporated information over the long shrinking horizon of MH-MPC: (a) at
around t = 50 s, the end time of the trip is estimated based on the known
end location and the current cruise speed of 35 mph, and (b) toward the end
of the trip at t = 350 s, the predicted trip end time is updated based on
the remaining distance until the end location and the current cruise speed of
45 mph.

horizon is assumed to be perfect and the trip distance is also
known a priori.

Among all vehicles traveling through the corridor, 140 vehi-
cles are randomly selected to analyze the performance of

Fig. 12. Case III when compared with Case I and the difference in the
incorporated information over the long shrinking horizon of MH-MPC.

the MH-MPC for three cases defined above. While these
vehicles have different speed profiles, the initial conditions
for Tcl and SOC, ambient temperature, and cabin heating
demand are the same. Fig. 13 shows the probability density
function for the fuel consumption percentage “increase” from
Case II and Case III when compared with Case I. Additionally,
the conventional MPC with H = 20 s is also presented as
the benchmark. The average fuel consumption increase of
Case II compared with Case I is 1.43%, which is 0.59%
better than the conventional MPC on average. It shows that by
incorporating the long-term preview via MH-MPC, even with
a constant vehicle speed prediction over the long shrinking
horizon, the MH-MPC can improve the fuel economy when
compared with the conventional MPC.

Comparing Case II and Case III, the fuel consumption is
reduced by 1.28% on average and is only 0.15% more on
average than in Case I. This suggests that spatiotemporal infor-
mation about stop events and about cruise speed in intervals
between stops can significantly improve fuel economy. The
standard deviation of fuel consumption in Case III is 0.30%,
which is also lower than in Case II (0.80%).

The state trajectories in three cases for one sample
ego-vehicle are shown in Fig. 14. It can be seen that in all three
cases, SOC is first pushed toward its upper limit (i.e., 0.8)
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Fig. 13. Probability density function of the fuel consumption increase with
uncertain vehicle cruise speed preview.

Fig. 14. State trajectories of the three cases evaluated for MH-MPC for one
sample ego-vehicle: (a) vehicle speed, (b) SOC, (c) Tcl, and (d) engine power
(Peng).

while the engine coolant temperature is not warm enough
at the beginning of the trip. Note that the SOC constraints
are imposed as hard constraints in this article. To avoid the
violation of SOC constraints, if SOC = SOCmax, it is assumed
that the friction brake is used instead of the regenerative
braking to prevent battery overcharge, meaning the kinetic
energy in the braking phase may not be recuperated fully.
To fully recuperate the kinetic energy in the braking phase,
knowing the upcoming stop event in advance, an optimal
controller can command the SOC to decrease using the battery
for traction before the brake occurs. This creates spare charge
capacity prior to the stop events. Such a desired response is
observed for both Cases I and III in Fig. 14(b). For Case II,
however, the stop events are not known a priori over the long
shrinking horizon. As a result, the MH-MPC cannot detect
the stop events until the vehicle enters close proximity of
the intersection and the stop event becomes visible to the
controller within the short receding horizon. Only knowing
the upcoming stop event within the short horizon does not
provide the controller with enough lead time to discharge the
battery proactively, and thus it fails to recuperate the kinetic
energy in the braking phase.

TABLE I

MEAN VALUE AND STANDARD DEVIATION OF THE FUEL CONSUMPTION
INCREASE RESULTS SHOWN IN FIG. 16

As the vehicle approaches the end of the trip, it is also
desirable that the controller starts to release the stored electric
energy in the battery and the thermal energy in the engine
coolant, enabling the vehicle to operate in a more electric
mode. Such a favorable response is observed in all cases, even
for Case II. Note that for Case II, while the long-term speed
prediction has large uncertainty from the beginning, as the
vehicles approach the destination, the uncertainty in estimating
the trip end time decreases. This allows the MH-MPC for
Case II to adjust its actions and release the energy from the
battery and the coolant as its awareness of the end of the trip
increases.

C. Robustness of MH-MPC

The sensitivity analysis of the MH-MPC in Section IV-B
suggested that the preview of stop events and cruise speed can
significantly improve the performance of the proposed iPTM
strategy based on MH-MPC. To further evaluate the robustness
of the MH-MPC to errors in forecasting these, different levels
(i.e., from −10% to +40%) of uncertainties are imposed on
the “predicted” cruise speed and stop events over the long
shrinking horizon as shown in Fig. 15. For instance, assuming
the exact location of an intersection is known a priori, if the
predicted cruise speed is, for example, 10% higher than the
actual cruise speed, the predicted stop time is also shifted
earlier by 10% when compared with the actual one. Thus,
the uncertainty imposed on the cruise speed will affect the
predicted stop time at the intersections. To de-couple the cruise
speed and vehicle stop time prediction uncertainty from other
traffic parameters, here we make several assumptions:

1) The queue length and the number of vehicles between
the ego-vehicle and the intersection remain the same
while the predicted vehicle cruise speed varies.

2) While the ego-vehicle-predicted cruise speed could be
higher or lower than the actual one, it is assumed that
the ego-vehicle does not change lane.

3) The departure time from the intersections is determined
by the traffic signal timing and the queue conditions
at the intersection. Since these two are assumed to
remain the same, as shown in the right-hand side of
Fig. 15, the predicted departure time from the intersec-
tion will not be affected.

4) While the predicted cruise speed varies, the prediction
of passing or stopping at the upcoming intersection does
not change.

Table I summarizes the statistical results (mean and standard
deviation) of the fuel consumption increase compared with the
ideal case (Case I), and Fig. 16 shows the probability density
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Fig. 15. Concept of imposing the uncertainties on the predicted cruise speed and the stop time.

Fig. 16. Probability density function of the fuel consumption increase with
different percentages of uncertainties.

functions for different levels of uncertainties. The statistical
results are based on the same 140 vehicles considered in the
previous subsection. Note that for negative uncertainties, only
−10% case is presented, because larger negative uncertainties
of the predicted cruise speed make the predicted stop time
larger than the departure time. Since the stop time cannot be
larger than the departure time, such a case means the vehicle
is predicted to pass through the intersection and the associated
stop events are not captured.

It can be seen that the average fuel consumption increase
percentage, compared with Case I, is negligible when the
uncertainties are ±10%, and it increases from 0.39% to
1.34%, as the uncertainties increase from +10% to +40%.
As expected, the uncertainty in predicting the actual cruise
speed and vehicle stop time degrades the MH-MPC perfor-
mance. In particular, when the uncertainties are at +40%,
the average fuel consumption increases by 1.34%. This obser-
vation indicates that when the uncertainties are too large,
the benefits of incorporating the stop event predictions could
be diminished. Additionally, larger uncertainties lead to a
larger standard deviation of fuel consumption increase, indicat-
ing higher variability in the fuel consumption results. Fig. 16
shows that the maximum fuel consumption increase is 4.12%
when the imposed uncertainties are at +40%.

While the robustness analysis performed in this section
focused on one particular type of uncertainty under an
assumption that none of the other traffic parameters has
changed because of the imposed uncertainty, the results
in Fig. 16 are encouraging, suggesting the improvements in
fuel consumption are possible despite levels of uncertainties
of ±10%. As shown in our previous work [25], advanced
data-analytic techniques can be applied to improve the
accuracy of long-term vehicle speed forecasts, and thus
reduce the impact of the associated uncertainties on
MPC-based energy management of connected vehicles.

V. CONCLUSION

In this article, a novel MH-MPC strategy was proposed
for integrated systems with dynamics responding over dif-
ferent timescales. The MH-MPC exploits multirange predic-
tion and optimization over a short receding horizon and a
long shrinking horizon with different accuracies and resolu-
tions. The MH-MPC estimates the “cost-to-go” over the long
shrinking horizon, beyond the conventional receding horizon.
This approach makes it appealing for use in mission-based
problems where the objective is accomplishing a mission
with a limited onboard energy resource. For such systems,
the MH-MPC relaxes the requirement for including a terminal
penalty term in the receding horizon optimization cost func-
tion, allowing to incorporate an economic cost function over
the entire prediction horizon. The economic cost function of
MH-MPC and long shrinking horizon until the end of the
mission enable the energy states to operate on or close to
their admissible boundary to improve performance.

This proposed MH-MPC was demonstrated for iPTM of
HEVs operating in a connected traffic environment. In such
an environment, short- and long-term predictions of the vehi-
cle speed may be obtained using advanced V2V and V2I
telematics and incorporated over the receding and shrinking
horizons of the MH-MPC. The simulation results of applying
MH-MPC to a power-split HEV demonstrated improved per-
formance of the MH-MPC when compared with the conven-
tional MPC with a battery charge sustaining terminal penalty.
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Furthermore, in the absence of uncertainties in the vehicle
speed forecast, MH-MPC performance was close to that of
DP with a deviation of 1%. The MH-MPC performance also
surpassed the long-horizon conventional MPC approach, while
requiring less computational resources. The sensitivity and
robustness of the iPTM strategy to uncertainties in long-term
vehicle speed forecasts were also studied. The results sug-
gested that for city driving scenarios, the prediction of the
vehicle stop events at signalized intersections and the average
cruise speed between intersections are key information that can
be leveraged for fuel-saving, even if the prediction is subject
to moderate uncertainties.

Our future work will focus on enhancing the MH-MPC
robustness using formal algorithmic approaches, as well as
estimation and integration of long-term speed preview using
advanced data analytic tools started in [25]. We will also con-
sider longer driving cycles, for which an intelligent/adaptive
sampling procedure and the use of lower fidelity models
over the shrinking horizon may be needed to reduce the
computational footprint of MH-MPC. Moreover, to fully quan-
tify the impact of uncertainties in speed prediction on fuel
consumption results, the MH-MPC robustness analysis will be
expanded to: 1) other types of uncertainties (e.g., imprecisions
in trip end time estimation, change of corridor by route
optimization algorithm) and 2) longer driving cycles.
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