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Abstract— The operation of the air-conditioning (A/C) system
can significantly increase the energy consumption of passenger
vehicles. In this article, aiming at reducing the vehicle-level
energy consumption in hot weather, an optimization-based
energy-efficient control strategy for the A/C system, which is
referred to as the eco-cooling, is developed and experimentally
validated. The proposed eco-cooling strategy leverages the A/C
system efficiency sensitivity to the vehicle speed and the thermal
storage of the passenger cabin to coordinate the A/C operation
with vehicle speed profile by actively shifting the A/C thermal
load toward the more efficient region at higher vehicle speeds.
The proposed strategy exploits model predictive control and
incorporates speed preview information while enforcing con-
straints. The effectiveness of the control strategy is first demon-
strated on a high-fidelity simulation model and then implemented
experimentally on a hybrid electric vehicle. Repeatable vehicle
tests show that, over a real-world city driving cycle, an average
energy saving of 5.7% can be achieved at the vehicle level using
the proposed eco-cooling strategy compared with a baseline A/C
control strategy that runs A/C with a constant setting. This
energy-saving is achieved, while the proposed eco-cooling strategy
delivers a similar amount of cooling energy to the cabin compared
with that of the baseline strategy with a 2.7% difference on
average.

Index Terms— A/C energy management, eco-cooling, hybrid
electric vehicle (HEV), vehicle experiments.

NOMENCLATURE

AFR Air-fuel ratio (AFR) [−].
AFRstoich Stoichiometric AFR [−].
cp Specific heat capacity of air [J/(kg · K)].
EAC A/C system energy consumption [MJ].
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Ebatt Battery capacity [MJ].
Ecomp Compressor energy consumption [MJ].
EDACE Discharge air-cooling energy [MJ].
EEDF EDF energy consumption [MJ].
Eveh Vehicle energy consumption [MJ].
eavg Average speed tracking error [mph].
ηsys Energy conversion efficiency [−].
λ Equivalent AFR [−].
Paux A/C auxiliary power [W].
Pcomp A/C compressor power [W].
PDACP Discharge air-cooling power [W].
SOC Battery state-of-charge [−].
σerr Standard deviation in speed tracking [mph].
Tain Vent air temperature [◦C].
Tamb Ambient air temperature [◦C].
T adj

amb Adjusted ambient air temperature [◦C].
Tcab Cabin air temperature [◦C].
Tdischarge Discharge air temperature [◦C].
Tevap Evaporator wall temperature [◦C].
Tint Cabin interior temperature [◦C].
Tshell Cabin shell temperature [◦C].
Tsp Cabin temperature set point [◦C].
Vveh Vehicle speed [mph].
ṁbl Blower air flow rate [kg/sec].
A/C Air conditioning.
CAL Cabin air loop.
CAN Controller area network.
CAV Connected and automated vehicle.
DACE Discharge air-cooling energy.
DACP Discharge air-cooling power.
EDF Electric ducted fan.
IPOPT Interior Point OPTimizer.
iPTM Integrated power and thermal management.
HEV Hybrid electric vehicle.
HVAC Heating, ventilation, and A/C.
MAF Mass air flow.
MPC Model predictive control.
LHV Lower heating value.
LIN Local interconnect network.
OEM Original equipment manufacturer.
PWM Pulsewidth modulation.
RL Refrigerant loop.
SC03 Supplemental federal test procedure.
UDP User datagram protocol.
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I. INTRODUCTION

REDUCING fuel consumption and maintaining the desired
thermal state for subsystems are the two major objectives

of thermal management strategies for automotive systems.
In extremely hot or cold weather conditions, the effectiveness
of thermal management becomes more critical as it will also
impact safety, emissions, and passenger comfort. Specific
opportunities for energy-efficient thermal management have
been identified for the combustion engine [1], [2], the electric
machines [3], the battery [4]–[6], the aftertreatment system
[7], and the HVAC system [8]–[11]. More recently, with
the emergence of CAV technology [12]–[14], the iPTM has
been considered in [15]–[17]. The iPTM strategy exploits
vehicle speed preview and weather information to coordinate
the power and thermal management systems to improve the
vehicle-level energy efficiency.

Among all thermal subsystems in an electrified passenger
vehicle, the A/C system represents the most significant aux-
iliary load for thermal management [18], [19]. The use of
the A/C system, especially in extreme weather conditions, can
dramatically increase the energy consumption of electrified
vehicles [19], [20]. Fig. 1 illustrates the schematics of a typical
A/C system for a vehicle with the electrified powertrain in
which the onboard high-voltage battery pack supplies the
power to the major power consumers in the A/C system,
namely, the compressor (Pcomp) and the other auxiliaries
(Paux), including the EDF for condenser and the blower. There
are two major loops within the A/C system: the RL delineated
by yellow lines and the CAL indicated by blue lines in Fig. 1.
In practice, depending on the cooling power demand from
the CAL, the actuators in the RL, including the compressor,
the condenser fan, the thermal expansion valve, and so on, are
coordinated to maintain the evaporator wall temperature (Tevap)
within the desired and safe range. That is, the RL must be
controlled to provide the desired cabin cooling while avoiding
damage to the RL. The variables Vveh, Tamb, Tshell, Tdischarge,
Tain, and ṁbl shown in Fig. 1 represent the vehicle speed,
ambient air temperature, cabin shell temperature, discharge
air temperature, vent air temperature, and blower airflow
rate, respectively. Note that Tdischarge can be different from
Tain, considering additional heat exchange along the cabin air
delivery path.

A special characteristic of an automotive A/C system is
the sensitivity of its efficiency to the vehicle speed. As the
vehicle speed increases, the A/C system consumes less energy
while providing the same cooling power to the cabin. This
is dictated by the underlying physics, as the effective ram
airspeed through the condenser increases as vehicle speed
increases, and hence, the condenser dissipates the heat to
the ambient faster, leading to higher efficiency of the A/C
system. As demonstrated on a high-fidelity A/C system model,
CoolSim,1 the efficiency of the A/C system, in hot ambient
(35 ◦C), increases by approximately 30% as the vehicle speed
increases from 0 to 25 m/s [8]. The vehicle speed sensitivity of
A/C system efficiency can be leveraged to coordinate the A/C

1The CoolSim model is developed by the National Renewable Energy Lab
(NREL) [21].

Fig. 1. Schematics of the electrified A/C system in an HEV. The electric
battery power is used not only for part of traction power demand but also for
auxiliary loads within the HEV, including that of A/C systems’ actuators.

operation with the vehicle speed changes to achieve vehicle
level energy efficiency improvements. We refer to such a
strategy as eco-cooling.

In this article, we consider an eco-cooling strategy that
exploits MPC and vehicle speed preview while handling
various system constraints. The proposed strategy is devel-
oped based on a physics-based A/C system model, which
is referred to as the A/C simulation model hereafter. This
model was previously presented in [22] and [23] for the
vehicles with electrified powertrains. The energy-saving is
then demonstrated in closed-loop simulations with the A/C
simulation model while comparing the eco-cooling strategy
with a production benchmark controller. A similar idea of
leveraging A/C system efficiency to vehicle speed for energy
saving has been reported in our previous works [8], [17] using
different control strategies. In this article, to facilitate the
implementation on a test vehicle and for consistency with the
benchmark controller, a practical metric quantifying the A/C
cooling performance, DACP, is incorporated into the design of
the eco-cooling strategy. After validating its effectiveness on
the A/C simulation model, the proposed eco-cooling strategy
is implemented and tested on an experimental vehicle (Toyota
Prius HEV MY 2017).

Compared with the demonstration of the proposed
eco-cooling strategy on the simulation model, there are a
number of challenges for demonstrating thermal management
impact on the test vehicle, including the following.

1) The model mismatch between the simulation model and
the physical system of the vehicle.

2) Uncertainties associated with the ambient thermal con-
ditions (e.g., ambient temperature variation and cloud
coverage) and powertrain control (e.g., power-split)
in field tests. While, in the simulation environment,
the power-split logic is known and can be tuned, such
a strategy on the test vehicle is not known as its details
are proprietary to OEMs.

These challenges need to be carefully considered and
addressed in the vehicle testing in order to characterize the
actual impact of the eco-cooling strategy. To this end, the test
vehicle is instrumented to allow real-time control of the A/C
system. A control-oriented model is developed for the A/C
system and validated using the data collected from the test
vehicle. The MPC-based eco-cooling strategy is developed,
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which exploits the control-oriented model for prediction. The
optimized trajectories of control inputs (blower airflow rate
and cabin temperature set point) are computed for a real-world
city driving cycle and applied to the test vehicle. By comparing
with a conventional constant A/C control setting, vehicle-level
energy saving is demonstrated with repeated vehicle tests over
the same driving cycle. The overall cooling performance of
applying the proposed eco-cooling strategy and the constant
A/C setting is also compared using the cabin temperature
trajectories and the DACE [23]. Note that, while a related
eco-cooling strategy has been considered in our previous
work [23], this article goes significantly beyond [23] in pre-
senting the original experimental results and additional details
and developments.

The rest of this article is organized as follows. In Section II,
the eco-cooling strategy and its validation on the A/C simu-
lation model are presented. The benefits of the eco-cooling
strategy as observed in the simulations are characterized.
In Section III, we present the modified eco-cooling strategy,
which is suitable for vehicle implementation. The vehicle
testing procedure is reported, and the repeatability of the road
tests is discussed in Section IV followed by the test results
and discussions in Section V. Summary and conclusions are
presented in Section VI.

II. ECO-COOLING STRATEGY

A. Control-Oriented Modeling of the A/C
Simulation Model

Physics-based modeling of the A/C system can be very chal-
lenging [24], especially for modeling the RL shown in Fig. 1.
For initial development and evaluation of the eco-cooling
strategy, we utilize the same simulation model, as previously
presented in [22], [23]. General schematics of the A/C simu-
lation model are illustrated in Fig. 2. This model simulates the
entire A/C system for a passenger car and is integrated with
the controller module that implements two levels of controls.
A high-level controller is inside the climate control panel
block, and it reflects the control settings (e.g., blower level
and temperature set point) from the real vehicle, which directly
affects the occupant’s thermal comfort. Low-level controllers
take the command from the control panel and regulate the
behaviors of the physical system via the electric compressor
control and the front end airflow control. The strategy for
the low-level control of the compressor is proprietary to the
vehicle manufacturer, which we do not have access to. The
boundary conditions are set according to different simulation
requirements (see [22] and [23] for more details about the A/C
simulation model).

Similar to other high-fidelity A/C system models [24],
the A/C simulation model involves detailed thermal and fluid
dynamics of the refrigerant and has a large number of lookup
tables containing calibration data, making it not amenable
for controller design. Therefore, a simplified model of the
system dynamics is necessary. In this work, the following
discrete-time phenomenological model is used for prediction

Fig. 2. Schematics of the A/C simulation model.

in the MPC design [23]:

Tevap(k + 1) = fTevap(k) = Tevap(k)

+ γ1
(
Tevap(k) − T targ

evap(k)
)

+ γ2(Tevap(k) − Tamb)ṁbl(k)

+ γ3(Tevap(k) − Tamb)�ṁbl(k) + γ4 (1)

ṁbl(k + 1) = fṁbl (k) = ṁbl(k) + �ṁbl(k) (2)

Tdischarge(k) = fTdischarge (k)

= γ5Tevap(k) + γ6Tcab(k) + γ7 (3)

where Tcab, Tevap, Tamb, ṁbl, and Tdischarge represent the cabin
average air temperature, the evaporator wall temperature,
the ambient temperature, the blower airflow rate, and the
discharge air temperature, respectively. All temperatures are
in ◦C, and the blower airflow rate has the unit of kg/s. The
model states are Tevap and ṁbl. The model inputs are the
incremental blower airflow rate, �ṁbl, and the evaporator
wall temperature target, T targ

evap. The model parameters,
γi (i = 1, 2, . . . , 7), are constants that are identified by
matching the measured system response. This prediction
model is nonlinear because of the multiplicative coupling
between model states and inputs in (1).

Compared with the first-order evaporator wall temperature
model proposed in [8] and [17], in which T targ

evap is an input,
the model (1)–(3) reflects the airflow effects through both
ṁbl and �ṁbl terms. The incremental blower airflow (�ṁbl)
is treated as an input since it leads to better accuracy of
the identified control-oriented prediction model. This model
structure is consistent with the observation that with fixed T targ

evap
and Tevap change when airflow changes.

To identify unknown parameters in (1)–(3), the A/C
simulation model is simulated with different random
sinusoidal input signals. The system responses are sampled
every Ts = 3 s. Standard least-squares algorithm
is applied to the simulated data, and the resulting
identified parameters are γ = [γ1, γ2, . . . , γ7] =
[−0.084,−0.487,−1.121,−1.730, 0.729, 0.690,−11.457].

Fig. 3 shows the model (1)–(3) validation results on a
different set of simulated data (not used for parameter iden-
tification). It demonstrates that the prediction model (1)–(3)
matches the outputs of the high-fidelity A/C simulation model
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Fig. 3. Model validation results of (a) �Tevap(k) = Tevap(k + 1) − Tevap(k)
and (b) Tdischarge(k) for (c) and (d) given sinusoidal excitations to the A/C
simulation model.

and confirms its acceptable accuracy in representing the key
dynamics of the A/C system.

B. MPC-Based Eco-Cooling Strategy

To quantify A/C cooling performance and facilitate the
controller design, a practical performance metric, DACP,
is defined as follows:

PDACP(k) = cp(Tcab(k) − Tdischarge(k))ṁbl(k) (4)

where cp is the specific heat capacity of air, and k is the
index of the discrete sampling instants. Note that the DACP
in (4) is defined for the case when A/C is running in the
recirculation mode, which is also the condition for which the
A/C simulation model has been simulated. If the fresh air
mode is considered, Tcab should be replaced by Tamb (ambient
temperature). The integral of DACP over time is referred to
as the DACE, and it is denoted by EDACE. The DACE will
be used to quantify the overall cooling delivered to the cabin
over a specified time window.

The eco-cooling strategy is the solution of an MPC defined
based on the following cost function and constraints:

min
�ṁbl

T targ
evap

Np∑
i=0

{
(PDACP(i |k) − β(i |k) · P targ

DACP(i |k))2}

s.t. Tevap(i + 1|k) = fTevap(i |k)

ṁbl(i + 1|k) = fṁbl(i |k)

T LB
evap ≤ Tevap(i |k) ≤ T UB

evap(i |k)

0.05 kg/s ≤ ṁbl(i |k) ≤ 0.15 kg/s

− 0.05 kg/s ≤ �ṁbl(i |k) ≤ 0.05 kg/s

2 ◦C ≤ T targ
evap(i |k) ≤ 10 ◦C

Tevap(0|k) = Tevap(k), ṁbl(0|k) = ṁbl(k). (5)

In (5), x(i |k) designates the predicted values of x at the
time instant (k + i) · Ts when the prediction is made at
the time instant k · Ts , while fTevap is determined based
on (1) [and later on (6)]. In the cost function, PDACP(i |k) =
cp(Tcab(i |k)− Tain(i |k))ṁbl(i |k) can be inferred from (4), and

Fig. 4. (a) Speed-dependent β. (b) SC03 driving cycle.

β(k) is a design parameter. P targ
DACP represents the target cooling

trajectory that is the same as in the benchmark case for the
nominal controller of the A/C simulation model. The main
idea of the proposed eco-cooling strategy is to leverage the
sensitivity of the A/C system efficiency to vehicle speed by
the design of the speed-dependent β. Fig. 4(a) illustrates the
dependence of β on the vehicle speed, Vveh. The increase in β
as a function of Vveh promotes shifting the A/C thermal load
to the more efficient region at higher vehicle speeds. The β
values at different vehicle speeds are tuned by trial-and-error to
provide the same EDACE as the benchmark controller based on
the simulation results for supplemental federal test procedure
(SC03) driving cycle.

1) Remark: β could be treated as an extra optimization vari-
able to tune eco-cooling strategy performance subject to
target DACE over a specified driving cycle.

In (5), T UB
evap represents the time-varying upper bound for Tevap,

the values of which are assumed to be specified over the
prediction horizon. The design of time-varying T UB

evap is to
emulate the initial cool-down operation for the automotive A/C
system, which refers to the performance of the benchmark
controller. T LB

evap is set to be a small positive constant to avoid
evaporator from freezing. Time-independent constraints for
other variables are imposed based on the system operating
requirements.

C. Simulation Results

To evaluate the performance of the MPC-based eco-cooling
strategy (5), the prediction horizon, Np , is set to be 10, i.e., we
are predicting ten steps ahead, which is 30 s considering the
sampling time Ts = 3 s. The NMPC problem (5) is solved
numerically using the MPCTools package [25]. This package
exploits CasADi [26] for automatic differentiation and IPOPT
algorithm for the numerical optimization.

The eco-cooling strategy is tested in a closed-loop with the
A/C simulation model. Fig. 5 illustrates the implementation
in Simulink. The MPC-based eco-cooling strategy updates
the control inputs every 3 s, while the outputs from the A/C
simulation model is sampled at 0.1 s. Thus, a data sampling
block, as shown in Fig. 5, is incorporated in the feedback loop
to match the MPC update rate with the feedback signal. Fig. 6
compares the simulation results of applying the eco-cooling
strategy and an OEM benchmark controller. As shown
in Fig. 6, the MPC-based eco-cooling strategy enforces the
imposed state and input constraints that are plotted by red
dotted lines, reasonably well. In Fig. 6(a), the violations of the
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Fig. 5. Schematics of integrating the MPC-based eco-cooling with A/C simulation model in Simulink.

TABLE I

A/C SYSTEM ENERGY CONSUMPTION COMPARISONS BETWEEN THE BENCHMARK CASE AND THE ECO-COOLING STRATEGY

Fig. 6. Comparison between the proposed eco-cooling strategy and the
benchmark controller in simulations using the A/C simulation model as the
virtual testbed. Constraints are shown by red dotted lines.

upper bound of the evaporator temperature toward the end of
the driving cycle are mainly due to the mismatch between the
control-oriented model and the simulation model. It is noted
that further improvements in model structure and controller
fine-tuning could reduce the model mismatch. The control
inputs are plotted in Fig. 6(b) and (d). Fig. 6(c) shows the
airflow rate that is considered as a state in the optimization
problem (5). As shown in Fig. 6(e), the eco-cooling strategy
manipulates PDACP as intended according to the vehicle speed
[see Fig. 6(f)] to improve the energy efficiency.

Fig. 7 provides the comparison between the eco-cooling
case and the benchmark case based on the time histories of
the A/C power trajectories and additional temperature mea-
surements. In addition, the energy consumption comparison
for both cases over the SC03 driving cycle is summarized
in Table I. DACE (EDACE), compressor energy consumption
(Ecomp), and EDF energy consumption (EEDF) are the time
integral of their power traces, PDACP, Pcomp, and PEDF,
respectively. Compared with the benchmark case, the total
A/C energy consumption (EAC = Ecomp + EEDF) is reduced
by 5.7% for the eco-cooling case while providing 1% more
cooling to the cabin in terms of EDACE. Fig. 7(c) shows that,
by introducing eco-cooling, the resulting cabin temperature is
very close to that of the benchmark case, implying a small
impact on passenger comfort. Finally, Fig. 7(d) shows the
comparison of the discharge air temperature, which indicates
that the deviation in the discharge air temperature is bounded
within a couple of degrees for the eco-cooling case.

III. MODIFIED ECO-COOLING STRATEGY FOR

VEHICLE IMPLEMENTATION

Considering the mismatch between the A/C simulation
model and the physical A/C system of the test vehicle,
the originally developed eco-cooling strategy validated in
simulations is modified to enable vehicle implementation.
In particular, the control inputs are changed to match the
configuration of the vehicle control system. In the rest of this
section, the control-oriented model of the vehicle A/C system
and the modified eco-cooling strategy are presented.
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Fig. 7. Comparison between the proposed eco-cooling strategy and the
benchmark controller in simulations on the A/C simulation model (A/C power
trajectories and additional temperatures).

A. Control-Oriented Modeling of the Vehicle A/C System

Modifications to the prediction model (1)–(3) are made to
account for the differences between the physical setup of the
test vehicle and the A/C simulation model. Especially, in our
test vehicle, the vapor-compression process (i.e., the operations
of the compressor and the evaporator) is not directly controlled
to avoid damaging A/C system components. Moreover, the tar-
get evaporator wall temperature (T targ

evap) used as a control input
on the A/C simulation model is not directly manipulated on
the test vehicle. The implemented controller on the test vehicle
manipulates the cabin cooling demand by adjusting the blower
flow rate (ṁbl) and cabin temperature set point (Tsp). The
control-oriented model for in-vehicle implementation of the
MPC-based eco-cooling is defined as follows:

Tevap(k + 1) = fTevap(k) = ξ1Tevap(k)

+ ξ2(Tain(k) − Tamb)ṁbl(k) + ξ3 (6)

Tain(k) = fTain (k)

= ξ4Tevap(k) + ξ5Tsp(k) (7)

where Tain represents the vent air temperature replacing
Tdischarge in the original model (1)–(3) as Tdischarge is not
measured in the test vehicle. The model state is Tevap. The
model inputs are the blower airflow rate, ṁbl, and the cabin
temperature set point (Tsp). The model parameters, ξ (i =
1, 2, . . . , 5), are constants identified from the vehicle data.
More details on the vehicle instrumentation are presented in
Section IV-A. This model (6) is also nonlinear because of
the multiplicative coupling between model state and input
in (6). The model validation results are shown in Fig. 8 for
the case when the sinusoidal input excitation is applied, while
the vehicle is traveling on a local route in Ann Arbor, MI,
USA. The sampling period is 5 s, and ξ (i = 1, 2, . . . , 5) =
[1.0719,−1.2265,−2.8523, 0.8964, 0.1252] were identified
using a different data set than used for validation. As shown
in Fig. 8, the model can capture the evaporator wall tempera-
ture dynamics and match the vent air temperature reasonably

Fig. 8. Model validation results of �Tevap(k) = Tevap(k +1)− Tevap(k) and
Tain(k) for the sinusoidal excitations applied to the A/C system on the test
vehicle.

well. This experimentally validated control-oriented model is
used by the modified eco-cooling strategy.

B. Modified Eco-Cooling Strategy for Vehicle
Implementation

The modified eco-cooling strategy is based on the
control-oriented model [see (6) and (7)] and the following
constrained optimization problem:

min
ṁbl
Tsp

Np∑
i=0

{
(PDACP(i |k) − β(i |k) · P targ

DACP(i |k))2}

s.t. Tevap(i + 1|k) = fTevap(i |k)

0.5 ◦C ≤ Tevap(i |k) ≤ 12◦C

0.05 kg/s ≤ ṁbl(i |k) ≤ 0.13 kg/s

16 ◦C ≤ Tsp(i |k) ≤ 23 ◦C

Tevap(0|k) = Tevap(k). (8)

This modified eco-cooling strategy (8) is, for the most
part, similar to (5). In the cost function, PDACP(i |k) =
cp(Tamb(i |k) − Tain(i |k))ṁbl(i |k), which reflects the vehicle
test condition in fresh air mode. In previous simulations on the
A/C simulation model, the recirculation mode was activated
under high cooling load according to the benchmark control
logic. P targ

DACP represents the target cooling trajectory that is the
same as for the baseline controller (i.e., with the A/C system
running when constant control inputs are applied). Fig. 9(a)
shows the dependence of β with respect to the “Plymouth
road driving cycle” shown in Fig. 9(b). This driving cycle
was selected based on a real-world city vehicle speed profile
for a six-intersection corridor at Plymouth Rd. in Ann Arbor
[16], representing a congested city driving scenario. The same
driving cycle is used for vehicle testing.

Fig. 10 shows the trajectories of the control inputs for the
eco-cooling strategy when problem (8) is solved in closed-loop
with the control-oriented model and compares them to constant
cooling (benchmark) scenario. Note that, in Fig. 10, the units
of the two control inputs, ṁbl and Tsp, have been converted
to percentage PWM control (%) and degrees Fahrenheit (◦F),
respectively, that correspond to the units of the actual control
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Fig. 9. (a) Speed-dependent β. (b) Driving cycle over Plymouth road in Ann
Arbor.

Fig. 10. Control inputs for the constant cooling and eco-cooling cases.

inputs in the vehicle A/C system. Note that Tsp is the tempera-
ture set point as input to the vehicle climate system, and it does
not necessarily indicate any actual temperature measurements,
considering that the airflow rate is also changing. These two
sets of control inputs shown in Fig. 10 are tested on the
vehicle to demonstrate the benefits of efficient A/C energy
management. Direct implementation of MPC in the closed
loop on the test vehicle requires extra hardware and software
works, which are not trivial. Instead, in order to demonstrate
the eco-cooling idea, we applied these off-line optimized
controls shown in Fig. 10. Note that both cases provide
the same DACE according to the simulation results on the
control-oriented model.

Note that the optimization problem in (8) can be augmented
with additional passenger comfort constraints [9]. For the
vehicle demonstration in this article, such constraints are
not considered for the sake of simplicity; we only focus on
demonstrating the energy saving of the eco-cooling strategy.

IV. VEHICLE TESTS ON OPEN ROAD

The primary objective of the road tests is to demonstrate
the energy saving of the proposed eco-cooling strategy with
respect to the more conventional constant cooling strategy.
In order to characterize the impact of the energy-efficient cabin
thermal management, the variability over different test trips
needs to be reduced, especially for the powertrain traction loss
and cabin boundary thermal conditions. To this end, the rest
of this section presents the instrumentation of the test vehicle
and discusses the testing procedures, which facilitated the
repeatability of the tests.

A. Test Vehicle Instrumentation

Our test vehicle is a 2017 Toyota Prius Four Turing
HEV. It has been instrumented in order to enable the

Fig. 11. Schematics of the modified Toyota Prius HVAC control system with
added thermocouples, CAN open thermocouple module, auxiliary battery, and
In-Car PC.

implementation of the HVAC controls and demonstrate the
eco-cooling strategy performance. The schematics of the
modified HVAC system are shown in Fig. 11.

As shown in Fig. 11, the original control loops are modified
to access the available signals on the CAN and LIN buses
through the In-Car PC via a NeoVI Fire module. The In-Car
PC communicates with the testing laptop via Ethernet, where
the CAN/LIN messages are read and logged through a Lab-
VIEW interface. The LabVIEW interface allows for real-time
data collection and intercepting the A/C control commands
from the user. The commands, which can be sent to the vehicle
in real time, include the blower flow rate, cabin temperature
set point, blend door position set point, and AC ON/OFF

command. In order to evaluate the thermal behavior inside
the cabin, additional thermocouples have been installed within
the cabin, and their signals have been added to the CAN bus.
These thermocouples are shown on the top right of Fig. 11,
including the temperature measured above the dashboard and
at the vent outlet. During the vehicle test, the blend door
position was fixed to the front vent where a thermocouple is
mounted to measure the vent air temperature. Moreover, com-
prehensive airflow measurement tests have been performed to
characterize the A/C air blower (see the Appendix for the map
specifically used for the controller design in this work).

To facilitate the design and vehicle testing of the eco-cooling
strategy, a Simulink interface was developed to parse the
messages received from the CAN interface, which are used
as feedback signals for the HVAC controller in real time.
Moreover, the developed Simulink model sends the computed
HVAC control signals to the vehicle by converting the control
signals to UDP data. Overall, the instrumented vehicle allows
us to log the vehicle data and update control commands by a
Simulink-based controller interface.

B. Test Procedure and Vehicle Speed Tracking Performance

The road tests were performed on two different roads near
Ann Arbor. The locations of the two test sites are shown
in Figs. 12 and 13. Both testing routes are straight, with
no stops, and very little traffic so that we can emulate the
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Fig. 12. Route 1 along W. Waters road with the Plymouth corridor [16]
shown in the ellipse.

Fig. 13. Route 2 along S. Zeeb road with the Plymouth corridor [16] shown
in the ellipse.

vehicle speed profile over the Plymouth road driving cycle
shown in Fig. 9(b). In terms of the road conditions, Route
1 is mostly flat but unpaved, and Route 2 is paved but with
larger deviations in road grade. The speed trajectory shown
in Fig. 9(b) is tracked by a human driver.

For demonstrating the eco-cooling impact, 18 data sets were
collected. A single data set consists of three consecutive trips
on the same day following the Plymouth road driving cycle,
with the first trip representing the calibration test followed
by the constant cooling test and, finally, the eco-cooling
test. All three tests started at the same location. Between
two tests, the vehicle cabin was fully ventilated using the
ambient air when driving back to the starting location. At the
beginning of each test trip, the vehicle cabin temperature
was controlled to be at 30◦C. Note that the calibration test
was utilized to prepare the test vehicle, and the data from
the calibration test are not used for the energy consumption
comparison.

The uncertainties associated with speed tracking by a human
driver may affect vehicle energy consumption. In order to
improve the speed tracking accuracy, a MATLAB/Simulink
interface was created to guide the human driver. As shown
in the bottom right of Fig. 14, both the current vehicle speed
(in red dots) and the planned future speed (in blue line) are

Fig. 14. Vehicle test trip is ongoing along Route 1.

Fig. 15. Vehicle speed trajectories for the tests performed on May 31, 2019.

displayed on the testing laptop to help the driver follow the
speed profile in real time.

Fig. 15 provides an example of the speed trajectories for
the tests performed on May 31, 2019. As can be seen from
the comparison with the planned Plymouth road driving cycle,
the speed tracking error for all tests can be maintained within
2 mi for most of the time. In addition, the average speed
tracking error (eavg) and the standard deviation of the speed
tracking error (σerr) for each test are listed in Table II. Table II
shows that the average speed tracking error of each test is
negligible, while the standard deviation of the tracking errors
is small and similar for constant cooling and eco-cooling cases.
The tests with similar speed tracking results to this example
are used to evaluate the energy consumption and cooling
performance. In Fig. 16, the standard box plots illustrate the
speed tracking performance in terms of eavg (left) and σerr
(right) for all constant cooling and eco-cooling tests in 18 data
sets. On each box, the central mark indicates the median, and
the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers
are plotted individually using the “+” symbol. As shown
in Fig. 16, the speed tracking error is well-controlled, and
the overall tracking performance is similar for both cases.

V. EXPERIMENTAL RESULTS

All the tests demonstrating the eco-cooling impact were
performed over the time period between May 23 and
September 5, 2019. The ambient air temperature (Tamb) during
the testing period is varied within a large range between 22 ◦C
to 34 ◦C depending on when the data were collected. In total,
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TABLE II

AVERAGE SPEED TRACKING ERROR (eavg) AND THE STANDARD DEVIA-
TION OF THE SPEED TRACKING ERROR (σerr ) FOR THE TESTS PER-

FORMED ON MAY 31, 2019, AND SHOWN IN FIG. 15

Fig. 16. Statistical evaluations of the speed tracking performance for all the
eco-cooling tests.

18 data sets were collected (13 data sets were collected from
the tests on Route 1, and five data sets were collected from
the tests on Route 2). With well-controlled speed tracking
performance, the average results of these 18 tests can charac-
terize the benefits of the proposed eco-cooling strategy. Note
that the vehicle-level energy consumption for each test trip is
computed using the following equation:

Eveh =
∫ tn

0

ṁair(t)

AFR(t)
· LHV dt + Ebatt · �SOC

ηsys
(9)

AFR(t) = λ(t) · AFRstoich (10)

�SOC = SOC(0) − SOC(tn) (11)

where tn represents the duration of each test run, ṁair rep-
resents the airflow rate into the engine measured by the
MAF sensor, AFR, λ, and AFRstoich represent the AFR,
the equivalent AFR (measured), and the stoichiometric AFR,
respectively, LHV represents the lower heating value of the
gasoline, Ebatt represents the battery capacity, ηsys represents
the energy conversion efficiency from fuel energy to battery
energy, and SOC represents the estimated battery state of
charge from the measurement. The vehicle-level energy con-
sumption (Eveh) computation is based on the adjusted fuel
energy that accounts for the SOC deviation compared with its
initial value [see (11)].

Fig. 17 reports the energy consumption and cooling per-
formance in all tests resulted from constant cooling and
eco-cooling strategies. The energy consumption is character-
ized by two metrics, EAC and Eveh, that represent the A/C
system energy consumption and vehicle-level energy con-
sumption, respectively. The A/C system energy consumption is
the integral of compressor power and blower power over time,
which are directly measured in the test vehicle. Vehicle-level
energy consumption is computed based on (9). In terms of the
cooling performance, the DACE metric is used to quantify the
overall cooling energy provided to the cabin over each trip.

Fig. 17. Energy consumptions and cooling performance of each test with
constant cooling and eco-cooling strategies.

In our tests, DACE is calculated as follows:

EDACE =
∫ tn

0
cp · (

T adj
amb(t) − Tain(t)

) · ṁbl(t) dt (12)

where tn is the duration of the trip, cp is the specific
heat capacity of air at constant pressure, and T adj

amb is the
adjusted ambient temperature measurement, which represents
the temperature of the air entering the A/C system (i.e., before
exchanging heat with the evaporator). T adj

amb is often higher
than the ambient air temperature (Tamb) considering extra heat
picked up along the air path, where the heat energy mostly
comes from the engine compartment. Tain is the vent air
temperature measured by the thermocouple located at the front
vent, as shown in Fig. 11. ṁbl is the blower airflow rate deter-
mined by the map shown in Fig. 20. In Fig. 17, all 18 tests are
sorted by the ambient air temperature and are separated into
two groups, corresponding to mild weather and corresponding
to hot weather. As can be observed from Fig. 17, as the
ambient air temperature increases, the A/C system energy
consumption increases dramatically. More importantly, in most
cases, the eco-cooling strategy saves energy from the A/C
system, which can translate into vehicle-level energy saving.
However, uncertainties associated with the road conditions,
powertrain control, and weather conditions cannot be fully
eliminated, leading to several outliers in the results.

A more clear comparison can be seen in Fig. 18, where aver-
age energy consumption and cooling performance are com-
pared. Overall, the proposed eco-cooling strategy saves 8% of
A/C system energy, which translates into 5.7% energy saving
at the vehicle level. Although the average cooling performance
in terms of EDACE is slightly degraded by 2.7%, the analysis
of energy savings at the A/C system level and vehicle level
shows that these energy savings are still considerable and
are not primarily due to DACE decrease. This energy-saving
is achieved by leveraging the A/C system efficiency that
depends on the vehicle speed. Comparing the results between
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Fig. 18. Comparison of average energy consumption and cabin cooling
results from constant cooling and eco-cooling strategies.

Fig. 19. Time histories of the system responses for the tests performed on
May 31, 2019.

mild weather and hot weather, we conclude that the impact
of eco-cooling in hot weather is more pronounced than the
one in mild weather. This conclusion is consistent with the
observation that, in mild weather, although eco-cooling saves
much more A/C system energy than in hot weather, the cooling
performance is also considerably compromised.

Fig. 19 provides an example of the responses during the
tests performed on May 31 when it was sunny and the
ambient air temperature was 27 ◦C. As shown in Fig. 19(d),
the eco-cooling is achieved by coordinating the A/C com-
pressor power with vehicle speed, while, in the constant
cooling case, the compressor power is relatively constant.
Note that the trajectories of the average cabin temperature
shown in Fig. 19(a) are similar for both cases with maximum
deviation at around 1 ◦C. Fig. 19(b) and (c) illustrates the
time history comparisons of the evaporator wall temperature
and the vent air temperature, respectively. It is also worth
mentioning that the difference in the auxiliary power trajecto-
ries between the eco-cooling and constant cooling cases may
lead to different powertrain and power-split responses, for
which we are unable to directly control in our test vehicle.
The energy-saving numbers, however, are consistent with
simulation results.

Fig. 20. HVAC blower airflow map.

1) Remark: One approach for deploying our strategy in
production vehicles could be offering drivers/passengers
with an energy-saving mode button/option, in which they
obtain energy savings if they do not intervene with the
A/C system settings and let the eco-cooling strategy
control the A/C system autonomously.

VI. CONCLUSION

In this article, an eco-cooling strategy was proposed for
the efficient operation of A/C systems in electrified vehicles.
The eco-cooling strategy leverages the A/C system efficiency
dependence on the vehicle speed and incorporates the speed
preview information to capitalize on this sensitivity. The
eco-cooling strategy was realized through an MPC approach
and validated in closed-loop simulations with a high-fidelity
simulation model of an electrified A/C system. After demon-
strating the effectiveness of the proposed eco-cooling strat-
egy on the simulation model, modifications were made so
that it becomes suitable for implementation on a test HEV,
i.e., 2017 Toyota Prius. Based on the repeated vehicle tests
over the same real-word city driving cycle, the eco-cooling
strategy was shown to be able to save, on average, 8% of the
A/C system energy, which translates to 5.7% energy saving
at the vehicle level, compared with the constant A/C control
case (benchmark case). Key contributions can be summarized
as: 1) the development of MPC-based eco-cooling strategy
that allows for leveraging A/C system efficiency sensitivity to
the vehicle speed and 2) the experimental validation of the
eco-cooling strategy on the test vehicle.

APPENDIX

Fig. 20 shows the HVAC blower flow rate mapping between
the percentage PWM control signal and the actual flow rate
into the cabin in kg/s.

Note that this map is validated for the case with the blend
door position at the front vent position and with no cabin
air recirculation, which is the case for all the test results
presented in this article. While the blend door position changes
or the recirculation is ON, due to the back-pressure variations,
the same percentage PWM control signal of the HVAC blower
may result in different airflow rates into the cabin. In addi-
tion, since the calibration experiments were performed in a
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well-controlled lab environment, the uncertainties associated
with the ambient conditions during the open road tests, e.g.,
ambient temperature, pressure, and humidity, could also affect
the actual airflow rate into the cabin.
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