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Abstract
Connected and automated vehicles (CAVs) are expected to provide enhanced safety, mobility, and energy efficiency. While
abundant evidence has been accumulated showing substantial energy saving potentials of CAVs through eco-driving, traffic
condition prediction has remained to be the main challenge in capitalizing the gains. The coupled power and thermal subsys-
tems of CAVs necessitate the use of different speed preview windows for effective and integrated power and thermal man-
agement. Real-time vehicle-to-infrastructure (V2I) communications can provide an accurate speed prediction over a short
prediction horizon (e.g., 30 s to 60 s), but not for a long range (e.g., over 180 s). Therefore, advanced approaches are
required to develop detailed speed prediction for robust optimization-based energy management of CAVs. This paper pre-
sents an integrated speed prediction framework based on historical traffic data classification and real-time V2I communica-
tions for efficient energy management of electrified CAVs. The proposed framework provides multi-range speed predictions
with different fidelity over short and long horizons. The proposed multi-range speed prediction is integrated with an eco-
nomic model predictive control (MPC) strategy for the battery thermal management (BTM) of connected and automated
electric vehicles (EVs). The simulation results over real-world urban driving cycles confirm the enhanced prediction perfor-
mance of the proposed data classification strategy over a long prediction horizon. Despite the uncertainty in long-range
CAVs’ speed predictions, the vehicle-level simulation results show that 14% and 19% energy savings can be accumulated
sequentially through eco-driving and BTM optimization (eco-cooling), respectively, when compared with normal driving (i.e.,
human driver) and conventional BTM strategy.

In addition to enhancing safety and mobility, connected
and automated vehicles (CAVs) can exploit vehicle speed
prediction and planning to improve energy efficiency at
the individual vehicle level, as well as the traffic network
level. While abundant evidence has been accumulated
showing substantial energy saving potential of the CAVs
by up to 20%, uncertainties associated with vehicle speed
forecast in real-world traffic consisting of human-driven
and automated vehicles can degrade these benefits (1–7).
The reason for such degradation in the energy consump-
tion benefits is that energy management strategies are
often based on economic optimization solutions that aim
at operating the vehicle powertrain system at its maxi-
mum efficiency while enforcing power and thermal con-
straints. In the presence of traffic preview uncertainties,
the risk of violating those constraints increases, forcing
the energy management system to take more aggressive

and less efficient actions to ensure the viability of the
vehicle powertrain system, for example, prevent battery
overheating in electrified vehicles.

For electrified vehicles, including hybrid electric vehi-
cles (HEVs), plug-in HEVs (PHEVs), and fully electric
vehicles (EVs), while traction power demand is the major
power consumption source, thermal management of the
electric battery, cabin air, engine, and exhaust aftertreat-
ment system can have a significant impact on the electric
battery energy consumption, as well as the overall energy
efficiency of the vehicle (8–12). As an example, for EVs
with relatively large battery packs, the electric battery is
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the only source of power to satisfy the driving demand,
that is, traction power, and auxiliary loads, including
those for powering the electric compressor of the air con-
ditioning (A/C) system. In typical EVs, the battery ther-
mal management (BTM) system rejects the generated
heat from the battery to the refrigerant of the A/C cool-
ing loop to maintain the battery temperature within the
safe region. Eventually, the A/C compressor consumes
the battery power to reject heat from the A/C refrigerant.
Therefore, the operation of the BTM system introduces
extra load on the battery. As it has been reported in the
literature, the BTM and A/C systems can consume a
substantial amount of energy in hot weather, and reduce
the EV driving range by 50% (13–16). Therefore, optimi-
zation of the thermal management system operation is
essential for improving the overall energy efficiency of
electrified vehicles. While reducing the traction power
losses through CAV-based technologies (e.g., eco-driv-
ing, platooning, cooperative adaptive cruise control)
have been investigated heavily in the last decade (see
Vahidi et al. and Guanetti et al [1, 2]) and the references
therein), leveraging these connectivity technologies for
efficient thermal management has been the subject of
only a few recent studies (8, 13, 16–18).

The reason for the opportunities of thermal manage-
ment optimization not being fully capitalized on is the
challenges associated with thermal systems. Thermal
systems, as compared with electrical current/voltage
and mechanical dynamics, have relatively slow dynamic
responses. Thus, vehicle speed forecasts with a rela-
tively long time horizon are required for the optimiza-
tion of the thermal system responses to achieve the best
energy efficiency. This concept has been visualized in

Figure 1, where the performance of a hypothetical
optimization-based EV’s BTM system is shown for a
given traction power profile, along with the associated
BTM power consumption. As can be seen, while the
traction power demand is flat during the first part of
the trip (e.g., driving in a city with low speed), it
includes a high-demand period (e.g., driving in a high-
way) in the middle of the trip. For an economic
optimization-based BTM controller designed with a
short prediction horizon (Figure 1a), initially the con-
troller is not aware of the upcoming highway driving
period, pushing the battery temperature to its upper
limit (TUL

bat ) to minimize the battery energy consump-
tion. As a result, when the vehicle enters the highway,
since the temperature is already close to its limit and
the traction power demand rises suddenly, the tempera-
ture limit is violated. With a short prediction, the BTM
system does not have enough lead time to enforce the
constraint as the battery temperature dynamic responds
slowly. Once the prediction horizon is extended (Figure
1b), the BTM controller detects the highway driving
period early on, thus, pre-cooling the battery before
entering the highway. The longer lead time allows the
BTM controller to enforce the temperature constraint,
see Amini et al. for further details (8).

To be useful for efficient thermal management, the
long-term vehicle speed forecasts need to be sufficiently
accurate, which is difficult to achieve with the existing
connectivity-based vehicle speed prediction approaches.
This is because vehicle-to-infrastructure (V2I) communi-
cations, which are often used for speed forecast/planning
in CAVs through eco-driving, can only provide accurate
short-range predictions.

Figure 1. The importance of prediction horizon length on battery thermal management (BTM) system performance: (a) short
prediction horizon and (b) long prediction horizon.
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Eco-driving at signalized intersections typically involves
eco-arrival and eco-departure (EAD), where trajectories of
one or more vehicles are optimized given the signal timing
by controlling, or through the advisory of, vehicle speeds,
with the purpose of reducing energy consumption. EAD
studies can be classified into several categories based on the
number of vehicles considered in the model, the number of
intersections, whether surrounding traffic is considered, and
the solution method. Most of the previous studies have
addressed one vehicle approaching/departing one intersec-
tion without the consideration of surrounding vehicles (19,
20). Some other studies have considered multiple intersec-
tions, but they treated each intersection independently when
planning vehicle speed trajectories (21, 22).

The surrounding traffic has a considerable impact on
the ego-vehicle trajectory. The development of EAD
algorithms which account for traffic queuing dynamics
at the intersections has been addressed in other studies
(23–25). A parsimonious shooting heuristic (SH) algo-
rithm has been proposed in other studies to construct the
trajectories of all the vehicles in the traffic network with
considerations of the vehicle kinematic limits, traffic arri-
val patterns, car-following safety, and signal operations
(26, 27). Almost all the EAD models mentioned above,
as discussed earlier, generate short-term vehicle trajec-
tories (e.g., over a time interval of 30 s to 60 s in dura-
tion). Furthermore, only one or two close-spaced
intersections are considered in these studies over the
planning horizon. On the other hand, while some studies
have investigated long-term vehicle speed profile predic-
tion, they have focused on predicting the average speed
of the vehicle at the road segment level, or on estimating
vehicle speed at a fixed location (28–30). Overall, high-
resolution (i.e., capturing the main traffic events) and long-
term vehicle speed forecasting has not been sufficiently
addressed. The lack of long-term speed preview prohibits
full exploitation of the CAVs’ technology benefits in enhan-
cing the thermal efficiency of electrified vehicles.

With the aforementioned challenges in the optimization-
based thermal management of EVs and long-term vehicle
speed forecast, this paper aims at answering the following
questions:

� How to extend the traffic and vehicle speed fore-
casts beyond the current V2I-based technologies?

� How to integrate the long-term speed forecast with
the short-range V2I-based eco-trajectory planning
algorithms?

� How to leverage the long-term traffic preview for
efficient thermal management of connected and
automated electrified vehicles?

� How sensitive is the optimization-based thermal
management strategy to the uncertainties in the
long-term look-ahead preview?

To address these questions, a novel approach is pro-
posed for long-term vehicle speed prediction using histor-
ical big traffic data analysis. At the same time, an eco-
trajectory planning algorithm from the authors’ previous
work is adopted for short-term speed planning/predic-
tion, and it is integrated with the data-driven long-term
preview (25). To demonstrate the benefits of such multi-
range speed prediction in enhancing the energy efficiency
of CAVs, the BTM of EVs is focused on. To this end, an
economic model predictive controller (MPC) is designed
with incorporated speed preview. The performance of the
designed BTM controller is studied with and without
traffic preview uncertainty, and the advantages of the
proposed long-term speed predictions with enhanced
accuracy will be discussed in detail. Note that the appli-
cation of the proposed long-term traffic forecast is not
limited to the BTM problem, and can be used in numer-
ous vehicular energy management solutions. Figure 2
summarizes the authors’ efforts on integrated power and
thermal management of CAVs, and distinguishes the new
contributions of this paper. Other studies give a broader
overview (1, 2, 31).

Multi-Range Vehicle Speed Prediction

In this section, the short-range eco-trajectory planning
process which accounts for queuing dynamics is reviewed
first. Then, the traffic data classification approach for
long-range prediction of the CAVs speed profiles will be
discussed.

Short-Range: Eco-Trajectory Planning for CAVs

The authors’ previous work proposed an eco-trajectory
planning approach which accounts for queuing dynamics
along congested corridors (25). In this model, the eco-
vehicle receives traffic signal and queue length informa-
tion via V2I communications and generates a speed pro-
file with the objective to minimize energy consumption.
The queue length is predicted based on the trajectories of
connected vehicles inferred from basic safety messages
(BSMs) and from loop-detectors installed at the infra-
structure side.

The queuing process is modeled based on the shock-
wave profile model (SPM) to provide a green window for
eco-driving trajectory planning (35). In this paper, the
green window is defined as the time interval during which
an ego-vehicle can pass through a given intersection. Since
the original SPM can only estimate the queue length after
the signal cycle and after the vehicles have been already
discharged, a modified algorithm was proposed in the
authors’ previous work which is able to predict the queu-
ing dynamics and estimate the green window before the
eco-driving vehicle arrival at an intersection (35).
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Following the approach in authors’ previous work
(25), a six-intersection corridor on Plymouth Road in
Ann Arbor, Michigan, U.S., has been modeled, which
will be used in the simulations in the remainder of this
paper. The stretch of the road represented in the simula-
tions is about 2.2miles long and has two lanes in each
direction. This stretch is one of the busiest local commut-
ing routes, connecting US23 to the North Campus of the
University of Michigan and downtown Ann Arbor. A
microscopic traffic simulation software VISSIM was
used to build the road network and simulate background
traffic (36). To calibrate the simulation model and repre-
sent a congested traffic condition, real-world data were
collected during afternoon (PM) peak hour (4:00–
5:00 p.m.), including traffic volume, turning ratio, and
traffic signal timing at each intersection. The volume to
capacity (v/c) ratios vary from different intersections and
approaches with an average of around 0.85. Moreover,
the traffic signals are under SCOOT (Split, Cycle, and
Offset Optimization Technique) adaptive signal system.
Figure 3 shows the arterial Plymouth corridor in Ann
Arbor, along with the six considered intersections (red cir-
cles). Vehicles in VISSIM are programmed to broadcast
BSMs. Additionally, all the traffic signals are programmed
to broadcast signal status in real-time. All vehicle and sig-
nal data are sent to the queuing profile algorithm for pre-
diction. Finally, the predicted green window is sent to the
trajectory planning algorithm.

The predicted green window specifies a time interval
during which the eco-driving vehicle should arrive at
the intersection. The vehicle speed trajectory is then
generated. The planning horizon of the vehicle speed
trajectory starts from the time instant the eco-driving

vehicle enters the communication range until it departs
from the intersection. To ensure a smooth trajectory
and reduce the energy consumption, a trigonometric
speed profile from Bath et al. (21) is used which has the
following form,

vveh(t)=

vp � vr cos (mt), t 2 ½0, tp)

vp � vr
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n
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where vp = dstop=tarr, vr = vp � v0, vveh(t) is the vehicle
speed at time t, v0 is the initial vehicle speed, dstop is the

Figure 2. Research background on integrated power and thermal management of connected and automated vehicles (CAVs) (9–12, 16,
25, 32–34).
Note: HVAC = heating, ventilation, and air conditioning; V2I = vehicle-to-infrastructure; V2V = vehicle-to-vehicle.

Figure 3. Plymouth corridor in Ann Arbor, Michigan, for traffic
modeling and simulation.
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distance to stop bar (i.e., to the end of the vehicle queue),
tarr is the time of arrival at the intersection given by
tarr = tg + h, tg is the beginning of the green window esti-
mated by the queue length prediction algorithm, and h is
the saturation headway between two vehicles in seconds.
At the time instant tp, the speed of the eco-driving vehicle
reaches the average speed vp. After tq, the vehicle speed
does not change and the vehicle will cruise to the stop
bar. The variables m and n are model parameters calcu-
lated based on maximum acceleration, maximum decel-
eration, and jerk constraints. These parameters
determine the shape of the trigonometric profile and are
set to reach the cruise segment as soon as possible, sub-
ject to the above constraints, as this reduces energy con-
sumption. Note that ½0, tarr) is the planning window. The
trajectory planning ends when the vehicle passes the
intersection.

The short-range eco-trajectory planning is executed
once the CAV enters the communication range (i.e.,
300 m) of an intersection and receives the traffic signal
and queuing information. The planning algorithm is re-
triggered if the traffic condition changes, for example, if
the signal timing is changed or the green window is chan-
ged. Note that for normal driving (i.e., human drivers),
the internal driving model in VISSIM is used, see Bath
et al. and Yang et al. for more details (21, 25).

Based on the relationship between the predicted green
window, current signal status, and the remaining time,
the eco-driving vehicle may choose one of the following
four types of speed profiles: ‘‘slow down,’’ ‘‘speed up,’’
‘‘cruise,’’ or ‘‘stop.’’ All speed profiles except for ‘‘cruise’’
are informed by the trigonometric profiles with different
parameters, while the ‘‘cruise’’ speed profile maintains a
constant speed to pass the intersection. In this paper, the
minimum cruise speed is set to be 70% of the speed limit.
Following the analysis in Liu et al. (37), Figure 4 shows
the distribution of the acceleration data for 50 CAVs
simulated with and without the eco-trajectory strategy at
different speeds. All these 50 CAVs pass through the
entire corridor, that is, none of them exit the corridor
before the last intersection. It can be seen that the eco-
trajectory planning, by making the speed profiles of the
CAVs smoother, reduces the aggressiveness in driving
and limits the absolute maximum of the acceleration/
deceleration to 2 m=sec2. See Amini et al. and Yang et al.
for a detailed analysis of the proposed eco-driving strat-
egy impact on the energy consumption of HEVs (9, 12,
25).

Long Range: Traffic Data Classification

In some previous studies, the extensive coverage of the
cellular network, GPS-based position and velocity mea-
surements, and the communication infrastructure of

cellphones have been exploited to estimate the traffic
flow speed (vflow) for energy management of electrified
vehicles (38–40). While the study in Herrera et al. has
shown that traffic flow data can be extracted from a
GPS-based traffic monitoring system and be used for
long-term vehicle speed predictions for energy manage-
ment of electrified vehicles, the main focus of these stud-
ies is for highway driving (39). Urban driving scenario
with congestion and multiple intersections is not consid-
ered. The main challenge in the latter case is that the
average GPS-based speed data cannot represent the traf-
fic flow dynamics.

To demonstrate the aforementioned challenge, the
same six-intersection corridor shown in Figure 3, and
modeled in VISSIM (36) is recalled. The model is run for
4 hours, and the trajectories of mixed traffic (1,531 vehi-
cles in total: 1,481 driven by human, 50 eco-driving) are
collected. It should be noted that the total number of
vehicles in the background traffic is more than 1,531, as
some vehicles enter/exit the considered corridor at differ-
ent intersections. In this section, only the data from
those vehicles that pass through all the six intersections
(i.e., 1,531 vehicles) is considered. In this study, the pene-
tration rate of eco-vehicles is less than 4%, thereby the
overall pattern of the traffic is dominated by the vehicles
with human drivers. Additionally, it is assumed that all
the simulated vehicles are connected and they can com-
municate their speed and position data. To reduce the
uncertainties brought by the adaptive traffic signals, the
SCOOT system is replaced by a coordinated fixed-time
signal timing policy with a cycle length of 100 s in all
intersections.

Figure 5a shows the overall average and standard
deviation of the aggregated speed profiles of all the simu-
lated vehicles along the Plymouth corridor. Since the

Figure 4. Distributions of acceleration/deceleration for 50
connected and automated vehicles (CAVs), with and without eco-
trajectory planning incorporated at different vehicle speeds.
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simulation model is calibrated against real-world data, it
is considered as the ground truth in this study. It can be
seen that, despite having six intersections and multiple
stop-and-go behaviors in the majority of the vehicles
(i.e., it is very unlikely that one vehicle passes the entire
corridor without stopping at one of the intersections),
the average of all the vehicles trajectories does not pro-
vide insightful information about the traffic flow and the
location and time of the stops at the signalized intersec-
tions. Moreover, the standard deviation of data shown
in Figure 5a is large, showing a large variation in the
behavior of the vehicles traveling through Plymouth Rd
corridor. This aggregated average speed, if used for
long-range vehicle speed predictions, will result in large
error for MPC-based energy management strategies.
Operating the system at its limit with an uncertain speed

preview will increase the chances of constraint violations.
While violation of hard physical constraint could be
safety-critical and unacceptable, violation of soft con-
straints is usually associated with efficiency and other
performance degradation.

The large variance in the aggregated data suggests
that a data classification/fusion is needed to get clearer
patterns in the speed profiles to improve the long-range
demand preview for predictive energy management (41–
45). The traffic signals on arterial corridors dictate the
traffic flow with the stop-and-go feature. If the traffic
signal information is known, it is possible to classify the
trajectories based on the signal timing plans. To this end,
a rule-based data classification algorithm is applied to
the collected vehicle trajectories. All vehicles are categor-
ized into 10 bins based on their arrival time at the first

Figure 5. (a) The overall average and standard deviation of the 1,531 simulated vehicles over the Plymouth Rd, and (b-#1–10) average
and standard deviation of the ‘‘classified’’ speed profiles in 10 bins.
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intersection. One signal cycle of 100 s, which begins with
the signal turning red, is divided equally into 10 intervals
and each interval consists of 10 s corresponding to one
bin. For example, if a vehicle arrives at the intersection
45 s after the signal turns to red, the vehicle is classified
into bin 5 (i.e., 40–50 s). Note that, intuitively, two bins
can be considered based on the signal’s red and green
intervals. The analysis showed that, because of the effects
of the queuing dynamic, two bins cannot capture the
long-term patterns of the traffic flow, calling for more
bins (i.e., .10) to achieve acceptable speed prediction
accuracy.

The average and standard deviation of the vehicle
speed profiles clustered into these 10 bins are shown in
Figure 5b-#1–10. Compared with Figure 5a, 5b confirms
that the signal timing-based classification improves the
prediction accuracy significantly. Since the vehicle classifi-
cation is done only based on the arrival time at the first
intersection, the speed variations increase spatially. Note
that, while the average speed of the classified vehicles cap-
tures the approximate trend of the traffic flow, Figure 5b
shows that the speed variations are different for different
bins. Overall, once the bin number for the ego-vehicle is
determined, the associated average long-term speed pre-
view is assigned to that vehicle based on the data shown
in Figure 5b.

Figure 6 shows the average and standard deviations
of the two selected bins (i.e., #8 and #7) from the total
10 classified bins. Figure 6a shows that while the traffic
data classification is done only based on the arrival
time at the first intersection (shown in Figure 3), the
associated speed variation over the first 3 minutes of
the trip is less than 5 mph in bin #8. On the other hand,
for the second bin (i.e., #7) shown in Figure 6b, the
variation increases after the first intersection. The rea-
son for picking ego-vehicles in bins #7 and #8 is that
they respectively represent the bins with the highest
and lowest standard deviations in the speed preview.
Such selection makes it possible to investigate the per-
formance of the optimization-based BTM system in the
best- and worst-case scenarios.

Case Study: Electric Vehicle (EV) Battery
Thermal Management (BTM)

To demonstrate the effectiveness of the proposed traffic
data classification in improving the efficiency and robust-
ness of MPC-based energy management of CAVs, a
BTM problem for connected EVs is considered in this
section. The battery is the only source of power for trac-
tion (Ptrac) in EVs, and its efficient thermal management
is important for safe and efficient operation of the bat-
tery, as well as the vehicle (13). EVs have relatively bigger

batteries as compared with HEVs, thus a liquid-based
BTM system with higher cooling capacity is often utilized
to effectively manage the thermal loads of the battery.
The liquid-based BTM system uses the A/C refrigerant to
reject heat ( _Q) from the battery and introduces extra load
on the A/C compressor (PBTM). The auxiliary power for
operating the A/C compressor can be up to 2:5 kW from
the battery (13).

Conventional BTM is designed to maintain the bat-
tery temperature (Tbat) within the desired range by track-
ing a constant or variable temperature setpoint well
below the upper temperature limit (46). The tracking-
based BTM strategy, however, results in a conservative
design and reduces the EV’s range because of the exces-
sive energy being consumed for BTM purpose. On the
other hand, optimization-based BTM solutions with trip
‘‘preview’’ information can maintain the battery tem-
perature within the desired limits (e.g., TLL

bat � TUL
bat ) effi-

ciently (13). An economic MPC-based BTM solves the
following finite-time (i.e., N ) optimization problem:

min
_Q(�jk)

XN

i= 0

PBTM(ijk),

s:t: Tbat(i+ 1jk)= fTbat
(ijk), i= 0, � � � ,N ,

SOC(i+ 1jk)= fSOC(ijk), i= 0, � � � ,N ,

TLL
bat ł Tbat(ijk)ł TUL

bat , i= 0, � � � ,N ,

� _Qmax ł _Q(ijk)ł 0, i= 0, � � � ,N � 1,

Tbat(0jk)= Tbat(k), SOC(0jk)=SOC(k),

ð2Þ

where (ijk) denotes the prediction for the time instant
k + iT made at the time instant k. fTbat

and fSOC are the
nonlinear models used for predicting the battery tem-
perature (Tbat) and battery state-of-charge (SOC) over
the prediction horizon N , respectively (8):

fSOC(k)=SOC(k)�

T
Uoc(k)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

oc(k)� 4Rbat(k)(Ptrac(k)+PBTM(k))
p

2CnomRbat(k)

 !
,

ð3Þ

fTbat
(k)= Tbat(k)+

T

(Uoc(k)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

oc(k)�4Rbat(k)Ptrac(k)+PBTM(k)
p

)
2

4Rbat(k)
+ _Q(k)

mbatCth, bat

0
B@

1
CA,

ð4Þ

with T being the sampling time, and Rbat, Uoc, Cnom,
Cth, bat, mbat being battery internal resistance, open-circuit
voltage, nominal capacity, thermal capacity, and mass,
respectively. The optimization problem in Equation 2 is
to minimize the power spent for battery thermal manage-
ment, PBTM= ac

_Q, over the prediction horizon N , while
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enforcing the state and input constraints (16). In
Equation 2, TUL

bat and TLL
bat are set to 40�C and 20�C,

respectively (46). Note that _Q is always non-positive for
battery cooling scenario with ac being constant. The
parameters of the battery Tbat and SOC models, as well
as the vehicle longitudinal dynamic (to compute Ptrac as
a function of the vehicle speed) are adopted from the
library of Autonomie* software for an EV, and can be
found in studies by Amini et al. and Halbach et al. (8,
16, 47).

The optimization problem is solved at every time step,
then the horizon is shifted by one step (T ), and only the
current control is commanded to the system
( _Q(k)= _Q(0jk)). The closed-loop simulations are carried
out on a desktop computer, with an Intel� Core
i7@2.60GHz processor, in MATLAB�/SIMULINK�

using YALMIP (48) for formulating the optimization
problem, and IPOPT for solving the optimization prob-
lem numerically (49). The BTM using the MPC in
Equation 2 with speed preview (via Ptrac) is referred to as
‘‘eco-cooling’’ in this paper (16).

Simulation Results

Intuitively, the MPC in Equation 2 leads the battery tem-
perature to the upper limit TUL

bat to reduce the BTM power
consumption (similar to the concept shown earlier in
Figure 1). Unlike the traction power demand with a rela-
tively fast responding dynamic, the battery temperature
responds slowly. The slow thermal dynamics of the bat-
tery calls for a long prediction horizon so that the MPC
(Equation 2) can maintain the temperature within the
desired limits. Two sample vehicles from bins #8 and #7
are selected, and their normal-driving and eco-driving
speed trajectories are shown in Figure 6c and 6d, respec-
tively. Figure 7a and 7b show the results of BTM with
the MPC with prediction horizons of N = 30 (30 sec
with sampling period of T = 1 sec) and 180 (180 sec) for
these two target vehicles, in which they follow the eco-
trajectories (i.e., with eco-driving) shown in Figure 6c
and 6d.

First, the case where the exact speed previews are
known a priori is considered. Figure 7a and 7b show
that, while the battery temperature upper limit (TUL

bat ) is
enforced for both target vehicles with a long prediction
horizon (e.g., N = 180), the battery temperature con-
straint is violated when a short horizon (e.g., N = 30) is
used, specifically toward the end of the driving cycle.
Next, the impact of uncertainty in vehicle speed preview

Figure 6. Average and standard deviation of the ‘‘classified’’ speed profiles: (a) bin #8, (b) bin #7, and speed profiles of two target
vehicles with normal driving and eco-driving in bin #8 (c), and bin #7 (d).

*Autonomie� is a MATLAB�/Simulink�-based system simulation tool

for vehicle energy consumption and performance analysis developed by

Argonne National Laboratory (ANL) [47].
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is shown in Figure 7c and 7d, where the non-clustered
speed preview is based on the aggregated speed average
as in Figure 5a, and the clustered ones are based on the
average speed of the vehicles in bin #8 and #7. Figure 7c
and 7d show that an uncertain speed preview can deviate
the performance of the BTM controller. It is also
observed from Figure 7c and 7d that a rule-based traffic
data classification helps to significantly improve the per-
formance of MPC-based BTM system with fewer con-
straint violations. It is noted that, even with an improved
speed preview through traffic data classification, enfor-
cing the battery temperature constraint over the entire
driving cycle cannot be guaranteed. This is because the
long-range speed prediction is based on the arrival time
at the first intersection; thus, the speed variation
increases as the distance of the ego-vehicle from the first
intersection increases.

It was shown in Figure 7 that traffic data classification
helps significantly improve the robustness of the MPC-

based BTM strategy in relation to the battery tempera-
ture constraint violation. These results are consistent
with previous studies (16) over EPA driving cycles (e.g.,
Urban Dynamometer Driving Schedule [UDDS] and
New York City Cycle [NYCC]) that have investigated
the impact of prediction horizon length on the MPC-
based BTM performance (16). The energy consumption
results of three cases for the two selected target vehicles
in bins #7 and #8 are compared in Figure 8. Figure 8
shows that with normal BTM cooling (i.e., conventional
battery temperature setpoint tracking), eco-driving
reduces the vehicle-level energy consumption by 19.7%
and 18.6% for the target vehicles in bin #8 and #7,
respectively, as compared with the baseline case with nor-
mal driving and normal battery cooling. Note that the
eco-driving, even without an optimized BTM, decreases
the BTM energy consumption by 12.4% (#8) and 21.2%
(#7). Upon applying the eco-cooling strategy, the BTM
energy consumption is further reduced by 30.2% (#8)

Figure 7. Time histories of the battery temperature with the model predictive control (MPC) in Equation 2 for prediction horizons of
N= 30, 180 for the eco-vehicles in bin #8 (a) and #7 (b). Subplots (c, d) show the MPC-based battery thermal management (BTM) results
for N= 180 with clustered (i.e., classified) and non-clustered speed previews for eco-vehicles in bin #8 and #7, respectively.
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and 37.6% (#7), which are translated into further energy
savings results of up to 19.7% (#8) and 18.6% (#7) at the
vehicle level. It is worth noting that these savings are
achieved despite the uncertainties in long-range vehicle
speed predictions.

Finally, the MPC-based BTM strategy with long-term
uncertain speed preview is compared with the ideal case,
where the exact speed preview is known a priori, and the
results are summarized in Figure 9. Figure 9 shows that,
because of the mismatch between the actual and the esti-
mated speed preview, the performance of the BTM con-
troller varies slightly from the ideal case. While for the
target vehicle in bin #7 (Figure 9b) the overall energy
consumption increases by 1%, for the vehicle in bin #8
(Figure 9d), with much lower speed variation as shown
in Figure 6, the overall consumed energy is decreased by
1.1%.

Conclusion

A big data analytic framework for CAVs, integrated with
a V2I-based speed trajectory planning algorithm, was

Figure 8. Battery thermal management (BTM) and vehicle-level
energy saving results through eco-driving and eco-cooling based
on the long-range speed preview for the target vehicles from bin
#8 (a, c) and #7 (b, d), and the initial battery temperature of 39oC.

Figure 9. Time histories of the battery temperature and vehicle-level energy saving results through eco-cooling with exact and
approximate (uncertain) speed previews for the target vehicles in bin #7 (a, b) and #8 (c, d) for initial battery temperature of 39oC.
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developed in this paper to provide short- and long-range
speed previews for optimization-based energy manage-
ment of electrified CAVs:

� Over the short prediction horizon, an eco-trajectory
speed planning algorithm is used with consideration
of the queuing dynamics at the intersections.

� Over the long prediction horizon, by leveraging the
data collected from an urban traffic network, a big
data classification algorithm was developed to mine
historical traffic data and predict the vehicle speed.

� Integrating the short- (and accurate) and long-
(and approximate) range speed forecasts creates a
multi-range speed preview which allows for opti-
mizing (fast) power and (slow) thermal dynamics
of EVs through predictive optimization schemes.

� The application of the proposed CAV speed pre-
diction strategy was studied for BTM of connected
EVs. It was shown that, compared with the base-
line EVs with normal driving, an average energy
saving of up to 14% can be achieved through eco-
driving.

� The simulation results over real-world urban driv-
ing cycles showed that by using the proposed traf-
fic speed prediction scheme substantial energy can
be saved via the ‘‘eco-cooling’’ strategy for BTM
of connected EVs, as compared with more tradi-
tional energy management techniques without
consideration of vehicle speed preview.

� While the data classification approach enhances the
preview accuracy, the forecast is still subject to
uncertainties. For BTM application, with a relatively
slow dynamic, this approximate long-term preview
is still valuable and can be leveraged to enhance the
energy consumption of EVs by 4%–5%.

This paper aimed at modeling the early deployment
stage of CAVs where the penetration rate is very low
(e.g., 4%). The results showed significant fuel benefit of
being ‘‘connected,’’ which can incentivize the deployment
of CAVs. Investigating the impact of CAVs’ penetration
rate on the traffic flow and energy efficiency is left to
future works. The authors will also focus on enhancing
the data classification algorithm accuracy, which cur-
rently is formulated based on the arrival times at the first
intersection of the considered arterial corridor. To this
end, advanced spatiotemporal data analytic algorithms
will be adopted to take into account the randomness of
the traffic data in a highly stochastic urban driving envi-
ronment with different penetration rates of CAVs (6).
This allows for updating the long-term speed preview
after passing the first intersection based on the new
observation and data collected from the traffic network

in real-time (i.e., rolling prediction horizon versus fixed
prediction horizon). Moreover, the application of the
proposed framework will be studied for more complex
power and thermal management of the CAVs, with con-
sideration of the combustion engine and cabin thermal
management. In addition, similar to the approach in
Yeon et al. (50), it is of interest to conduct a comparative
analysis between model-based approaches and recently
rising learning-based approaches in relation to eco-speed
profile generation and prediction.
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