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Abstract— Hybrid electric vehicles (HEVs) are overactuated
systems in that they include two power sources: a battery pack
and an internal combustion engine. This feature of HEVs is
exploited in this article to achieve accurate identification of
battery parameters/states. By actively injecting currents, the state
of charge, state of health, and other battery parameters can
be estimated in a specific sequence to improve identification
performance when compared to the case where all parameters
and states are estimated concurrently using baseline currents.
A dynamic programming strategy is developed to provide the
benchmark results regarding how to balance the conflicting
objectives corresponding to the identification and system effi-
ciency. The tradeoff between different objectives is presented to
optimize the current profile so that the richness of the signal
can be ensured and the good fuel economy can be achieved.
In addition, simulation results show that the root-mean-square
error of the estimation can be decreased by up to 100% at
a cost of less than a 2% increase in fuel consumption. With
the proposed simultaneous identification and control algorithm,
the parameters/states of the battery can be monitored to ensure
safe and efficient operation of the battery for HEVs.

Index Terms— Dynamic programming, fuel economy, hybrid
electric vehicle (HEV), lithium-ion battery, simultaneous identi-
fication and control, state of charge (SOC)/state of health (SOH)
identification.

I. INTRODUCTION

THE pursuit to improve the efficiency and diminish the
pollution emissions of vehicles has resulted in the devel-

opment of hybrid electric vehicles (HEVs) [1]–[3]. Com-
pared with conventional vehicles, HEVs adopt an extra power
source (i.e., batteries) as a buffer to increase overall engine
efficiency [4]. Accurate parameter and state identification of
batteries, including state of health (SOH) and state of charge
(SOC), is fundamental for the efficient and safe operation of
HEVs [5], [6]. Condition monitoring of the battery is crucial,
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as effective monitoring can help avoid violating the operat-
ing constraints (e.g., overcharge/overdischarge) and therefore
prolong the battery life [7]. However, parameter estimation
and fuel consumption optimization generally conflict because
the power management strategy (PMS) that minimizes the
fuel consumption does not necessarily ensure a battery current
profile, which contains sufficiently rich information for esti-
mation. Single power source systems cannot achieve these two
objectives concurrently. However, for an overactuated system
(e.g., HEVs), the extra degree of freedom in power allocation
can be used to achieve simultaneous identification and control
(SIC) [8]. There exists related work which achieves parameters
estimation and output regulation at the same time in overac-
tuated systems. For instance, Hasanzadeh et al. [9] focused
on induction machines and achieved the identification of rotor
resistance and minimization of the torque ripple through the
injection of a relatively low-frequency signal. Reed et al. [10]
also studied the overactuated features of permanent magnet
synchronous machines in order to simultaneously estimate
parameters and regulate torque. Leve et al. [11] injected
signals in order to estimate parameters without disturbing the
control objectives after exploiting the “null motio” of over-
actuated spacecraft. Similarly, Chen and Wang [12] exploited
multiple motors in a vehicle to inject additional excitation so
that the tire-road friction coefficient can be identified accu-
rately, given the extra degrees of freedom provided by electric
vehicles. In addition, Song et al. [13] optimized the current
profile of the battery adopted in the battery/supercapacitor
hybrid energy storage system using model predictive control
in order to achieve SIC. This article proposes SIC for HEVs
to significantly improve the estimation performance of battery
parameters/states with a slight increase in fuel consumption.

Most HEVs can be classified into three categories: 1) series
[14]; 2) parallel [15]; 3) power split [16]. In this article,
the series HEV is studied because the internal combustion
engine (ICE) is mechanically decoupled from the wheels
[17], which means that the working point of the ICE deter-
mined by the speed and torque can always be optimal. Since
HEVs are sophisticated electromechanical-chemical systems,
a PMS is required to fulfill the control objectives, including
increasing the system efficiency and reducing pollution emis-
sions [18]. In the existing literature, many PMSs have been
designed, which can be categorized into rule-based control
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and optimization-based control [19]. More and more attention
is being paid to optimization-based control, which can be
classified into two types [20]: 1) global optimization, such as
dynamic programming (DP) [21] and 2) real-time optimization
[22]. Among most of the PMSs for HEVs, constant battery
parameters are assumed, meaning that they neglect the vari-
ation of parameters due to battery degradation and varying
operating conditions. This assumption could result in unsafe
and inefficient operation of HEVs because cell impedance
increase caused by battery degradation will raise the possibility
of overcharge and/or overdischarge [23]. This specific concern
motivates us to apply SIC to HEVs.

To identify the battery’s states and parameters, an estimation
approach based on the equivalent circuit model (ECM) [24]
is used for its simplicity and adequate accuracy [25]. SOC
estimation approaches include Coulomb counting, extended
Kalman filter (EKF) [26], sliding mode observer [27], and
recursive total least squares-based observer [28]. SOH, which
represents the battery condition, is defined as the ratio of the
remaining battery capacity to its original value [29]. It can
be estimated through EKF [30], least-squares methods [31],
and Lyapunov-based methods [32]. Since battery parameters
need to be identified offline when adopting the estimation
approaches mentioned earlier, parameter variations due to
aging and changes in operating conditions (e.g., temperatures)
can cause performance degradation [33]. To address this issue,
a dual EKF (DEKF) is developed to identify SOH, SOC, and
battery parameters (e.g., ohmic resistance) concurrently [34].
Besides the estimation algorithms, battery current and voltage,
applied in the identification process as the input and output,
can dramatically influence the estimation accuracy. Therefore,
it is necessary to optimize the current waveform in order to
ensure signal richness and therefore identification accuracy
[35], [36].

Given the extra degree of freedom in PMSs offered by
HEVs, it is possible to inject sufficiently rich signals and
satisfy operating requirements simultaneously. In order to
optimize the performance of SIC, an innovative DP-based
method is adopted in this article. The sequential algorithm,
which separates signals according to frequency and identifies
parameters/states in a specific sequence through active current
injection, is proven to be more effective than DEKF, which
concurrently identifies all the parameters and states according
to the experimental results [37]. This article integrates the
sequential algorithm in the DP framework to improve the
estimation performance. The offline estimated battery para-
meters are used to determine the frequencies of the injected
signals and provide the basic knowledge on ranges for dif-
ferent parameters/states. Thus, real-time monitoring of the
battery states is achieved to prolong battery lifetime and
improve efficiency. We believe that this is the first article
exploiting the overactuated feature of HEVs to inject active
signals into the battery for better estimation performance.
Even though the signal injection induces a slight increase in
fuel consumption, the accuracy of battery parameters/states
estimation is significantly improved, which is important for
the safe, efficient, and reliable application of lithium-ion
batteries [38].

Fig. 1. Series HEV powertrain [39].

In summary, this article first investigates the overactuated
feature of HEVs and combines fuel economy optimization
with active battery monitoring. The energy management prob-
lem is solved using an innovative DP formulation. In order to
optimize the profile of the injected current signal, the tradeoff
between estimation accuracy and fuel consumption is also
studied.

In this article, the series HEV model is presented and
explored in Section II. The DP formulation is developed and
presented in Section III along with a review of the sequential
algorithm. Section IV discusses the simulation results of the
proposed SIC and provides a comparison with the baseline
results without active signal injection. Finally, Section V draws
the conclusions.

II. MODELING OF SERIES HEV

The series HEV, whose architecture is presented in Fig. 1,
is studied in this article as an example; the SIC approach
can work on all HEV topologies. The series powertrain
is composed of an engine-generator unit (EGU), a battery,
a motor, and an associated inverter. Since there are two
power sources (i.e., EGU and battery), which provide the
overactuated feature, the model fulfills the following energy
balance equations:

Pd (t) = Pm(t) (1)

Pm(t) = ηm(t)[Pg(t) + Pb(t)] (2)

where Pd (t), obtained from (3)–(5), is defined as the demand
power for the vehicle to follow the driving cycle, Pm(t) is
defined as the motor power, ηm(t), shown in Fig. 2, is defined
as the efficiency of the combination of motor and inverter,
which is related to motor speed and torque, Pg(t) is the
generator power, and Pb(t) is the battery power. Since the
generator has high efficiency over a wide operating range,
the generator is assumed to have the constant efficiency, e.g.,
95%, in order to simplify the analysis.

A. Vehicle Model

The main parameters of the studied automobile model are
listed in Table I and the basic dynamics are given as

v = ωm × Nr × Rw. (3)

1) Regenerative Braking Mode:

Pd/ηr −(mgfv cos θ+mgv sin θ+0.5CDρ A f v
3)=mvv̇ .

(4)
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Fig. 2. Motor/inverter efficiency contours [40].

TABLE I

BASIC PARAMETERS OF THE SERIES HEV MODEL [41]

2) Traction Mode:

PdηT −(mgfv cos θ+mgv sin θ+0.5CDρ A f v
3)=mvv̇

(5)

where v is the automobile speed, ωm is the motor speed, g is
the gravitational acceleration, θ is the climbing angle, and ρ
is the density of air.

B. Battery Model

The battery behavior in the PMS is represented by the
Rint model [41], as the battery resistance will dominate the
power loss. The main parameters of the battery pack, which
characterizes the Rint model, are summarized in Table I. The
battery output power, i.e., Pb , can be formulated as (6) based
on the Rint model

Pb = V0ib − i2
b Rb (6)

where ib is defined as the battery current (positive ib means
that the battery pack is discharging, while negative ib repre-
sents charging).

In the estimation process, the battery model applied is a
first-order ECM, as shown in Fig. 3. In Fig. 3, Vb represents
the battery voltage, Vp represents the RC pair voltage, and VC

is the open-circuit voltage (OCV). Although higher order mod-
els are more accurate than the first-order ECM when applied
in estimation algorithms, model accuracy and computational
cost are two conflicting objectives [42]. The computational

Fig. 3. First-order ECM.

TABLE II

MAIN PARAMETERS OF THE SAMSUNG 18650 LITHIUM BATTERY CELL

cost of parameter identification for higher order models is
much larger and the requirement of signal richness is higher as
well. For instance, seven parameters have to be estimated for
the second-order ECM; consequently, the current signal must
have at least four sinusoidal components to satisfy the richness
condition [43], which is not practical. Therefore, this article
applies the first-order ECM considering both model accuracy
and computational simplicity. The model has the following
dynamics as shown in (7) and the basic model parameters
of the applied Samsung 18650 Lithium battery cell, listed
in Table II, are determined through the static capacity Hybrid
pulse tests at 20 ◦C [42]:{

Vb = VC − Reib − Vp

Vp = Rp(ib − Cp V̇p).
(7)

The relationship between OCV and the normalized SOC is
formulated as follows [44]:

VC (z) = C1 − C2z − C3

z
+ C4 ln z + C5 ln(1 − z) (8)

where C1−5 are the five parameters of the function. The
normalized SOC, i.e., z, can be obtained by the following:

z = z0 −
∫ t

ti

ηc

Qb
ib(τ )dτ (9)

where the initial value of SOC is defined as z0. C1−5 are deter-
mined through experiments to be 2.6995, 0.0574, −1.3967,
−0.5508, and −0.0377, respectively [44].

III. REVIEW OF SEQUENTIAL ALGORITHM

The identification of battery states and parameters is an
important, though difficult, task. According to the Cramer–Rao
bound analysis, the sequential algorithm is more accurate than
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Fig. 4. Flowchart of sequential algorithm.

estimation algorithms that identify all the battery parameters
and states concurrently [37]. This is because the sequential
algorithm divides the estimation process into several steps.
Therefore, a small number of battery parameters/states are
identified in each step and fewer uncertainties are involved
[37], [45], meaning that the estimation performance will be
improved. To reduce the computational cost of estimation, (8)
is linearized because the slope of OCV versus SOC curve does
not change significantly within the normal operating range
[42], [46]

VC(z) = a1

(
z0 −

∫ t

ti

ηc

Qb
ib(τ )dτ

)
+ a2 (10)

where a1 and a2 are two coefficients. After applying the
Laplace transform, the battery dynamics in the frequency
domain are obtained as follows:

Vb(s)= a1z0+a2

s
− a1

s

ηc

Qb
ib(s)− Reib(s)− Rp

1+τps
ib(s). (11)

The Laplace transform of the battery terminal voltage is
therefore composed of four parts, which are determined by the
initial SOC, battery capacity, ohmic resistance, and parameters
of the RC pair, respectively. Therefore, it is possible to
separate the four components through filtering. The first term,
related to the initial SOC, can be eliminated by a filter because
it is constant in the time domain. The sequential algorithm can
be summarized in three steps, as shown in Fig. 4 [37].

Step 1: After injecting the high-frequency current the resis-
tance of the battery cell, which dominates the fil-
tered battery voltage, i.e., Vbf , is identified using
EKF, which is one of the most common estimation
algorithms. This identification approach can avoid the
negative effects of process and measurement noise
[47].

Step 2: Using the identified ohmic resistance, the parame-
ters of the RC pair (i.e., the resistance Rp and
the capacitance Cp) are estimated also using EKF
when the high-pass filter is incorporated to filter the
first component of Vb(s) and the medium-frequency
current is injected.

Step 3: Using all the identified parameters in Steps 1 and
2, the SOC and SOH are then identified based on
the unfiltered signal simultaneously. Since DEKF is
usually applied to estimate parameters and states
concurrently [48], it is used in this step and it has
the same state-space equation as EKF.

IV. SIMULTANEOUS ESTIMATION AND OPTIMIZATION

USING DP

The DP approach is applied to balance the parameter/state
estimation and system optimization objectives as they are
generally conflicting with each other. The baseline DP without
active signal injection, denoted as DP−, is discussed first as
follows:

JDP− =
T f∑
j=1

φ(Pg( j) × Ts) + γ	SOC (12)

and

	SOC =
{

0, if SOC(T f ) ≥ SOC(1)

SOC(T f ) − SOC(1), otherwise

subject to the constraints

SOClb ≤ SOC( j) ≤ SOCub

Pb,lb ≤ Pb( j) ≤ Pb,ub

Pg,lb ≤ Pg( j) ≤ Pg,ub

SOC(T f ) = SOC(1)

Pg( j) + Pb( j) = Pd ( j)/ηm( j)

where φ is the instantaneous fuel consumption function, which
is shown in Fig. 5 [49], j represents the time index, Ts is
the sampling time, T f represents the time length, γ is the
penalty factor, SOClb and SOCub are the lower and upper
bounds of the recommended usage range, i.e., 0.2–0.9, Pb,lb
and Pb,ub are the lower and upper bounds of the battery power,
respectively, and Pg,lb and Pg,ub are the lower and upper
bounds of the generator power, respectively. For series HEVs,
the ICE is mechanically decoupled from the wheels, and thus,
the operating point of ICE, which is defined by its torque
and speed, can be set without the restriction from wheels.
Aimed at maximizing the efficiency of ICE, its working point
is assumed to follow the basic operating line [49], as shown
in Fig. 5. The penalty factor γ is used to force the final SOC
to be equal to the initial SOC. To ensure efficient operation
of the battery for multiple driving cycles, the SOC in one
driving cycle should be constrained within the recommended
window of operation. In addition, the final SOC is set to be
equal to the initial SOC because different terminal SOC values
increase the complexity of results comparison. After acquiring
the current signal of DP−, the battery parameters and states
are concurrently identified using DEKF for comparison.

When the current signal is injected, the formula of battery
power and the constraints of DP need to be changed. Since
a sinusoidal battery current is injected for battery parame-
ters/states identification, the formula of the total battery current
can be represented

ib( j) = Iex cos(2π fi Ts j) + ic(k) (13)

where Iex is the amplitude of the sinusoidal signal, which is
to be optimized, fi is the frequency of the injected signal,
which is chosen to be 0.5 and 0.05 Hz according to the
experimental results [37], ic is a variable that changes with k,
a time index with a different time interval. Since fuel economy
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Fig. 5. Fuel consumption contours.

optimization and battery parameter estimation are two conflict-
ing objectives, the actively injected signal Iex cos(2π fi Ts j)
without ic will be compensated according to the simulation
results. Therefore, the term, ic(k), which keeps constant in
a time interval equal to half of the period of the injected
signal, is added to the battery current in order to prevent the
compensation. Since the period of ic will be equal to or greater
than the period of Iex cos(2π fi Ts j), the control of ic cannot
affect the injected signals. The formula of the battery power
Pb( j) can be linearly discretized from (6)

Pb( j) = V0ib( j) − i2
b ( j)Rb. (14)

The cost function JDP+ for the DP with active signal injection,
denoted as DP+, is then formulated as

JDP+ =
T f∑
j=1

φ(Pg( j) × Ts) + γ	SOC (15)

subject to the constraints

SOClb ≤ SOC( j) ≤ SOCub

Pg,lb ≤ Pg( j) ≤ Pg,ub

P(b,lb) ≤ Pb( j) ≤ Pb,ub

ic,lb(k) ≤ ic(k) ≤ ic,ub(k)

SOC(T f ) = SOC(1)

Pg( j) + Pb( j) = Pd ( j)/ηm( j)

where ic,lb(k) and ic,ub(k), defined by (16), are the lower and
upper bounds of the current variable ic, respectively⎧⎪⎨
⎪⎩

ic,lb(k) = max
Tp(k−1)≤Ts j≤Tpk

[ib,lb − Iex cos(2π fi Ts j)]
ic,ub(k) = min

Tp(k−1)≤Ts j≤Tpk
[ib,ub − Iex cos(2π fi Ts j)]. (16)

Tp is the half period of the injected current signal, and ib,lb
and ib,ub are the lower and upper bounds of the total battery
current, respectively. Ts is set to be 0.2 and 1 s for the injected
signals of 0.5 and 0.05 Hz, respectively.

With the new battery current signal obtained from DP+,
the sequential algorithm discussed in Section III is applied
and the detailed formulas are presented in the following.

Fig. 6. Speed and power demand profile of the studied series HEV following
UDDS.

Step 1: Due to the application of the high-pass filter and high-
frequency current signal, the terminal voltage based
on (11) can be simplified as

Vbf(s) = −Reibf(s). (17)

To estimate the ohmic resistance, i.e., Re, the state-
space equation of EKF is formulated as follows:{

R̂e( j) = R̂e( j − 1) + r j

Vbf( j) = −R̂eibf( j) + v j
(18)

where r j is defined as the process noise and v j is
defined as the measurement noise.

Step 2: After injecting the medium-frequency signal, (11) can
be transformed into (19) because the ohmic resistance
and RC pair dynamics will govern the filtered signal,
i.e., Vbf

Vbf(s) = −Reibf(s) − Rpibf(s)/(1 + τps). (19)

Using the estimated value of the ohmic resistance
acquired in Step 1, the state-space equation of the
EKF obtained from the bilinear transform is shown
as follows:{

[R̂p( j) τ̂p( j)]T = [R̂p( j − 1) τ̂p( j − 1)]]T + r j

Vbf( j)=−R̂e( j)ibf( j)− R̂pi2( j)+v j

(20)

where

i2( j) = Ts [ibf( j) + ibf( j − 1)]
Ts + 2τ̂p

− Ts − 2τ̂p

Ts + 2τ̂p
i2( j − 1).

Step 3: Applying the estimated ohmic resistance and para-
meters of the RC pair, the equation of SOC/SOH
co-estimation obtained from linear discretization can
be presented as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q̂b( j) = Q̂b( j − 1) + r j

X3( j) =
⎡
⎢⎣e

− Ts

τ̂p 0

0 1

⎤
⎥⎦ X3( j − 1) + Bib( j)

Vb( j) = VC (z( j)) − Vp( j) − R̂p( j)ib( j)

(21)
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Fig. 7. (a) Tradeoff between estimation accuracy and fuel economy. (b) Comparison between estimation using different current signals.

where

X3( j) = [
Vp( j) z( j)

]T

B =
⎡
⎣

R̂p(1 − e
− Ts

τ̂p ) − ηT s

Q̂b

⎤
⎦

T

.

The voltage of the RC pair (i.e., Vp) is identified
in the sequential algorithm to improve the estimation
accuracy [33].

V. SIMULATION RESULTS

Simulations of the series HEV model are conducted using
the Urban Dynamometer Driving Schedule (UDDS). Accord-
ing to its speed profile shown in Fig. 6 and (3)–(5), the power
demand profile for the studied series HEV is obtained. Some
basic information about UDDS is listed as follows: 1) the cycle
time is 1370 s; 2) the maximum vehicle speed is 56.7 MPH;
and 3) the driving distance is 7.45 mi.

A. Tradeoff Between Parameters’ Estimation and Fuel
Economy

Since a larger signal amplitude can improve estimation
accuracy but increase fuel consumption, there is a tradeoff
between these different objectives. To explore this relationship,
the amplitude of the injected current signal (i.e., Iex) is set to
range from 0.5 to 10 A. Since the driving distance for one
driving cycle is only 7.45 mi, the simulations are conducted
over five consecutive cycles. According to experimental results
[37], the effectiveness of the sequential algorithm is verified
and it takes less than 200 s for the estimated ohmic resistance
of the battery cell to converge. Therefore, the 0.5-Hz active
signal is only injected for the first 200 s of the process to
minimize the increase of fuel consumption, and the ohmic
resistance is identified according to the results of DP+. The
root mean square (rms) of the estimation error for the ohmic
resistance is defined as

rms Error =
√∑T

i=1

(
R̂e − Re

)2

T
(22)

where T is the total time length. The rms error is used to
indicate the identification accuracy. As shown in Fig. 7(a),

the estimation accuracy can be improved by increasing Iex,
but the fuel consumption increases. However, the benefit of
increasing Iex is not significant when Iex is beyond a transition
area. The “knee point” can be defined when Iex = 6 A, and
this specific amplitude is chosen for the active signal injection
in Section V-B. The estimation results when injecting current
signals with different amplitudes (i.e. Iex = 2 A or 6 A are
also compared, as shown in Fig. 7(b). This reveals that the
signal with a larger amplitude can provide richer information
for parameters/states estimation because the estimated ohmic
resistance converges to the actual value faster.

B. System Optimization

According to the power demand profile shown in Fig. 6,
the baseline DP− is applied to solve the energy management
problem. The penalty factor γ is chosen to be 350 in the
simulation. According to Fig. 8(a), the total fuel consumption
of the baseline DP− is 1795.13 g when no signal is injected.
The fluctuation range of the battery SOC is narrow according
to Fig. 8(a) because the studied HEV is not a plug-in hybrid
system and so the battery capacity is small.

Then, a 0.5-Hz sinusoidal signal is injected for the first
200 s. According to Fig. 8(b), the total fuel consumption
is 1807.64 g, an increase of 0.69% when compared to the
result of DP−. The SOC profile, which is shown in Fig. 8(b),
illustrates that the battery keeps being charged for the first
200 s, meaning that the ICE supplies power to both the
vehicle, to follow the driving cycle, and the battery for actively
injecting the signal. Compared with the simulation results of
DP−, where the battery has to supply power at the very
beginning, the results of DP+ show that the battery needs
to be charged initially to ensure the injection of the active
signal is successful. Specifically, the engine is turned on
during idle periods (i.e., zero power demand) to provide the
excitation signals with enough richness to the battery for the
identification purpose. Furthermore, the battery SOC fluctuates
in a wide range, meaning that the battery is effectively used.

Similarly, a sinusoidal signal with a frequency of 0.05 Hz
is injected. The injection period is set to be 500 s according to
the experimental results [37]. The results, shown in Fig. 8(c),
illustrates that the fuel consumption for five driving cycles
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Fig. 8. Simulation results under different conditions. (a) DP−. (b) DP+ with 0.5-Hz signal. (c) DP+ with 0.05-Hz signal.

Fig. 9. Fast Fourier transform of battery current. (a) DP−. (b) DP+ with 0.5-Hz signal. (c) DP+ with 0.05-Hz signal.

Fig. 10. Estimation results of DP+. (a) Ohmic resistance. (b) Parameters of RC pair. (c) Capacity and SOC.

is 1825.02 g, an increase of 1.67% when compared with the
baseline DP−. As shown in Fig. 8(c), the SOC also fluctuates
over a wide range, which increases the system efficiency
after the injection of active signals is turned off. In addition,
the current profiles for different cases are analyzed in the
frequency domain. The maximum current amplitude is close
to 2 A as shown in Fig. 9(a), which means that the richness of
the baseline current signal is insufficient for estimation. The
current fluctuations in Fig. 9(a) are caused by the vehicular
dynamics under the studied driving cycle. Applying the pro-
posed DP+, the current signals with the desired frequencies
(i.e., 0.5 and 0.05 Hz) are injected successfully because their
amplitudes increase to 6 A, according to Fig. 9(b) and
(c). The additional current component, ic(k), introduces a
low-frequency current with large amplitude because the time
interval of k is larger than the period of the injected signals.

C. Battery Parameter/State Estimation

After the simulations using the proposed DP+, battery
parameter/state identification is conducted using the acquired

current profiles. The sequential algorithm, based on the first-
order ECM, is adopted in the estimation process. In order
to simulate real-life effects, white noise with an rms value
of 10 mV is added to the voltage measurement. The
identified parameters and states are initially chosen to be
[Re(1) Rp(1) τp(1) Qb(1) SOC(1)] = [0.02 0.01 10 2 0.5].
In the first step of the sequential algorithm, a high-pass
filter with 0.2-Hz cutoff frequency is chosen and EKF is
used to identify the battery cell resistance. The estimated
resistance is able to track the actual value quickly according
to Fig. 10(a). In Step 2, a high-pass filter with 0.02-Hz cutoff
frequency is selected. The estimation process starts at 300 s
so that the initial SOC dynamics can be filtered. As shown
in Fig. 10(b), the identified parameters (i.e., Rp and τp) can
track the actual values accurately. In Step 3, SOH and SOC are
estimated simultaneously based on the previously identified
parameters. No excitation current needs to be injected in
this step because the estimation of SOC is not affected by
current frequency, while the identification of SOH prefers low
current frequencies [37]. According to Fig. 10(c), the estimated
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Fig. 11. Estimation results of DP-(parameters and states of battery are identified concurrently using DEKF). (a) Ohmic resistance. (b) Parameters of RC
pair. (c) Capacity and SOC.

capacity and SOC converge to the actual values in just one
driving cycle. Therefore, it is verified that the identification of
states/parameters is accurate using the sequential algorithm.

For comparison, all the battery parameters/states are iden-
tified concurrently based on the multiscale DEKF using the
current profile acquired from the baseline DP−. The initial
conditions and noise are set to be the same as those applied in
the sequential algorithm. According to Figs. 10(a) and 11(a),
the rms error of the ohmic resistance estimation based on
multiscale DEKF increases by 100% when compared to the
simulation results using the proposed DP+ and the sequential
algorithm. Although the identified Re converges to the actual
value, it takes a longer time (i.e., 700 s, which is more
than three times the required time applying the sequential
algorithm), thus, the rms error obtained from (22) increases
from 1.1 to 5.9 m�. The time interval for the estimated
Rp to track its actual value is 600 s, which is larger than
the corresponding time interval using the sequential algo-
rithm. In addition, the estimated τp and Qb cannot track the
actual values and there are significant static errors, as shown
in Fig. 11(b) and (c).

VI. CONCLUSION

Based on the overactuated nature of the series HEV, SIC
can be adopted in order to make sure that the battery is used
in a safe and efficient manner. DP is used to optimize the fuel
economy when active signals are injected for battery para-
meters/states estimation through the sequential algorithm. The
method of how to successfully inject the signals is described
(i.e., the battery current should have a constant value for
every half period of excitation) and verified to be reasonable
using the proposed DP. In addition, the tradeoff between fuel
consumption and identification accuracy is exploited in order
to provide a guideline for active signal injection (i.e., 6 A
is chosen to be the amplitude of the sinusoidal component
of the battery current for this specific case). According to
the simulation results, injecting active signals can improve
identification accuracy of battery parameters/states by more
than 100% and the increase of fuel consumption is slight,
only 0.69% and 1.67% for different steps of the sequential
algorithm. In future work, the proposed combination of active
signal injection and the sequential algorithm can be investi-
gated in other power management scenarios using alternative

control methods, such as model predictive control, for real-
time implementation. In addition, the effectiveness of SIC can
be studied for other configurations of HEVs, such as parallel
HEVs and power-split HEVs.
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