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Abstract

Outbreaks of emerging infectious diseases are becoming more frequent as climate changes

wildlife communities at unprecedented rates, driving population declines and raising con-

cerns for species conservation. One critical disease is the global pandemic of chytridiomy-

cosis in frogs, which can be caused by the fungal pathogen Batrachochytrium dendrobatidis

(Bd). Although there is clear evidence for Bd-induced mortality across high-elevation frog

communities, little attention is given to the role of lowlands in Bd’s persistence and spread

because low elevations are assumed to be too warm to harbor significant levels of Bd. Here,

we report widespread Bd infection across 80 frog species from three sites in the lowland

Peruvian Amazon, an area with no documented Bd-related amphibian declines. Despite

observing no clinical signs of infection in the field, we found that 24–46% of individuals were

infected per site (up to�105,000 zoospore equivalents per frog) by three Bd strains from

the global pandemic lineage (Bd-GPL). We also found collection site and seasonal effects to

be only weak predictors of Bd prevalence and load, with lower elevation and drier habitats

marginally decreasing both prevalence and load. We found no further effect of host phylog-

eny, ecotype, or body size. Our results showing high and widespread prevalence across a

lowland tropical ecosystem contradict the expectations based on the global pattern of patho-

genicity of Bd that is largely restricted to higher elevations and colder temperatures. These

findings imply that the lowlands may play a critical role in the spread and persistence of Bd

over time and space.
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Introduction

The ecological and evolutionary dynamics of emerging infectious wildlife diseases (EIWDs)

are gaining more attention due to their significant impact on biodiversity and ecosystem ser-

vices. Mycoses (diseases caused by fungi) are increasing in frequency at a rate greater than dis-

eases of other pathogen groups [1]. Some of the most destructive wildlife mycoses currently on

the rise are caused by “cold-loving” fungi, whose optimal thermal range lies within cooler tem-

peratures. As weather events become more extreme, the stress caused by local temperature

changes can increase a population’s susceptibility to disease and mortality [2]. Significant

cold-loving mycoses include white-nose syndrome, which has caused massive bat population

declines in the eastern U.S. [3], and chytridiomycosis, which has caused frog population

declines worldwide [4]. Chytridiomycosis, which is caused by the chytrid fungus Batrachochy-
trium dendrobatidis (Bd) [5], is a classic example of a cold-tolerant pathogen, causing severe

frog population declines in moderate to high-elevation areas [6–8], deemed disease “hotspots”.

The community-wide dynamics of chytrid infection can be complicated, as some popula-

tions are driven to extirpation while others may show no signs of disease. However, these “car-

rier” populations can be critical reservoirs for future outbreaks [9, 10]. Although the specific

mechanism that triggers Bd epizootics has not yet been identified, the main hypothesized driv-

ers of these population-level differences cluster into three classes: climate, host susceptibility,

and pathogen virulence. Climate (specifically, temperature and elevation) is often regarded as

the main determinant of where Bd can survive and reproduce. Bd epizootics appear to be

restricted to higher elevations and cooler temperatures, and have been documented in the

montane regions of Panama, Costa Rica, and Australia [6], as well as the Sierra Nevada [7],

Pyrenean [11], and Andean mountain ranges [8]. In addition to the effect of climate on disease

dynamics, different host populations and species may have varying levels of susceptibility to

Bd, potentially conferred by the interaction between genetics [12, 13], microbiome [14], and

ecotype [15]. Lastly, pathogen virulence can determine Bd prevalence and intensity in a com-

munity and has been shown to increase when Bd is within its optimal thermal range (17–25˚C

[16]) and decrease as temperatures exceed this [4]. Bd virulence also has the potential to differ

by lineage and strain [17], with the global pandemic lineage (Bd-GPL) tending to exhibit

higher virulence than endemic lineages [18], but strain-to-strain differences in virulence

within the global lineage is variable depending on the isolate [19].

Here, we identify an unexpectedly high level of Bd prevalence across multiple clades of

frogs from the lowland Peruvian Amazon, an area with no documented frog declines that has

been predicted to be disease-free due to its warm temperatures [16, 20–22]. This study is piv-

otal because previous Bd studies in greater Amazonia have concentrated on Bd hotspots in the

Eastern Andes [8], and those focused on lowland Peru have found very low infection preva-

lence [23, 24]. Those findings have been used to inform ecological niche models [20, 22, 25],

which then predict very little to no Bd presence in warm, lowland areas despite their proximity

to higher-elevation disease hotspots. Despite extreme frog species diversity, Bd reports are

scarce over the western Amazonian lowlands, and infection data are imperative to better

inform future niche models and predictions. Identifying the key factors that allow Bd to exist

in lowland Amazonian forests will help us compare disease dynamics in high versus low preva-

lence sites and aid in the implementation of future disease mitigation strategies.

To further understand infection dynamics in this previously unrecognized area of Bd preva-

lence, we tested host and ecological traits as predictors of infection and compared these rela-

tionships over space and time. We first determined 1) the prevalence of Bd in three sites across

lowland Peru, whose mean annual temperatures fall within Bd’s critical thermal range but

maximum temperatures often exceed this (Fig 1), and 2) the infection load of 324 individual
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frogs from 80 species sampled in these sites. We then tested the effects of host and habitat traits

on infection load. Lastly, we genotyped Bd samples to determine which lineages are present in

lowland Peru, to better understand both virulence and geographic origin. These results pro-

vide critical information about what drives chytridiomycosis in understudied lowland systems

and serve as a critical, high-infection data point in what was previously thought to be a “cold-

spot” of this disease, further increasing the diversity of systems represented in the Bd

literature.

Results

Despite seeing no evidence of frog die-off events or morphological signs of chytrid infections

while collecting frogs in the field, we found widespread presence of Bd infection across low-

land sites in Peru. Of the total 324 samples tested, 106 were positive for Bd infections (zoospore

equivalents [26] (ZE) > 1; Fig 2; S1 Table), giving an overall infection prevalence of 0.34. Raw

infection prevalence varied by site and elevation, with 0.46 at Villa Carmen (N = 24 total frogs

tested), 0.37 at Los Amigos at the end of the wet season (N = 124 frogs), 0.24 at Los Amigos at

the beginning of the next wet season (N = 76 frogs), and 0.31 at Madre Selva (N = 100 frogs, S1

Table, Fig 3). Villa Carmen and Madre Selva had higher variance in infection prevalence and

smaller sample size than Los Amigos. Mean infection load across the entire dataset (including

negative infections) was 566 ZE, with a maximum individual load of over 105,000 ZE. The

highest intensities detected were at Villa Carmen, which had infection loads ranging from 0–-

105,232 ZE (mean = 4447.12 ZE). Los Amigos at the beginning of the wet season had the low-

est mean infection intensity (mean = 93.9 ZE), with infection loads ranging from 0–4087.5 ZE.

Although Villa Carmen had the highest infection prevalence across sites, this was not signifi-

cantly higher than other sites (binomial test, P = 0.08) and sites did not differ from each other

(χ2 = 12, d.f. = 9, P = 0.213).

Infection loads reached high levels (critical threshold of ZE� 10,000; see Vredenburg et al

[27]) in at least some individuals at all sites (N = 4 individuals, Fig 2). However, these loads
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Fig 1. Climate and microhabitat profiles show higher temperatures than optimal for chytrid fungus. (A) Heat map of Peru (inset South America) displaying mean

annual temperature data from worldclim.org (accessed January 2018) shows that all three collection sites (labeled black points) experience warm temperatures above the

optimal temperature for Bd (17–25˚C). (B) Paired frog body and substrate temperatures (N = 78) from November—December 2017 at Los Amigos show tight matching

of body and microhabitat temperatures, which can be much higher than the CTmax of chytrid fungus (horizontal red line).

https://doi.org/10.1371/journal.pone.0222718.g001
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had no phylogenetic signal (lambda = 0.211, P = 1.0; Fig 3A) and we detected positive infec-

tions across representatives from nearly all families (80 species total). Infection loads did not

vary significantly by site (adj R2 = 0.006, F2,311 = 1.942, P = 0.145) but did by season (adj R2 =

0.021, F1,193 = 5.21, P = 0.021), at least within our limited sampling design using traditional

parametric statistics. Daily precipitation at Los Amigos fluctuated, with mean daily levels

decreasing at the end of the wet season and increasing at the beginning of the wet season (Jan-

uary 2016: 9.65 mm; March: 6.8mm; November: 4.51mm; December: 12.62mm; January 2017:

10.21mm; Fig 2A) However, pairwise comparisons of sites and seasons including only shared

species assemblages showed no relationship for either site or season (paired t-tests: Los
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Fig 2. Significant infection loads were present at all time points and sites during the wet season. (A) Mean daily

precipitation (mm) at Los Amigos (black line) averaged by month from January 1, 2016—February 1, 2017. Madre

Selva and Villa Carmen have some differences in wet season length and intensity, but January is deep into the wet

season at all localities. Colored blocks are placed and size scaled to the number of days spent on each collection

expedition, and colors correspond to sites shown in panel B. (B) Log10-transformed infection load (note log scale on

the y-axis), calculated as each individual’s triplicate rt-PCR quantified zoospore equivalent (ZE; N = 324 individuals)

and ranked within collection site from lowest to highest infection intensities shows that chytrid (Bd) infection is

present at all collection sites and sampling times. Horizontal grey dotted line at 100 denotes the load threshold for

categorization as a positive infection, horizontal red dotted line at 104 denotes the load threshold for categorization as a

heavy infection (ZE> 10,000), grey vertical lines denote quantitative range of replicates for each individual, and points

denote the individual’s mean infection load.

https://doi.org/10.1371/journal.pone.0222718.g002
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Amigos × Villa Carmen: t = 1.76, P = 0.117; Los Amigos × Madre Selva: t = -1.19, P = 0.261;

Los Amigos both seasons: t = 1.52, P = 0.149), even when accounting for phylogeny (phyloge-

netic paired t-tests: Los Amigos × Villa Carmen: t = 1.86, P = 0.112; Los Amigos × Madre

Selva: t = -1.90, P = 0.09; Los Amigos both seasons: t = 1.54, P = 0.146; Fig 4). Generally, we

found that the infection load of a species in one site or sampling time point was not correlated

with the infection load of the same species at any other site or time point.

Although we found a weak effect of ecotype on infection load using traditional linear mod-

els (adj R2 = 0.01, F3,310 = 2.46, P = 0.063), this effect did not remain when controlling for phy-

logenetic effects (phylolm: t = 0.138, P = 0.89) or accounting for sampling biases (permutation

test: z = 1.13, P = 0.25). Infection prevalences between terrestrial, burrowing, and arboreal eco-

types were similar (0.32, 0.4, 0.32), while aquatic species had an infection prevalence of 1

(although we had only two aquatic samples representing one species, Pipa pipa, Fig 3A, Fig

3B). Results from our ANOVA testing the effect of species on infection loads indicates that

only 24% of variance in mean infection loads is explained by species (P = 0.4). We found no

correlation between SVL and mean infection loads (Spearman’s ρ = 0.009, P = 0.88), with SVL

accounting for 0.05% of the variance in mean infection loads (adj R2 = -0.003, F1,260 = 0.13,

P = 0.72). The phylogenetic generalized least squares showed no independent effect of SVL on

infection load (t = -1.4, P = 0.16). We found a correlation between sex and infection loads (adj

R2 = 0.023, F1,124 = 3.9, P = 0.05), with female prevalence at 0.295 (mean = 2.2 ZE, N = 44) and

male prevalence at 0.341 (mean = 311.9, N = 82). We found frog body and substrate tempera-

tures to be closely paired (N = 78; Fig 1B), with most having temperatures cooler than Bd’s

CTmax. Five samples had a>2˚C difference between body and substrate temperatures

shown above. Tree branches correspond to each species below. Grey polygons correspond to alternate families, as numbered: 1) Pipidae, 2) Microhylidae, 3)

Dendrobatidae 4) Craugastoridae, 5) Ceratophryidae, 6) Bufonidae, 7) Centrolenidae, 8) Leptodactylidae, 9) Hylidae. Horizontal grey dotted line at 100 denotes the load

threshold for categorization as a positive infection, horizontal red dotted line at 104 denotes the load threshold for categorization as a heavy infection (ZE> 10,000).

Frog images from left to right: Elachistocleis bicolor (Microhylidae), Ameerega trivittata (Dendrobatidae), Ceratophrys cornuta (Ceratophryidae), Hypsiboas
maculateralis (Hylidae), and Sphaenorynchus lacteus (Hylidae), with credit for all images to Daniel L. Rabosky. (B) Proportion of individuals at each infection level by

collection site. Numbers at top of each bar denote sample sizes. (C) Proportion of individuals at each infection level by ecotype.

https://doi.org/10.1371/journal.pone.0222718.g003
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https://doi.org/10.1371/journal.pone.0222718.g004
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(Chiasmocleis royi, Dendropsophus minutus, Rhinella margaritifera, and Scinax garbei), and 7

frogs from one night had body temperatures above CTmax of Bd (Dendropsophus parviceps,
Dendropsophus sarayacuensis, Osteocephalus leprieurii, Phyllomedusa camba, and Phyllome-
dusa palliata).

A total of 28 Bd samples were successfully amplified by PCR using Bd-specific primers and

Sanger sequenced for Bd genotype. Based on the comparison of 7 MLST (multilocus sequence

typing) loci to reference genomes, all Bd samples sequenced were identified as belonging the

global pandemic lineage (GPL). From analysis of hypervariable regions, 3 GPL genotypes are

present in the sampled areas. GPL-A was found at all 3 sites in a range of genera (Pristimantis,
Ameerega, Allobates, Scarthyla, Hypsiboas, Phyllomedusa, Dendropsophus, Osteocaphalus, Eda-
lorhina, Leptodactylus, Hamptophryne, Syncope, and Rhinella). GPL-B was found only in one

individual at Villa Carmen (Osteocephalus castaneicola), the same individual that had the high-

est infection load, while GPL-C was found in 1 individual at Los Amigos (Pristimantis reichlei).

Discussion

Although other studies have reported Bd in the Neotropical lowlands (e.g., Costa Rica [28], Pan-

ama [29, 30]), infection loads are usually less than a maximum of ~50 ZE, while we found multi-

ple individuals at different sites with critically high infection intensities (ZE> 10,000). Our

measured prevalences at all sites during both seasons are also much higher than previously

reported for Peru (0.37 in this study vs. 0.01 [23] and 0.045 [24]) or Costa Rica (0.073 [28]),

showing a surprising 8-fold increase at Los Amigos alone between 2014 and 2016. Based on this

series of results, it is difficult to conclude whether infection prevalence is truly increasing over

time or if significant historical infections were undetected. Some of the discrepancy in preva-

lence may be explained by the different extraction methods used across studies (a PrepMan

DNA extraction protocol [23, 24] vs. our higher-yield Qiagen DNeasy protocol), as well as the

potential for detection error across studies using skin swabs [31]. However, if this is truly the

first documentation of a novel outbreak in Bd prevalence in lowland Amazonia, then our study

provides critical and timely information for tropical amphibian conservation biologists and

warrants increased surveillance of the lowlands as the outbreak develops. This study serves as

the first documentation of Bd genotyping in Peru, despite severe amphibian die-offs due to chy-

tridiomycosis [8, 32]. We detected 3 genotypes of Bd-GPL at our lowland sites, a lineage which

has previously been described as generally the most virulent and widespread [22], compared to

more endemic lineages. Bd-GPL has been documented on all continents where amphibians

occur [33], is hypothesized to have originated in Asia [18], and has been attributed to all chytri-

diomycosis-caused amphibian die-offs [33]. However, Bd-GPL has not been universally demon-

strated to be hypervirulent, as this trait can vary between strains belonging to the same lineage

[18, 19]. Because these genotypes exist outside the Bd thermal optimum, they may have unique

virulence properties. To determine the virulence of these Peruvian genotypes, isolates should be

obtained from these field sites to conduct physiological and transcriptomics experiments.

The high prevalence of Bd infections that we have documented in the western Amazon

deserves further exploration, especially in comparison to other lowland sites or time points.

Zumbado et al. [34] found high prevalence of low intensity Bd infection across frog species in

lowland Costa Rica, with populations showing enzootic disease dynamics, while von May et al.

[24] found low prevalence of Bd infections in lowland Peru. They both found that microcli-

mate was the main predictor for Bd infection, with these heterogeneous microclimates offering

suitable conditions for Bd within the otherwise unsuitable landscape. While there have been

no documented frog declines at our Peruvian collection sites, these populations may play an

important role in disease dynamics moving forward. If this pattern is due to either host

Chytrid infection in lowland Amazonian frogs

PLOS ONE | https://doi.org/10.1371/journal.pone.0222718 October 16, 2019 7 / 13

https://doi.org/10.1371/journal.pone.0222718


immunity [12, 14] or heat-induced pathogen weakening [4, 21], these frogs may be either resis-

tant or tolerant of Bd infections [35]. Although resistant individuals may act as a sink for Bd

zoospores, tolerant species can harbor infection and facilitate zoospore propagation [36]. Even

if they do not show symptoms of disease, they can act as Bd reservoirs or amplification hosts

and play key roles in disease outbreaks and persistence. The lack of correlation between infec-

tion loads in species that occur at multiple sites is likely due to the variability in host suscepti-

bility between populations of the same species. This wide variability in host susceptibility may

be driven by an interaction between host genetics, environment, and local adaptation of Bd

strains [19]. Studies highlighting immune-related gene-expression of infected amphibian hosts

and local Bd strains would elucidate which processes are responsible for these differences in

infection loads across sites.

This study provides critical surveillance data for infection presence and intensity in cold-

spots of symptomatic chytridiomycosis, which are severely lacking in the Bd literature. Gener-

ally, researchers have primarily tested for Bd in locations where die-off events are observed,

but our understanding of this disease relies on the collection of surveillance data across a range

of environmental and ecological conditions. We recommend that future studies incorporate

swabbing for Bd as a standard part of general museum collection or field ecology studies of

amphibians [37]. Through intensive sampling of both Bd hot- and cold-spots around the

world, we can learn more about what drives disease dynamics in various systems and apply

these insights to other emerging infectious diseases.

Methods

Field sampling

We collected skin swab samples from frogs over four collection expeditions, at either the

beginning of or during the rainy season (December-May). We collected swabs from three sites

in the Peruvian Amazon (Fig 1A). We sampled the foothills site, Villa Carmen Biological Sta-

tion (up to 850m elevation, latitude: -12.89, longitude: -71.40) from January-February 2016.

We sampled one lowland site, Los Amigos Biological Station (270m elevation, 12.56, -70.10)

across two collection expeditions in March 2016 and November-December 2016 and the other

lowland site, Madre Selva Biological Station (100m elevation, -3.69, -72.46), in January 2017.

We also collected thermal data on a) frog body surface temperature and b) temperature of the

substrate in physical contact with each frog’s ventral surface using an infrared temperature

sensor (Raytek Raynger ST81) during a follow-up trip to Los Amigos in November 2017 (Fig

1B). Daily precipitation from January 2016-February 2017 was collected using All Weather

rainfall gauges at Los Amigos (Fig 2A).

We used opportunistic surveys, transects, and standardized survey plots to collect and swab

a total of 324 frogs from 80 species. We captured each frog using a plastic bag and used sterile

cotton swabs (Dryswab) to collect skin samples[26]. We stored swabs in microcentrifuge tubes

containing either 100% ethanol or RNAlater and kept at ambient temperature in the field until

transportation to a -20˚C freezer at the Museo de Historia Natural Universidad Nacional

Mayor de San Marcos (MUSM) in Lima and then until storage at -20˚C at the University of

Michigan campus. Upon field collection, we recorded the location, species, and sex, mass, and

snout-vent length (SVL) of each frog when possible (S1 Table).

DNA extraction and quantification of infection loads

We extracted DNA using the Qiagen DNeasy Blood and Tissue Kit following the manufactur-

er’s protocol with modifications for Bd swabs to give a final elution volume of 200uL (dx.doi.

org/10.17504/protocols.io[6zhhf36]). Extractions were stored at -20˚C. To quantify infection
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loads, we performed real-time TaqMan PCR (QuantStudio3, Applied Biosystems, dx.doi.org/

10.17504/protocols.io.[6zehf3e]) using a fluorescent, Bd-specific probe (Life Technologies; S2

Table), with a total reaction volume of 25uL per well and reported infection loads as ZE (zoo-

spore equivalents) [26]. Each sample was run in triplicate, and samples were classified as posi-

tive for infection if they had a mean ZE> 1. Each plate included both a negative control and a

set of positive standards (either CLFT 035 or CLFT 073, Brazilian Atlantic Forest strains)

diluted to give 106−1 ZE concentrations, from which a standard curve was generated. We cal-

culated infection prevalence as the number of individuals with ZE > 1 divided by the total

number of individuals tested for infection, either overall or by study site.

Identification of pathogen strain

To identify fungal genotype of Bd positive samples, we used multilocus sequence typing

(MLST, dx.doi.org/10.17504/protocols.io.[6zghf3w]) to target lineage-informative regions of

the Bd genome. We first amplified DNA using ExTaq Polymerase (TaKaRa) and previously

described lineage-informative primers: 8009X2 [38]; BdC5 [39]; BdSC3.1, BdSC4.16,

BdSC6.15 [40]; BdSC6.8 [41], and R6064 [42] (S2 Table). To amplify these loci except

BdSC6.8, PCR conditions were as follows: 1 cycle of 94˚C/3 min; 45 cycles of 94˚C/1 min,

54˚C/30 sec, 72˚C/1 min; 1 cycle of 72˚C/7 min. To amplify BdSC6.8, the previous PCR condi-

tions were the same except for an increased annealing temperature of 60˚C [41]. Amplified

PCR products were purified using a 1/11 dilution of ExoSAP-IT (Affymetrix) and Sanger

sequenced on both strands (3730xl DNA Analyzer, Applied Biosystems) at the University of

Michigan DNA Sequencing Core. To determine Bd strain and lineage, we aligned sequences

in each direction for each sample and compared these contigs to reference genotypes [41] in

Sequencher v 4.10.1 (GeneCodes).

Molecular identification of unidentified frogs

To identify a subset of frogs that could not be confidently identified during collection (N = 6

samples), we amplified the 16S region of the genome from the swabs using primers 16SAR and

16SBR (S2 Table) [43] with PCR conditions as follows: 1 cycle of 96˚C/3 min; 35 cycles of

95˚C/30 sec, 55˚C/45 sec, 72˚C/1.5 min; 1 cycle 72˚C/7 min. Amplified products were purified

and sequenced using the same methods as for the MLST Bd markers. To determine frog spe-

cies, we aligned sequences in each direction for each sample and compared contigs to refer-

ence sequences available in GenBank and some obtained more recently (R. von May et al,

unpublished; S4 Table) using Geneious R6 v 6.1.8 (Biomatters 2013).

Statistical analyses

We tested for three categories of effects on infection load: differences among sites, differences

across seasons at Los Amigos, and differences associated with host phenotype (host ecotype,

species, SVL, and sex). For these analyses, the dataset was pruned to include only species

found in the tree generated by Jetz and Pyron [44] (N = 75 species and 314 individuals). Host

ecotypes were assigned by frog genus following IUCN habitat and ecology descriptions supple-

mented with additional primary sources (see S3 Table). The “litter” ecotype denotes ground-

dwelling species that primarily live amongst leaf litter. For all analyses of infection load, we

added a small constant (0.1) to each mean infection load before logarithmic (log10) transfor-

mation to allow statistical comparison of all samples. All tests were run in R v3.4.3 and signifi-

cance was assessed at P< 0.05. First, we assessed phylogenetic signal using a lambda test

implemented in the ‘phytools’ package [45]. For site and season, we ran standard linear models

and both standard and phylogenetic paired t-tests in ‘phytools’.
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We also tested the difference in infection prevalence between sites. Because we chose non-

phylogenetic tests for prevalence, we used the full dataset of 80 species. We treated the two sea-

sons of Los Amigos as two independent samples because of the marked differences in tempera-

ture and rainfall. We first ran a Chi2 test of independence to test the difference in infection

prevalences between sites. We also ran a binomial test to calculate the probability of obtaining

the observed between-site prevalence by chance if we had sampled each site as little as we did

Villa Carmen.

To test for the effect of host ecotype, we used both standard linear models and phylogenetic

linear models in the ‘phylolm’ package [46]. We also ran a permutation test to test the magni-

tude of infection load differences between ecotypes and one-way ANOVA to determine the

percent variance in infection loads between host species. For SVL effects, we conducted stan-

dard linear models, nonparametric Spearman’s rank test, and a PGLS. Lastly, we ran a linear

model to test for the effect of host sex on infection load.
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