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Abstract

Motivation: Whole-genome sequencing of uncultured eukaryotic genomes is complicated by difficulties in acquiring
sufficient amounts of tissue. Single-cell genomics (SCG) by multiple displacement amplification provides a technical
workaround, yielding whole-genome libraries which can be assembled de novo. Downsides of multiple displace-
ment amplification include coverage biases and exacerbation of contamination. These factors affect assembly
continuity and fidelity, complicating discrimination of genomes from contamination and noise by available tools.
Uncultured eukaryotes and their relatives are often underrepresented in large sequence data repositories, further
impairing identification and separation.

Results: We compare the ability of filtering approaches to remove contamination and resolve eukaryotic draft
genomes from SCG metagenomes, finding significant variation in outcomes. To address these inconsistencies, we
introduce a consensus approach that is codified in the SCGid software package. SCGid parallelly filters assemblies
using different approaches, yielding three intermediate drafts from which consensus is drawn. Using genuine and
mock SCG metagenomes, we show that our approach corrects for variation among draft genomes predicted by indi-
vidual approaches and outperforms them in recapitulating published drafts in a fast and repeatable way, providing a
useful alternative to available methods and manual curation.

Availability and implementation: The SCGid package is implemented in python and R. Source code is available at
http://www.github.com/amsesk/SCGid under the GNU GPL 3.0 license.

Contact: amsesk@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Contamination is an ever-present concern in the preparation of
high-throughput sequencing libraries. Certain methods of sample
preparation are more susceptible to contamination, whether it is
from the laboratory or from the environment. Approaches that
involve a non-specific amplification step, such as the multiple dis-
placement amplification (MDA) associated with single-cell genomics
(SCG), are especially prone to contamination from these sources.
As DNA is amplified non-specifically, even small amounts of con-
tamination, including that derived from the MDA reagents them-
selves, can lead to significant dilution of target molecules (Gawad
et al., 2016; Rinke et al., 2014). Perhaps best known for its applica-
tions in model systems where it can capture cell-to-cell heterogeneity
in molecular processes, SCG has also been leveraged toward
generating genome-scale data for groups of uncultured bacteria,
archaea, fungi and protozoans (Ahrendt et al., 2018; Davis et al.,

2019; Gawryluk et al., 2016; Mikhailov et al., 2016; Rinke et al.,
2013; Roy et al., 2014).

Uncultured microbes are those that cannot or have not been suc-
cessfully grown axenically in pure laboratory cultures. Their study
necessitates that tissues be collected directly from the environment
or from highly mixed in vitro microcosms. Collecting ample mater-
ial that is reasonably pure and yields sufficient quantities of DNA to
serve as input for whole-genome sequencing is often a near insur-
mountable obstacle. While SCG techniques circumvent this obstacle
through non-specific DNA amplification, the data they yield poses a
unique set of bioinformatic challenges: (i) SCG is highly subject to
contamination, making most, if not all, SCG-derived genomes of
uncultured microbes mildly to moderately metagenomic (Davis
et al., 2019; Gawryluk et al., 2016; Mikhailov et al., 2016; Roy
et al., 2014); (ii) despite the capacity for fully factorial priming, the
replication enzymes involved in MDA introduce amplification biases
that eventually manifest as read libraries that do not accurately
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represent the starting population of template molecules, making
coverage statistics less reliable (Gawad et al., 2016; Pinard et al.,
2006) and, (iii) uncultured organisms are often underrepresented in
sequence databases, complicating taxonomic delineation from con-
taminants. Taken together, all of these factors make identification
of the target genome from noise a major obstacle.

2 Approaches to isolating genomes from
metagenomes

Methods for extracting individual genomes from metagenomic data
are diverse. Utilizing features inherent to or derivative of nucleotide
sequences, these approaches cluster contigs independent of any tax-
onomy assigned by BLAST searches of large sequence repositories
(i.e. taxonomy-independent binning) (Sedlar et al., 2017). Common
features include the relationship between GC-content and coverage,
kmer frequencies and relative synonymous codon usage (RSCU)
(Dick et al., 2009; Kumar et al., 2013; Laczny et al., 2015;
McInerney, 1998; Mikhailov et al., 2016; Sedlar et al., 2017; Wu
et al., 2016). Despite being clustered independent of taxonomy,
identification, selection and verification of clusters is almost always
informed by assigned taxonomy (Dick et al., 2009; Kumar et al.,
2013; Laetsch et al., 2017; Mikhailov et al., 2016).

2.1 The relationship between GC-content and coverage
GC-coverage-taxonomy (GCT) plots graph contigs as points in two
dimensions, allowing visualization and separation of metagenomic
assemblies into clusters based on the GC-content and sequencing
depth (i.e. coverage) of their constituent contigs (e.g. Fig. 1) (Kumar
et al., 2013; Laetsch et al., 2017). Since GC-content varies in be-
tween organisms and per-organism genome coverage is correlated
with the relative abundance of fragments of its DNA in the sequenc-
ing library, these clusters can correspond to the genomes of individ-
ual organisms. Points are annotated with taxonomic information
from nucleotide BLAST searches of large sequencing databases to
determine the taxonomic affinities of clusters. Resolution depends
on the complexity of the metagenome, the quality of the annotations
and the phylogenetic distances between constituent genomes. GCT
plots quickly visualize the ‘metagenomic-ness’ of assemblies and can
be used to determine GC and coverage cutoffs for extracting particu-
lar clusters for independent processing and analysis (Kumar et al.,
2013; Laetsch et al., 2017).

2.2 kmer frequencies
Separation of individual genomes from metagenomic backgrounds
by kmer frequencies hinges on the assumption that the frequencies
of specific oligonucleotide sequences of length k are internally con-
sistent across each genome. Under this assumption, the frequencies
of any particular kmer on assembled contigs that originate from the
same genome will be similar, distributed around the frequency of
that kmer in the entire genome. While kmers cannot be homoge-
neously distributed within genomes, kmer frequencies can be used to
cluster metagenome assemblies and separate sets of contigs belong-
ing to individual genomes (Dick et al., 2009). One approach applies
unsupervised machine learning to cluster a matrix of the relative fre-
quencies of all informative kmers across a contig (its kmer profile)
to generate emergent self-organizing maps (ESOMs) that visualize
this n-dimensional data (Dick et al., 2009; Ultsch and Moerchen,
2005). This approach yields a 2D topology that visualizes the boun-
daries between clusters, and theoretically, individual genomes (e.g.
Fig. 1). Taxonomic annotations can be overlaid the final topology to
predict the identity of clusters, which can then be carved out of the
larger map by eye and analyzed independently (Dick et al., 2009).

2.3 Relative synonymous codon usage
RSCU measurements are numerical representations of codon bias,
describing the preferential use of different codons coding for the
same amino acid (i.e. synonymous codons) in protein coding nucleo-
tide sequences (CDS) (McInerney, 1998; Mikhailov et al., 2016). As

codon bias is often species-specific, RSCU profiles represent another
feature by which assembled contigs can be clustered and separated.
Following protein annotation, coding portions of contigs are con-
catenated into a single joint CDS sequence for each contig, upon
which whole-contig RSCU profiles are calculated. RSCU values for
each of the 59 codons with alternative synonymous codons that are
not STOP codons are calculated across the entire concatenate
according to the generalized expression considering codon i. . .

RSCUi ¼
Xi

1
n

Pn

i¼1

Xi

. . .where n is the number of codons synonymous to i and Xi is the
number of occurrences of i in the concatenate (McInerney, 1998).
These profiles are subsequently used to generate an RSCU distance
matrix based on the generalized distance measure. . .

Djk ¼
Xn

i¼1

jRSCUji � RSCUkij
n

. . .where RSCUji is the RSCU of codon i on CDS concatenate j,
RSCUki is the RSCU of codon i on concatenate k and n is the total
number of synonymous codons in the concatenate (McInerney, 1998).
Hierarchical clustering of RSCU matrices exposes clusters of contigs
with similar profiles that can be assigned taxonomy by BLAST
searches (Fig. 1). Clusters of contigs with known or inferred origin
can be used as training sets in subsequent rounds of clustering by
different features to retrieve the short, protein-less contigs that could
not be included in the initial clustering (Mikhailov et al., 2016).

Fig. 1. Flow chart showing overview of the automated SCGid workflow, from

isolation of one to a few cells of an uncultured eukaryote to a consensus-filtered

assembly. The initial SCG assembly is annotated with predicted protein models and

taxonomy based on BLAST searches. Three draft genomes are independently

predicted by separate binning methods, representing each method’s inference of

whether each contig belongs in the target genome (purple) or not (blue). Consensus

takes these three draft genomes and identifies their overlaps, generating a final fil-

tered draft assembly by majority rule that is at the interstices of the three independ-

ent methods, averaging over variation and reinforcing confidence in the final

position of contigs. Parameters affecting filtering decisions at each step are highly

customizable and the SCGid workflow is built to be run iteratively (Color version of

this figure is available at Bioinformatics online.)
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3 Obstacles to filtering single-cell eukaryotic
metagenomes

Methods currently available for separating metagenomes address
some of the issues associated with filtering SCG assemblies, but
there remain gaps in their ability to do so. While useful features for
clustering are necessarily present in sequences from across the tree
of life, the collection of tools that use them is generally skewed to-
ward prokaryotes (Sieber et al., 2018; Wu et al., 2016). This limits
the pool of available options when filtering SCG assemblies of
uncultured eukaryotes. Tools that lean on contig coverage for clus-
tering (Kumar et al., 2013; Wu et al., 2016) have considerably less
utility with SCG because of the biased sequencing depth that charac-
terizes de novo assemblies (Davis et al., 2019; Pinard et al., 2006).
This bias tends to lead to de novo assemblies that are highly frag-
mented, introducing significant variance in contig-level sequence
features (e.g. kmer frequencies) used for clustering and negatively
affecting filtering outcomes (Davis et al., 2019). Moreover, as the
target organisms of SCG and their relatives are usually uncultured,
contigs belonging to their genomes rarely share sufficient sequence
similarity with those contained in public sequence repositories.
This impairs the ability of BLAST searches to assign taxonomy for
the vast majority of contigs, making annotation difficult.

Despite these obstacles, filtering SCG metagenomes of uncultured
eukaryotes with available tools can yield draft genomes predicted
to be nearly complete (Davis et al., 2019; Mikhailov et al., 2016).
However, there often remains uncertainty in the fidelity of filtered
drafts because verification by unified taxonomy or coverage informa-
tion is difficult or impossible. Downstream analyses of these drafts are
imbued with similar uncertainty when the inclusion or exclusion of a
contig could arbitrarily introduce false negatives for genome function-
ality or attribute functionality that is derived from a contaminant.

4 SCGid: a consensus-based filtering tool for
SCG of uncultured eukaryotes

To address this uncertainty and fully investigate the efficacy of dif-
ferent approaches in filtering de novo assemblies of single-cell

sequencing libraries, we implemented three in SCGid, an automated
filtering tool for SCG assemblies. SCGid filters assemblies separately
using each approach described above, generating three intermediate
drafts. A final consensus draft is generated by majority rule at
the overlaps of different approaches, where inclusion of a contig is
dependent on its inclusion in two of the three intermediate drafts
(pipeline summarized in Fig. 1). Each filtering approach, including
consensus, is invoked separately from the CLI. Module-specific
implementations, discussed in the coming sections, introduce novel
code automating all but a single step of the tripartite pipeline.
Automation is enabled by SCGid’s requirement of a priori
specifications of ‘target’ taxa. This duality of ‘target’ and ‘nontarget’
taxonomic annotations is hereafter referred to as such. To reduce
computational time spent assigning taxonomy, SCGid uses the
Uniprot swissprot database (SPDB) for protein sequences and the
full NCBI nt database for nucleotide sequences (NCBI Resource
Coordinators, 2017; The UniProt Consortium, 2017). To increase
coverage of non-model lineages, utilities are included to supplement
the SPDB with additional protein sequences.

4.1 GCT plots (SCGid gc-cov)
SCGid plots BLAST-annotated AUGUSTUS-predicted (Stanke and
Morgenstern, 2005) proteins as points in GC-coverage space and
draws a total of 13 separate flexible selection windows (FSWs)
around them (Fig. 2A). The 2D bounds of windows are calculated
with respect to proteins that had a significant hit (e-value � 1e-5, by
default) in the SPDB. These bounds are used downstream to make
inclusion decisions on contigs that either contain no proteins or
contain proteins with no significant hit (i.e. unclassified contigs). All
contigs identified as target by virtue of the sum and strength of their
protein hits are ad hoc included in the GC-coverage-based filtered
draft, by default. The flexibility of FSWs provides a unique SCG
optimization as it allows for wide GC and coverage distributions,
artifacts of highly fragmented assemblies and MDA amplification,
respectively.

The bounds of FSWs are calculated through two sequential
rounds of 1D expansion, one along each axis (e.g. round 1 along
GC, round 2 along coverage). Beginning at the mean value of target
points on that axis, expansion outward is incremental, proceeding

Fig. 2. Plots visualizing the process of 2D GC-coverage window expansion over SCG data for the zoopagalean fungus Stylopage hadra (Sh). (A) GCT plot generated by SCGid,

points are AUGUSTUS-predicted proteins plotted by GC and ln(coverage) of the containing contig, colors represent phylum-level taxonomic classification and size represents

strength of the hit. (B, F) First round of window expansion along the coverage axis using method ‘co2’, window arms (grey box in B, F) originate from the target mean (dashed

line in B, F). The final window arms are defined by maximization of a trade-off value (purple line in F) which balances the proportions of target (blue line in F) and nontarget

(red line in F) in the window as it expands. (C, D) Second round of window expansion, along the GC axis using method ‘gc2’. (E) All 13 window expansion methods and asso-

ciated Ptar (blue) and Pntar (red) values for final windows; note that only method ‘co2gc2’ is shown in (A–D), (F) and (G). The optimal window (crosshatched box in G) is

defined by maximization of Ptar below set Pntar stringency threshold. (G) GCT plot (from A) now overlaid with all unclassified contigs (black and blue points) showing optimal

final window (crosshatched box). Unclassified contigs falling within the optimal final window (blue) are included in the final genome while the rest (black) are discarded
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to the limits of annotated points (Fig. 2B). The proportions of
target and nontarget proteins inside versus outside the bounds
are computed at each step, Ptar ¼ tarinside=tartotal and Pntar ¼
ntarinside=ntartotal, and used to calculate a trade-off value defined as
Dtradeoff ¼ PtarðPtar � PntarÞ (Fig. 2B and F). At the end of each
round of expansion, bounds are set where Dtradeoff is maximized
(Fig. 2F). The second round of expansion is identical to the first ex-
cept that all points outside the bounds set in round 1 are ignored
(Fig. 2C and D). The end product is a 2D FSW with cutoffs on both
the GC and coverage axes (Fig. 2G, crosshatched region).

Accounting for all thirteen FSWs, to cope with dataset-specific dis-
tributional differences in GC-Coverage space, SCGid draws FSWs for
all factorial combinations of first axis analyzed (GC or coverage) and
three expansion types (unbounded ¼0, coupled ¼1 or uncoupled ¼2)
(Fig. 2E). Unbounded (0) expansion rounds do not compute Ptar, Pntar

or Dtradeoff at all, merely setting the bounds at the limits of annotated
points along that axis (gc0 or co0) (Fig. 2E). Coupled (1) expansion
rounds compute Ptar, Pntar or Dtradeoff once per step for the positive
and negative directions taken together (gc1 or co1) (Fig. 2E).
Uncoupled (2) expansion rounds compute Ptar, Pntar or Dtradeoff twice
per step for the positive and negative directions separately, allowing
for unequal bound divergence from the mean (gc2 or co2)
(Fig. 2A–G). From this set of FSWs (Fig. 2E), an optimal window is
chosen that maximizes Ptar, but minimizes Pntar at or below a set strin-
gency level, s (i.e. Pntar � s). As stated above, cutoffs defined by the
optimal window determine the inclusion or exclusion of unclassified
contigs (Fig. 2G, blue points in crosshatched region). All contigs
identified as target are included, by default.

4.2 Emergent self-organizing maps (SCGid kmers)
SCGid provides automated preparation of all the files required to
train and generate an ESOM topology using outside scripts and
Databionics ESOM Tools (Dick et al., 2009; Ultsch and Moerchen,
2005). SCGid introduces an automated annotation pipeline that
links contigs with their best BLAST hit in the NCBI nt database, col-
oring them according to user-defined taxonomic levels. The task of
sectioning-out a target cluster from the topology (using Databionics
ESOM tools) relies on the user. An automated algorithm has not yet
been implemented in SCGid and mouse-sectioning by human eye is
standard practice (Dick et al., 2009; Ultsch and Moerchen, 2005).
Following sectioning and export, SCGid pulls the contigs belonging
to the target class, yielding the ESOM-filtered draft assembly.

4.3 Relative synonymous codon usage (SCGid codons)
SCGid implements RSCU-based metagenome filtering in line with
the concepts and applications described above (McInerney, 1998;
Mikhailov et al., 2016). CDS sequences are pulled from
AUGUSTUS (Stanke and Morgenstern, 2005) models and joined
into a single CDS concatenate for each contig. Short concatenates
are discarded (<3000 bp, by default). RSCU profiles are calculated
for large concatenates and used to compute an RSCU distance ma-
trix (McInerney, 1998). A neighbor-joining tree is computed from
this matrix, the tips of which are assigned taxonomy. The tree is it-
eratively searched, and all sufficiently sized clades (�30 tips, by de-
fault) are binned by shared node architecture to avoid duplication.
Clades in bins are ranked by the target-nontarget ratio of their des-
cendant tips; ties are resolved by maximizing clade size. The highest-
ranking clades from each bin are compared and the best clade, pre-
sumed to originate from the target genome, is nominated as a train-
ing set to collect small protein-less contigs from the rest of the
metagenome. Clustering is done in ClaMs (Pati et al., 2011), a
kmer-based (k ¼ 2, by default) binning algorithm that assesses con-
tig similarity to the trainset (Pearson’s distance �0.1) and bins them
accordingly (Mikhailov et al., 2016).

5 Validation

5.1 Methods
To assess the performance of our filtering implementations and the
ability of consensus to resolve inconsistencies between them, we ran

SCGid on two mock and three elsewhere-published SCG datasets
(Davis et al., 2019; Mikhailov et al., 2016; Roy et al., 2014).

5.1.1 Dataset selection

We generated two mock-MDA read libraries from the
Saccharomyces cerevisiae S288C reference genome. We selected
three studies where MDA was used to prepare sequencing libraries
and that had the goal of generating draft genome sequences for one
or more uncultured eukaryotes. To sample from a range of eukary-
otic lineages, we selected two studies targeting fungi, one micro-
sporidian (PRJNA321520) and five zoopagalean fungi
(PRJNA451036) and one targeting a stramenopile (PRJNA244411)
(Davis et al., 2019; Mikhailov et al., 2016; Roy et al., 2014). The
studies’ filtering methods involved various tools and levels of scru-
tiny, sometimes implementing similar approaches to those imple-
mented in SCGid, other times relying solely on taxonomy-dependent
approaches.

5.1.2 Mock dataset preparation

We artificially contaminated the S.cerevisiae S288C reference gen-
ome with the green alga Chlamydomonas reinhardtii CC-503 cw92
mtþ, and the bacteria Bacillus cereus ATCC 14579, Cellulomonas
sp. FA1 GY42 and Pseudomonas putida KT2440 (Belda et al.,
2016; Cohen et al., 2015; Fisk et al., 2006; Ivanova et al., 2003;
Merchant et al., 2007). To test SCGid on both eukaryotic and pro-
karyotic contamination, we generated two mock-MDA read libra-
ries in silico that were either contaminated with just the bacteria
(mockB) or the bacteria and C.reinhardtii (mockBE). To simulate
biased and unequal coverage across the metagenome, we used
bounded Brownian motion to generate unique discrete probability
mass functions for each chromosome or contig that modulated the
likelihood of each nucleotide being sampled as a start point for a
500 bp fragment (e.g. Supplementary Fig. S1). We sampled fragment
start locations from these distributions and read 150 bp from both
ends (i.e. paired-end), sampling to a mean expected coverage of 80�
without simulating sequencing errors. In this way, we simulated the
output of sequencing an MDA-derived library from three or four
cells on the Illumina NextSeq platform. The mock metagenomes
were assembled using SPAdes v3.9.0 (Bankevich et al., 2012), yield-
ing initial assemblies of 58.48 Mbp on 3102 contigs (coverage
range: 2.45–17 369.63�, mean ¼60.04�) and 127.80 Mbp on 31
781 contigs (coverage range: 1.172–10 261, mean ¼134.26�) for
mockB and mockBE, respectively, confirming that our fabricated
SCG metagenomes were MDA-like (i.e. fragmented with wide
coverage distributions). All contigs <200 bp were trimmed from ini-
tial assemblies prior to filtering. To simulate under-representation of
S.cerevisiae during filtering, we manually purged the SPDB of all
entries corresponding to the Saccharomycotina.

5.1.3 Genuine SCG dataset preparation

Since initial unfiltered assemblies are not usually made publicly
available upon publication, we independently processed and
assembled libraries of raw paired-end reads deposited in NCBI SRA
according to the methods and parameters outlined by the authors
(Mikhailov et al., 2016; Roy et al., 2014). Since we authored the
study for the five zoopagalean fungi featured here, we worked dir-
ectly with our initial assemblies (Davis et al., 2019).

5.1.4 Analysis of filtering outcomes

We compared filtering outcomes to each other, to their correspond-
ing consensus draft, and to the published assembly. Comparisons
were made on the basis of cumulative assembly size, number of con-
tigs and CEGMA/BUSCO completeness (Parra et al., 2007;
Waterhouse et al., 2017). Where informative, we made whole-
genome alignments in MUMmer v3.23 (Kurtz et al., 2004) to quan-
tify and visualize the proportion of the published assembly that was
recapitulated in the SCGid consensus draft. For the mock datasets,
we split the read libraries based on origin and mapped them to each
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assembly with BWA-MEM (Li, 2013) to quantify the respective con-
tribution of yeast or contamination to filtered draft size.

5.2 Results
Automated filtering with SCGid yielded three filtered drafts and one
consensus-filtered draft for each organism. In total, we generated
36 filtered assemblies for 9 target organisms. The filtered drafts
predicted by separate approaches were often different, distinct in
number of contigs, cumulative sequence length and predicted
completeness (Fig. 3). Filtering with the consensus method applied
by SCGid averaged sometimes dramatic variation where present,
yielding conservative filtered drafts at the overlaps of different
approaches and sometimes improving completeness (Fig. 3, pink
bars; Supplementary Table S4). In general, SCGid consensus reca-
pitulated the sequence content and genome size of reference
genomes and published drafts (Fig. 3 bottom, dashed bars;
Supplementary Table S4).

5.2.1 Mock Saccharomyces cerevisiae SCG metagenomes

Automated filtering of the two mock SCG metagenomes yielded
S.cerevisiae consensus drafts that nearly recapitulated the size of the
12.16 Mbp S288C reference genome: 11.76 Mbp on 436 contigs
and 11.47 Mbp on 280 contigs for mockB and mockBE, respective-
ly. Individual filtering approaches commonly yielded different drafts
compared to the reference or even the draft produced by that ap-
proach on the other mock (Fig. 3; Supplementary Table S4). GC-
coverage (i.e. SCGid gc-cov) either over- or under-filtered (mockB:

10.01 Mbp on 390 contigs, mockBE: 14.7 Mbp on 432 contigs),
kmer frequencies (i.e. SCGid kmers) over-filtered in both cases, dra-
matically so for mockBE (mockB: 11.47 Mbp on 396 contigs;
mockBE: 5.4 Mbp on 158 contigs) and RSCU (i.e. SCGid codons)
under-filtered both metagenomes, generating similarly sized drafts
(mockB: 16.72 Mbp on 529 contigs; mockBE: 16.83 Mbp on 398
contigs). Consensus outperformed all three on the basis of closest
cumulative sequence length.

SCGid consensus drafts were mostly composed of yeast sequence
data with relatively small fractions of contamination. With only bac-
terial contamination included (i.e. mockB), SCGid kmers produced
the best draft, with a 99.21–0.15% ratio of mapped reads originat-
ing from yeast versus contamination, compared to 98.69–2.62% for
consensus (SCGid gc-cov: 82.78–2.62%; SCGid codons: 98.68–
34.46%). With bacterial and eukaryotic contamination included
(mockBE), consensus outperformed individual approaches with a
98.04–1.38% ratio (SCGid gc-cov: 98.32–9.08%; SCGid kmers:
48.04–2.8%; SCGid codons: 98.94–5.70%). Taken together, these
results underpin the uncertainty in filtering SCG metagenomes using
any one approach and demonstrate the benefits of consensus.

5.2.2 Five zoopagalean fungi

As we noted in the original publication, manually-applied consensus
averaged variation among separate filtering approaches and reduced
uncertainty in the final drafts (Davis et al., 2019). Compared to
those consensus drafts, automated SCGid filtering tended to increase
assembly size and predicted completeness (Fig. 3; Supplementary
Table S4). The filtered assemblies of Zoopage sp. (Zsp) and
Zoophagus insidians (Zi) were significantly increased in size from
13.92 Mbp on 1958 contigs to 17.84 Mbp on 2892 contigs (SCGid
gc-cov: 20.71 Mbp, 3809 contigs; SCGid kmers: 13.29 Mbp, 2056
contigs; SCGid codons: 48.01 Mbp, 5358 contigs) and from
21.01 Mbp on 2432 contigs to 31.01 Mbp on 5839 contigs (SCGid
gc-cov: 24.37 Mbp, 3360 contigs; SCGid kmers: 15.83 Mbp, 6055
contigs; SCGid codons: 128.10 Mbp, 20 013 contigs), respectively.
Those of Acaulopage tetraceros (At) and Cochlonema odonto-
sperma (Co) were only marginally increased from 10.20 Mbp on
472 contigs to 11.20 Mbp on 525 contigs (SCGid gc-cov: 11.45
Mbp, 539 contigs; SCGid kmers: 11.20 Mbp, 523 contigs; SCGid
codons: 19.10 Mbp, 597 contigs) and 16.84 Mbp on 1819 contigs
to 18.05 Mbp on 2274 contigs (SCGid gc-cov: 17.81 Mbp, 2108
contigs; SCGid kmers: 18.26 Mbp, 2399 contigs; SCGid codons:
17.84 Mbp, 2670 contigs), respectively. Finally, the Stylopage hadra
(Sh) assembly decreased in size from 55.96 Mbp on 20 112 contigs
to 53.01 Mbp on 18 082 contigs (SCGid gc-cov: 44.96 Mbp, 13 902
contigs; SCGid kmers: 57.76 Mbp, 21 459 contigs; SCGid codons:
42.77 Mbp, 11 592 contigs).

Increases in assembly size were often accompanied by boosts in
predicted completeness. Predicted completeness of At and Zsp were
greatly increased from 83.06 to 90.32% and 71.77 to 78.63%,
respectively. Co and Zi only saw marginal boosts from 89.52 to
89.92% and 90.73 to 91.13%, respectively. Consistent with a de-
crease in assembly size, predicted completeness of Sh was marginally
decreased from 77.42 to 77.02% (Fig. 3; Supplementary Table S4).

5.2.3 Amphiamblys sp.

SCGid yielded a consensus draft of 6.09 Mbp on 1464 contigs, com-
pared to the published assembly of 5.62 Mbp on 1727 contigs
(Mikhailov et al., 2016). The SCGid consensus draft was more simi-
lar in size to the published draft than those of separate approaches
(SCGid gc-cov: 13.08 Mbp, 17 469 contigs; SCGid kmers: 8.60 Mbp,
1987 contigs; SCGid codons: 10.69 Mbp, 3628 contigs; Fig. 3,
Supplementary Table S4).

In the original publication, completeness was estimated at
�90% with a custom microsporidian database of core eukaryotic
genes in BUSCO v1.1b (Mikhailov et al., 2016; Sima et al., 2015).
Unable to directly replicate the unpublished custom database, we
instead compared completeness of both assemblies using the
fungi_odb9 database in BUSCO v3.0.2 (Waterhouse et al., 2017).
Of the 290 core fungal genes in fungi_odb9, the SCGid assembly

Fig. 3. Set of grouped bar charts showing variation in filtering outcomes of the three

different filtering approaches implemented in SCGid (green, orange and purple bars)

and the averaging effect of consensus (pink bars). Filtered assemblies were often dif-

ferent in terms of cumulative filtered assembly size (bottom), proportion of initial

assembly contigs persisting into the filtered draft (middle) and predicted genome

completeness (top). Cumulative assembly sizes of the references are shown as

dashed bars in the lower pane. The total number of contigs in each initial assembly

is shown above bars in middle pane. Abbreviations are as follows: mockB, mock

with bacterial contamination only; mockBE, mock with bacterial and eukaryotic

contamination; At, Acaulopage tetraceros; Co, Cochlonema odontosperma; Sh,

Stylopage hadra; Zsp, Zoopage sp.; Zi, Zoophagus insidians; Aspp, Amphiamblys

sp. and MAST4, MAST4-like strameopile (Color version of this figure is available at

Bioinformatics online.)
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contained 205 complete copies (70.69%) while the original pub-
lished assembly contained only 193 complete copies (66.55%),
equating to a 4.14% completeness advantage in favor of the SCGid
assembly (Fig. 3, Supplementary Table S4).

Whole-genome alignment detected �740 contigs with cumula-
tive length 0.508 Mbp in the published assembly that was un-
accounted for in the SCGid-filtered assembly and ~880 contigs with
cumulative length 1.59 Mbp in the SCGid-filtered assembly that
was unaccounted for in the published draft (Supplementary Fig. S2).
These values indicate that the unaligned contigs were generally quite
short. To confirm that alignments were not being made too liberally,
we measured sequence similarity between the two drafts
(Supplementary Fig. S3). When ordered by decreasing contig size,
there is a general trend of decreased sequence identity toward the
end of the published draft that we explain as variability in initial
assemblies.

5.2.4 MAST-4-type stramenopile

The automated SCGid run yielded a final consensus draft of
13.08 Mbp on 3298 contigs compared to the published draft of
16.93 Mbp on 4611 contigs (Roy et al., 2014). The SCGid consen-
sus draft was most similar in size to the published draft (SCGid gc-
cov: 12.98 Mbp, 4647 contigs; SCGid kmers: 12.71 Mbp, 2128 con-
tigs; SCGid codons: 12.88 Mbp, 3195 contigs; Fig. 3;
Supplementary Table S4). Predictions of genome completeness using
the eukaryota_odb9 database (303 core eukaryotic genes) favored
the published draft with 102 complete copies (33.66%) compared to
83 complete copies (27.39%) in the SCGid consensus draft. Whole-
genome alignment with MUMmer identified 1803 contigs with a cu-
mulative sequence length of 1.61 Mbp in the published draft that
were unaccounted for in the SCGid consensus draft. The SCGid-
predicted genome draft contained 172 contigs with a cumulative
sequence length of 0.081 Mbp that were unaccounted for in the pub-
lished draft.

6 Discussion

We demonstrate that the outcomes of filtering SCG metagenomes
can vary dramatically with the particular approach taken. SCGid is
a consensus filtering tool designed to address this problem. It brings
automation to the process of filtering SCG metagenomes, offering
an alternative to the time-consuming manual curation or strict
BLAST-based filtering that are typical of most SCG projects to date.
It is a fast and informative tool that quickly characterizes the land-
scape of SCG metagenomes and produces filtered drafts at the inter-
stices of three different approaches.

We go on to show that SCGid successfully filters both genuine
and fabricated SCG metagenomes. We demonstrate SCGid’s ability
to recover the well-known S.cerevisiae S288C reference genome
from a significantly muddled background using databases simulat-
ing its novelty. We benchmark SCGid against filtering approaches
used in the literature, where it recapitulates final genome size, con-
tent and completeness. For five zoopagalean fungi, SCGid generally
predicted larger filtered drafts than those we previously published
(Davis et al., 2019). Compared to the published Amphiamblys sp.
assembly, SCGid yielded a similarly sized draft that corresponds
well to the published draft (Mikhailov et al., 2016). While SCGid
generated a smaller draft for the MAST-4-like stramenopile, it is not
evident that any filtering was conducted in the original publication,
indicating that perhaps SCGid filtered out previously-overlooked
contamination (Roy et al., 2014). In terms of predicted complete-
ness, SCGid-filtered drafts landed on both sides of the line, overall
tending to increase completeness: an average þ2.91% for five zoo-
pagalean fungi, þ4.14% for microsporidian Amphiamblys sp. and -
6.27% for a MAST-4-like stramenopile.

SCGid’s consensus approach blends the outcomes of the filtering
approaches it employs, leading to conservatism in contig inclusion
decisions. We view this is as a beneficial trait as it protects against
the over-inclusion of sequence data, the converse of which can lead
to misrepresentations of biology as inferred from genome annota-
tion and pollute public repositories with misidentified sequence

data. While there is the potential for contigs that belong to be
excluded by consensus, the majority of contigs that are selected
against are either non-coding or of unknown function and do not
usually contribute to predicted genome function or completeness.
Further, consensus offers protection against the unstable behavior of
individual approaches confronted with different metagenomic back-
grounds. Given the fundamental reliance of these filtering
approaches on sequence data, it is not surprising that decreasing
phylogenetic distance between contaminants and target can obscure
filtering outcomes. In filtering mock S.cerevisiae S288C SCG meta-
genomes, two of the three filtering approaches (SCGid gc-cov and
SCGid kmers) yielded very different outcomes dependent on the in-
clusion of algal contamination. Encouragingly, despite over- or
under-filtered intermediate drafts, the consensus outcome was simi-
lar to that reached from a solely bacterial background. We noted
similar successful removal of rotifer contamination from the genuine
Zoophagus insidians (Zi) SCG metagenome (Davis et al., 2019).
Taken together, these examples demonstrate moderate resilience of
SCGid’s consensus approach to both bacterial and eukaryotic
contamination.

SCGid can yield draft genomes ready for downstream analyses
or partial solutions in need of further manual curation (Davis et al.,
2019). This depends on the robustness of at least two of its inte-
grated filtering approaches and the nature of planned downstream
analyses. SCGid was conceived with these outcomes in mind. As
such, it comes with a highly customizable set of options and utilities
to augment the ways in which filtering decisions are made. SCGid
can be iteratively rerun with different settings fast as it recycles the
results of long-running steps. While the first run on an assembly can
take 1–2 days, alternative filtered drafts can be produced by add-
itional runs within minutes. An iterative SCGid workflow combined
with tweaks to module and database configurations leads to increas-
ingly refined filtering outcomes. By virtue of its consensus approach,
SCGid has the potential to grow through the addition of novel filters
leveraging variation in intergenic distance, intron length, etc.

SCG, despite its biases, weaknesses to contamination and inher-
ent noise, generates genome-level sequence data for microbes that
are inaccessible via standard approaches. This data contains fewer
constituent genomes at higher coverage than analogous high-
complexity metagenomes, but their identities are shrouded by
unique biases. Where the goal of metagenomic binning may be the
separation of many genomes, the goal of SCG is the separation of
one or a few genomes from background contamination, endosym-
bionts and noise. This sets SCG apart from metagenomics and in
turn sets SCGid apart from other tools. SCGid takes prior expecta-
tions of taxonomy into account, using it as a central driver of filter-
ing outcomes. SCGid is not intended for use in determining
community composition or isolating hundreds of genomes from soil
samples, but for filtering the genomes of the uncultured targets of
sequencing efforts where whole community sequencing and brute-
force metagenomics is unfeasible or extraneous. SCGid is made for
SCG and is capable of mitigating its downsides in a fast, automated,
and repeatable way. As such, it wields potential to unlock genome-
enabled biology for the innumerable uncultured eukaryotes that de-
pend on SCG for the acquisition of genome-scale data.
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