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1. Introduction to the problem

A queue is a line for service. We are al familiar with queues from our everyday
experiences. When we call a doctor, we may be placed in a queue until the receptionist
can answer our call. If we need to see a doctor, we usually must wait in his’her office
until (s)he can see us. When we go to a grocery store, we must join a queue to pay for
our food. We wait for busses in cities and for lights to change when we drive our cars.
Andsoon....

Queuing theory is concerned with the mathematical description of queues. Two basic
approaches to queueing theory have developed: models based on fluid approximations
(e.g., Newell, 1971) and probabilistic queuing analysis. These notes concentrate on the
latter, which has received the bulk of the attention to date. In simplistic terms, the fluid
approximation approach is a deterministic view of queues and is particularly useful in
analyzing queues in which the average arrival rate exceeds the average service rate for
extended periods of time. Probabilistic queuing theory, as its name implies, adopts a
stochastic view of queues and is most useful in analyzing queues in which the arrival rate
is less than the service rate for extended periods of time.

Queuing theory, be it deterministic or stochastic, requires several inputs. Theseinclude:

a) A description of the way in which customers arrive at the system. Thisis termed
the arrival process. Of particular interest is the distribution of the time between
customer arrivals.

b) A description of the way in which customers are served or the service process.
Of particular concern are estimates of the mean and variance of the time needed to
serve a customer.

¢) The number of servers

d) The maximum number of customers that can bein the system

€) Thesize of the pool of customers

f) The way in which waiting customers are chosen for service, or the service
discipline.

Inputs (a), (b), and (c) are always needed. Kendall has developed a standard notation for
these inputs. The notation iswritten as X/Y/Z where



X andY are letters used to describe the arrival and service processes respectively, and
Z isaninteger (may be «) stating the number of servers.

To be more specific, X and Y are used to describe the probability distributions used in
modeling the interarrival times and service times of customers. Frequently used
symbolsinclude:

M Exponential distribution. Note that as shown below, an exponential
interarrival time distribution corresponds to Poisson arrivals

Ex Erlang-k distribution. Recall that an Erlang-1 distribution is an exponential
distribution.

HE  Hyperexponential distribution

D Deter ministic

G, GI Any general distribution with afinite mean and variance. Gl isusualy used
for arrivals and denotes general independent; G is usually used for service
times. In both cases, we assume that successive interarrival or service times
are independent random variables.

The outputs of queueing models include:
a) The mean number in the system (in the queue or line and in service)
b) The mean number in the queue (waiting for service)

¢) The mean timein the system or in the queue.
d) Thedistribution of time in the queue or in the system.

2. Relations between key probability distributions

Before proceeding, we derive severa key relationships between the Poisson, Exponential,
and Erlang-k distributions as well as properties of the distributions.

If the number of arrivalsin timet, N(t), follows a Poisson process, we have

P(N(t)= n)zw n=012,. (1)

and in particular,
P(N(t)=0)=¢g . (2)

If the time between arrivalsis Exponential, we have



t
P(interarrival time<t) = I leXdx=1-g A t>0 (3)
0

and P(interarrival time> t)= J-/l e Xdx=¢ t>0 (4)
t

wherein (1)-(4), 4 istherate of customer arrivals per unit time.

From equations (2) and (4), we see that Poisson arrivals imply that the time between
arrivalsis Exponential and vice ver sa.

The exponential distribution has a key property, the memoryless property, that makes it
particularly useful in queuing theory. In words, the property states that if interarrival
times (for example) are Exponential, then the probability distribution of the remaining
time until an arrival given that we have already waited Ty minutes is also Exponential
with the same (original) parameter. To see this, we note that if t=interarrival time, for
K>To,

_Pt>KAND t>Tg) _ Pt>K) _e™ _ k10
P<t> K|t>To)— P(t>To) - P(t>To)_ e—/lTo_e 0 (5)

but K -1, istheremaining time. So the
P(remai ningtime> K —To = Rt >T0)= o AK-To)= R (6)

which is Exponential with the original parameter 4. In other words, if buss arrivals
follow a Poisson process with a mean of 6 per hour (one every 10 minutes on average),
the expected additional waiting time given we have been waiting 8 minutes is 10 more
minutes, not 2 minutes. Note that an estimate of 2 more minutes would be wrong for
virtually al distributions of interarrival times.

This property means that, in modeling a queue with Poisson arrivals, we do not need to
know when the last person arrived to characterize the state of the system. Similarly, we
do not need to know how long the current customers have been in service if service times
are Exponentiadly distributed. Qualitatively speaking this means that the state space
described by the number of people in the system is M ar kovian, meaning we do not have
to worry about how we got to the state in order to fully describe the probability
distribution of the state space at some future point in time. This leads us to study such
gqueues. In section 4 below, we are more specific about what is needed to have a
Markovian state space.



If X1, X2 Xy arekindependent identically distributed random variables, each with an
Exponential  distribution given by  f (x)=1e"X x>0 i=12..k, then

k
Sc=2 X; isarandom variable with an Erlang-k distribution:
i=1

_A(sf e

fs ="

s>0 k=12,.. (79

Sometimes we write

kv (ka)k_le_kVS

fsk(s)= 1) s>0 k=12,.. (7b)
where 1 =kv. We have
k 1
E(Sk):Z:; (8)
k 1
Var (Sk) = ? = k_Vz (9)

So the Erlang-k distribution is the distribution of the sum of ki.i.d. Exponential random
variables. The cumulative Erlang-k may be found by noting that

P(S, > s)= P(sumof ki.i.d. Exponential random variables> s)
= P(k—1or fewer Poisson arrivalsin times) (20)

_ kil.(/ls)” e’

n=0 n
So, the Poisson and Erlang-k are related. In particular,

P(k Poisson arrivalsin times) = P(S, < s)= cumulativeErlang - k
Finally, we note that the probability of no Poisson arrivalsintime At is
P(N(At)=0)= g At ~ 1 2t + ol (At ) (11)

where o((At)z) areterms of order (At)* or smaller. For small at we have

P(N(At)=0)~1- 1At (12a)
P(N(At)=1)~ At (12b)
P(N(At)>1)~0 (12¢)

We will make use of equations (12) in Section 4 below.



3. A few basic relations

We define the following quantities

L = averagenumber of customersin thesystem
L =average number waiting to beserved

W = averagetimein thesystem
Wq= averagetimein the queue waiting to be served

A = averagearriva rate
U = averageservicerate

1 = averageservicetime
U

Also let

a(t)= number of peopletoarriveat thesytemin time]0, ]
d(t) = number of peopleto depart from thesystemin time|[0, t]
N(t)= number of peoplein thesystemat timet = a(t)—d|(t)

People a(t)
A d (t)

» Time
to

The total number of person-minutes of time in the system is given by the area between
a(t) and d(t). Thatis, let

A(t) = total accumulated person - minutesduring theinterval [0, t]

and
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The average waiting time in theinterval [O,t] is ) =W(t) and the average number in the

alt)
systemis @: L(t). So

i) , alt)

alt) t

Taking the limit of (14) as t - « , we have

L= (14)

t|imL(t)=L
|im%=w (15)

o0

t
Iimmw1
teoo L

L= AW (16)

This is known as Little's Formula and it holds under very general circumstances. We
can similarly show that

Lq = ﬂ“Wq (17)

and

1
Ls=AWs= /1; (18)

where | is the average number in service and \v, is the average service time. Finally
we also have,

W =Wt (19)
u

or the average time spent in the system is the sum of the average time spent waiting for
service to begin plus the average service time.



4. A framework for Markovian queues

A Markovian stochastic process is one in which the conditional probability of being in
any state at some future time given the present and past states equals the probability of
being in the state in the future given only the present state. That is, the past history of the

system does not provide any information needed to predict future states.

If the arrivals are Poisson and the service times are Exponential, the underlying processis

Markovian.

Let
An = (Poisson) arrival rate with n people in the system
u, = service rate with n people in the system

Then we can write, letting p, (t) be the probability of being in statei at timet,
Po(t+At)= (- 2At) Po(t)+ (1, At) Py 1)
and
P (t+At) = (25 A Py (0)+ (2 2; Al APy () + (1, A P4 1) i=12,...
If webring p;(t) to theleft hand side of (20) and (21) and divide by At, we have

Poft+ A1)~ Pyt)
At

=—20Po(t)+ 1, Pi(t)

P (t+At)-p; (t)

o = 2iaPia(t)=4i Pi(t)- g Py O)+ 4; g, Py (OAt+ 12, Pra ()

Taking the limitsas At - 0, we have

~—

d Polt
dt

== 0Py (t)+ 1, P (t)

d z,'((t) =/1i_1Pi71(t)_(/1i +ﬂi)Pi (t)+ p11,4 Praalt) 1=12...

which are known as the Chapman-K olmogor ov equations.

(20)

(21)

(22)

i=12,..

(23)

(24)

(25)



Now, if we are in steady-state, the state probabilities do not depend on time; i.e,,

dp;t _
P;(t)=P; vi; vt and d'()zo vi; vt. Therefore, we can write
t
0=-AgPo+ 1, P1 (26)
0= A1 Pia— i+ )P+ 4 P =12, (27)

Solving (26) for p, intermsof p,

P1= Ao Po (28)

Hq

Let us now write (27) for i=1.

A Ao
/10P0+/12P2:(/11+/11)P1:(/11+/11)—0Poz 2L py+ A0 Po
Hy Hy
or
/10/11 /1011
Py= Po O |Py= P (29)
S R R
Let us generally assume that
j-1
I14i
Py =0 p, (30)
I 4
i=1

We can now verify this by showing that it holdsfor j+1
HiaPia= W+ Pi= 24P

o
=\t u; TPj—l—lj—lF’j—l
j

Al
_ j-1 JPj—l
Hi



Ajadj
Pja= Pja
HiHig
j-1
Ajadi ._:o/1i
Hiflia ﬁlﬂ
N
i
1L
1=
- j+1 PO
T4,
1=
Q.E.D.
Equation (30) combined with the condition
2Pj=1 (31)

enables usto find al the state probabilities. From these, additional quantities of interest
may be found. For example,

L=3iP (32)
j=0
and
La= 2(i-9)P, (33)

where sis the number of servers.

Before discussing some of the more common examples of the use of equation (30), we
will show two alternate approaches to developing the steady-state balance equations
(26) and (27). Consider the following state-diagram.



Ao A A2 A3 As As
Q‘a‘e‘e‘e‘e o
M 7 p p 7

Hq 2 3 4 5 6

Inwhich 2;and p; may be thought of as the rates at which we move from state j upward
or downward respectively.

In steady state, the rate at which probability flux (if you will) leaves state j must equal the
rate at which probability flux enters statej If we now isolate statej (j=1, 2, ...), we have

The rate of probability flux out of the dashed circle must equal the ratein

Rate out = ratein (34)

(ﬂj”‘j)Pj =AjaPjat#,1Pja j=12,.. (35)
which isidentical to equation (27). Similarly, for state O, we have

AoPo= 1, P1 (36)
which isidentical to equation (26).

An alternative approach is to consider an imaginary slice between statesj and j+1
(=0,1,..)).

10



Iuj+1

In steady state, the net rate of probability flux across any such cut must be zero. This
implies,

Rate to the right = Rate to the |ff (37)
Or

AiPj=HiuPju (38)
But (38) simply says

pj+1:% P, j=01.. (39)
which aggress with (30).

5. Examples

M/M/1 Queue

Consider a queue with asingle server, Poisson arrivals (independent of the state of the
system) and Exponential service times, also state independent. That is,

=1 Vi
Ai | (40)
M= U Vi
Then
j )
Pj=/1—jPo:PJP0 Vi (41)
y7,

11



where

P :izutilization ratio
U

Combining equations (14) and (31) we have

i=0 J=
For p <1 we have

§ oo 2
j=0p 1-p

or

Po=1-p
P =(1-p)p’

j=012,..

These are the M/M/1 Queue State Probabilities. Note that thisis a Geometric

Distribution. We therefore have:

L= ijj=Po_zojp"=<1—p>zm
J:

i=0

For p <1 we have

> pl :p+2p2+...
j=0

(9

i=0

i

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)



o,
Lq:iWq:E

(50)

(51)

The condition p <1, needed for equations (44) and (47) is known as the steady-state

condition. It saysthat the arrival rate must be strictly |ess than the service rate if steady-
state conditions are to hold. If p>1, the queue grows without bound.

Note that equations (48)-(51) all are proportional to _1  Astheutilization ratio, p,

1-p

approaches 1.0, performance getsvery bad. Thisisillustrated below:

For example, consider asingle tall
booth that can serve 360 people
(cars) per hour, or one every 10

seconds, on average. We havethe 8

values shown in the table below. S

Note that if the arrival rateis 300 £

cars per hour (5/6 of the capacity) it o

takes a minute to get through the )

toll. If the arrival rate increase by o

10 percent, it takes 2 minutes. At

345 cars per hour, it takes 4 minutes ‘ ‘

to get through thetoll. Can you 0 0.2 0.4 0.6 0.8 1

hear the complaints to the state

government yet?

arrivals
per hour Times in seconds
A p L W W, Lq

120 0.333 0.5 15 5 0.167
180 0.500 1 20 10 0.500
240 0.667 2 30 20 1.333
270 0.750 3 40 30 2.250
300 0.833 5 60 50 4.167
330 0.917 11 120 110 10.083
345 0.958 23 240 230 22.042

13



Now let us compute the variance of the number in the system, denoted by Var(N)

Var(N)= 3 %P -
j=

and
2 °P=-p)2 7/
=(1- p){p >i(i-2) '_+21p}
j=0 j=0
- p>{p Jzodp }
d? Zp
@ phoz
- 2 1—p L P
NG Gy
@ ){2/023+P(1—,0??}
“la-pP @-p)
PP
@-pf
SO
-3
M
C-pf -
P
(-pf

So Var(N) goes up even faster than does L as p approaches 1.0 To continue with the

example, we get

14
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(53)
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Note that the standard deviation of A p L Var(N) | STD(N)
the number in the system is 120 0.333 0.5 0.750 0.866
approximately equal to the number 180 0.500 1 2.000 [ 1.414
in the system itself. 240 0.667 2 6.000 2.449
270 0.750 3 12.000 | 3.464
- 300 0.833 5 30.000 5.477
Now let us compute the probability 330 0917 11 132000 | 11289
of finding m or more people in the 345 0.958 23 555 000 | 23.495
system.
P(mor morein system) = i (1-p)p!
j=0
pm
=Q1-p (55)
t-r) L-p)
m
=p
and in particular
P(Lor more) = P(wait) = p (56)

We can also compute the probability density function of the timein the system. If you
arrive to find m people ahead of you, which occurs with probability (1- ) p™, your time

in the system will be the sum of n+ 1 independent, identically distributed (iid)
Exponential random variables, or will have an Erlang m+1 distribution.” The moment
generating function (MGF) of an Erlang m+1 distribution (with parameter 1) is

This derivation and that which follows for the waiting time distribution assume a fir st comefirst
served (FCFS) queue discipline. The moment generating function of arandom variable X isgiven by

E esx where sisa parameter of the MGF which should not be confused with the sused below for
the number of servers. For the exponentia distribution we have

E(esx)= [e*1e™dx= A [(2-9) e =gy = _2_ . Thereisaone-to-one relationshi p

0 A-s, A-s
between a moment generating function and a probability mass function. Knowing one automatically
givesyou theother. If T =X +Y and X and Y are independent random variables then

E(es ): E(e5(X+Y)): E(esx )E(eSY). So the MGF of the sum of independent random variablesis the

product of the MGFs of the individual random variables. Thus, the MGF of the Erlang m+1
distribution is the product of m+1 MGFs of exponential distributions. Finally, we note that since

2 3 4
(X) (X), (X), e pave d"MGF(X)
2 3 4 dx"

= E(x ”) , hence the name
s=0

eSX =1+(SX)+

moment gener ating function.

15



1 m+l
)
So the unconditional MGF of the timein the systemis

i(l—p)pm(ﬂjwi 0= plu fj\ Pr jmﬂ

i=0 U-s H=S j=0 H—S
-p 1
H=S 1 PH
s (57)
_(=pu  u-s
H=S u—S—pu
_ (Q-plu
(L-plu-s
But thisisjust the MGF of an Exponential distribution
f oy (W)= (1- p)u g (ol w=0 (58)
—(u-2)g =AM w0

which has a mean of

in agreement with (49).

Similarly, if you arrive to find m people ahead of you, m>1, your wait time has an
Erlang-m distribution. The probability of m people ahead of you, conditional on m>1 is
P;

P(Lor morein thesystem
conditional on at least one ahead of you is

j j+1
Z [T ZE RSN 2 R ) 7
El(l_p)p (y—sj - p)Eop (,u—sJ (-plu-s

as before. Therefore, the unconditional probability distribution of waiting timeis

-l (59)
wo plu—2)g Wy >0

):%: (1—p)pj_1, j=12... Sothe MGF of the waiting time

16



with amean

asin (50).
Finally, let us consider the distribution of times between departures from the system. To
do so, we need to consider two cases:

a) If the system is empty, the time until the next departure is the sum of an
Exponentia random variable with mean 1/4 (the time until the next arrival) plus

the service time which is Exponential with mean 1/ . In this case, the MGF of

the time until the next departureis (LJ[LJ .
A-S\u-s
b) If the system isnot empty, the time until the next departure is Exponentia with

mean 1/ and the MGF of thistimeis simply [sz
-

So the unconditional MGF of the time until the next departureis
N A Y B p ) p _ AMu-2) AA-s)
a p{ﬂ—é{y—sJ+a p{u—sjl—p_(ﬂ—qu—$+(l—sKu—®
Au—72s

-9 (%0

A
A-8

So the inter-departure times are Exponential or the departure processis Poisson with
mean rate A, just like the arrival process. Note that while it should not be surprising that
the mean arrival rate and the mean departure rates are equal (since what goesinto the
gueue in the long run must come out), what is perhaps more surprising is that the
distribution of the departure process is the same as the distribution of the input process
for thisqueue. Thisresult ismost useful in modeling a series of queues. Burke has
shown that this holds for an M/M/s queue. In both cases, there can be no limit on the
number in the system for this result to be true.

17



M/M/1 Queue with a restricted queue length

Suppose now that we limit the number in the system to M. In other words,

A n=01..,.M-1
ln:

0 n=M,M+1..

7 n=1..,.M
Hy=

0 n=M+1..

Then
Pi=p'Po  j=01l..M (61)
by equation (30) and by (31) we have
M. 1— M+1
i_ P -1
POEOP Po{ 1- 5 ]
SO
1-p
Po= M1
@-p)p' (52
Pj= Vol j=1...M
1I-p
and

18



Yp"+Mp

1— ,DM +1

_@-pp {1—(’\" +

(1-pf

p[l—(M +1) oM +M pM+l]

(L- p{l— pM +1)

Thisis clearly messy. The table below gives values of L for various values of M and .

M +1}

(63)

p 1 2 3 10 100 10000000
0.1 0.091 0.108 0.111 0.111 0.111 0.111
0.3 0.231 0.345 0.396 0.429 0.429 0.429
0.5 0.333 0.571 0.733 0.995 1.000 1.000
0.7 0.412 0.767 1.069 2.111 2.333 2.333
0.9 0.474 0.930 1.369 3.969 8.998 9.000

As p goes up, the average number in the system goes up. AsM goes up, L approaches

that of an M/M/1 queue (as shown in the final column) with no restriction on the queue
length. For small values of p, thelimit on the number in the system has little effect; as

o goes up, the effect of M increases.

To compute W, we need the effective arrival rate, 44 . Notethat when there are M
customersin the system, any additional arrivals are tuned away or lost. So,

19



(1-p)p"
Aot = M- Py )= 4 1- S
I-p
‘1_p|v|+1 pM+pM+l
=4 1 M (64)
- M
1-
=4 pM 1
1_ +.
Now
M M +1
wo L :1—(|v| +1) p +MMp (69)
Aot ﬂ(l—p)(l—p )
and
1
Wq=W-= and  Lg= et Wy (66)

The equations above assumethat p=1. For p=1, we get the following revised
equations:

1
I:)O_M1+1 (624)
Pi=v 1 j=1..M
M1
L_j§OJM+1
1 M
= 2]
M+1j:0 (638.)
1 M(M+1)
M+l 2
_M
)
1
Nett = ML~ PM)=}{1— v +J
64a
{ y } (649)
=1
M+1
W:L:M[M”.EJZEMH (654)
At 2UM A1) 4 2
1 1(M+1) 1 M M
Wq W—;—E( > j—; and Lq_)lefqu_7_m (66a)

20



M/M/s Queue

We now consider a queue with Poisson arrivals (independent of the state) sidentical

servers each operating with an Exponential service time distribution and no limit on the

gueue lengths. We assume a single queue (see the diagram below).

Thisyields

/’in:ﬂ

(/1/#)” Po n=01..,s
Pn= " n
(l/u) Pop n=s+1..
gSn*S
and
5 :_ s Wu)l @/u)P g (ijj _
° j=0 J! d j=1 Su
[ 2w e 2]
j=0 J! g su-4
L srem) e g ) _
° j=0 J! g joo\S
__Sil(/i/u)J W su |
_j=0 J! 9 su-4
for

Si <1, the steady state condition
Y]

21
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(68)

(699)

(69b)

(70)



We can also derive

-1
B = 1+i U _| H=A+A
0 Py

and

-1
12
7

A
iﬂ(j 9 2/ 2 2
B) u=A A5 2% u _P

Lq:

which agree with (45) and (51) respectively.

(u-2f #  wlu=2) (u=2)u 1-p

Note that the configuration assumed here is given by the figure below

(71)

(72)

(739)

(73b)

(73c)

Server

@©  Customer

/' l
/s
/s
’
’
’
’
/s
e
// ’f’. '
’ -
Pt
<27
NS~
R
N ~<
N \~\.
N
N
ueue N
N
N
N
N
S
N
4
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The state transition diagram is given by

A A A A A A A
of oot i ol -2
H 2u 3u (s=Du Su Su S

Consider, for example, an airport check-in line with 4 servers. Let 1 omin ,S0 u=05
7

and werequire 4 <2 or lessthan 120 passengers per hour arriving for checkin at the four
servers. The following table gives the results for this case

A (per min)| A (per hr) P- Po Lq A W L
0.5 30 0.5 0.367 0.007 0.014 2.014 1.007
1 60 0.5] 0.130 0.174 0.174 2.174 2.174
1.5 90 0.5 0.038 1.528 1.019 3.019 4.528
1.75 105 0.5 0.015 5.165 2.951 4.951 8.665
1.9 114 0.5] 0.005 16.937 8.914 10.914 20.737
1.95 117 0.5 0.002 36.859 18.902 20.902 40.759

Now suppose 1 =1.95. Consider adding servers

s A (per min)| A (per hr) n Lq W, w L L
4 1.95 117 0.5 0.002 36.859 18.902 20.902 40.759
5 1.95 117 0.5 0.015 1.830 0.939 2.939 5.730
6 1.95 117 0.5 0.019 0.485 0.249 2.249 4.385
Note that
p =~ = P(randomly selected server isbusy)
Su
siP; =
=>—1+ ¥ Pj
j=0 S j=st1
In the M/M/s case we have
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siPi 2 o _PosWu) _ Wuf( 4
Eo s +j=ZS+1PJ ?Eo(j—l) "Poy (Sﬂ—ﬁj
_Po2 S‘l(i/ﬂ)j+(/1/ﬂ)s_1( 2 ]l/y 1
s uliZo | (s-1) \su-4) s 2

su

(

Su—A

J}

So p:si which isthe utilization ratio or the fraction of time each server isbusy.
7]

Note that thisis not equal to the probability that all serversare busy. Thisisgiven by

P(all serversarebusy) = i P=
j=s

M/M/wo queue, or the Self-Service Queue

In this case, one never hasto wait. We have

An=4 n=0212,..
M= n=212,..
and
2 j
0 /1 i
Po sz
=
S0
Po=g#=g"
and

24

(A/u)
g [s::j Po
(74)
j=041,.
Poel/ﬂ =1
(75)



j=012,... (76)

which isjust the Poisson distribution. So,

L=p=2 (77)
7
w=t_1 (asexpected) (78)
A
and
Wq = Lq =0 (79)

Asit turns out, (76) holds for the M/G/ o queue as well (when we have any general
service time distribution with afinite mean and variance and the service times are
independent and identically distributed). The M/G/ results are useful when queuing
delays are unlikely, asin the case of an EM'S (emergency medical services) system.

M/M/s Queue with no waiting room

Now consider an M/M/s queue in which there is no room to wait. Here we have:

in:ﬂ n=0,1,2,...S—1

M= n=212..s (80)

and the steady state transition diagram looks like

A A A
a‘a‘a tet
H 2u 3

1 (s-Du SH

A A

And
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PJ:TPO j:O,l,...,S
with
1
Po_ ;
2 (4/u)
i I
SO
j
F,j:(ﬂ/fl) L oL
I Z(ﬁ“//u)
k il
=0 F

from which L may be computed numerically

L:ZS:ij
j=0
1 & ()

— z !
Gy =
jo I

SN V)
= >
s (Au) A B
Eo( ,-!)

1 )
2 (4/p) 201
L

_ 1 S—lp_J
)

o !
5

_ =l
3/
j=o I!

.S

. Alternatively, we can derive
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(81)

(82)

(83)

(84)



Again, to compute W, we need ;1 which isgiven by

A
DA
Aet == (85)
o

j=o I!

and as expected

we b -1

Aeit U
Wq=0 (86)
Lq:O

For example, consider a parking lot with 10 spaces and an average stay of 1 ohous 0
U

1 =05. Inthiscasewe obtain:

A (per hr) L P(full) Note that we do not require 1 <su =5 sincewe
; g'gg 3'320%'5?5 have afinite queue. Also note that
3 5.74 0.043 At = A1—P(full)}.
5 7.85 0.215
7 8.72 0.377
10 9.24 0.538
20 9.69 0.758

Again, it turns out that equations (83) and (84) and (85) hold for an M/G/s queue with no
waiting area, where 1 E(servicetime). Notethat as s —»« we get the results for the
7]

M/G/« queue, as expected.

Equation (83) is known as Erlang’s L oss Formula
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