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1. Example of a more complex problem (a classic example)

Consider agas station. Let uslimit that the number of cars that may wait to one car.
Assume that the station has 2 pumps as shown below. If acar arrivesto find:

a) Nooneinthe ‘L
station. it goesto Pump 1 Pump 2 Waiting space
pump 1

b) Pump 2 occupied, < Flow of cars

it waitsif thereis
room. Note that we assume that it cannot swing around the car at pump 2 even if
pump 1 is empty due to space limitations.

¢) Pump 1 busy and pump 2 idle, it goesto pump 2

d) Someone else waiting, it islost (like acall to a busy phone line with no answering
system).

We assumethat arrivals occur according to a Poisson processwith rate A, and that
service times at the pumps are Exponentially distributed with rates pu; and pp,
respectively.

From the above, we see that pump 1 may be in two states: occupied and empty. Pump 2
may be in one of 3 states: empty, occupied and pumping, and occupied and blocked (the
car isfinished, but cannot leave the station because a car is still at pump 1). Finaly, the
waiting space may be occupied or empty. Let us define a 3-dimensional state space
described by

(state of pump 1, state of pump 2, number waiting)
So, state (0,1,0) indicates that pump 2 is occupied and pumping. State (1,b,1) indicates
that pump 1 isoccupied, pump 2 is blocked and one person iswaiting. Some of the

2x3x2 = 12 states are not possible, e.g., (0,0,1), (0,b,0), (0,b,1), (1,0,1). Why?

Our state diagram now is shown below. Our steady state equations are:



Our steady state balance equations are

APo0o= #1P100+ #1P1bo+ 42 Po10
(/“ﬂl)Ploo: APooo+ 1P+ #,Po11
(/“ﬂﬁﬂz)Pno: A P100
(#1+/12)P111= AP110
(/1+/12)P010= H1P110
HoPo11=4Po1o+ #1P111
(/“ﬂl)PJbo: HoP110
H1P101= A P10+ HoP111
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All of which arein termsof p,;o, which becomes
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Consider the caseinwhich 2=10, p,=u,=6. Wefind

P110=0.1056 P(nooneinsystem) = Py = 0.1869
P100=0.2323 P(Linsystem) = P4gg+ Pg1o = 0.2719
P117="0.0880 P(2insystem) = P119+ P1po + Po11 = 0-2992
Po10=003%[ P(3insystem)= P13+ Py = 0.2420

P1po = 0.0396

Po11=0.1540 P(blocked) = Py + Py = 0.1936

P1p1 = 0.1540 P(arrival cannot join queue) = P111+ Po11+ P1pg = 0.3960
Pooo = 0.1869 Nominal arrival rate=10(1- 0.3960) = 6.040




Average number in system =1.5963
Average number of occupied pumps= Pg19+ P1gg+ Po11+ 2(P110+ P111+ Pipo+ P]b]) =1.2003

o 1.5963
Averagetimeinsystem=————=0.2643
o ¥ 6.040

If 2 and x are measured in terms of hours, this comesto 15.86 minutes (which clearly is
rather long).

Now suppose our station owner can invest in one faster pump to replace an existing one.
The new pump has x =8. Shewantsto place the pump at the location (pump 1 or pump

2) that maximizes his throughput or maximizes ;4 Or minimizes

P(arrival cannot joinqueue). Why isthisa good measure for the pump owner to use?
For

A=10 pu =8 u,=6,weget P(arival cannot join queue)= 0.3394
A=10 p,=6 u,=8 wegetP(arival cannot join queue) = 0.3562

S0 she should replace pump 1 with the faster pump. Justify thisin your own mind.

2. The M/G/1 queue

In this queue, we must be careful. We lose the Memoryless property of the Exponential
service time distribution. To preserve the Markovian analysis, let us examine the queue
only after (immediately after) a departure. In so doing, we do not need to be concerned
with how long the person being served has been in service. These pointsin time are
called renewal points (in the stochastic processes literature) because the system renews
itself (in some sense) at these pointsin time. It turns out that the average number in the
system just after a departure equals the average number in the system at arandomly
selected point in time.

To analyze the queue, we will use a“trick” that applies or works well only in this case.
A more rigorous approach involves a more complete understanding of stochastic

processes and a very good familiarity with probability generating functions (PGFs) and
moment generating functions (MGFs). (See Gross and Harris or Clarke and Disney.)

Let

N = number of peoplein thesystem just after thei - th departure
R; = number of peopletoarriveduring thei - th servicetime

Thenif



Ni>0 Njs;1=Nj+Ri;1-1
Ni=0 Nis1=Rix1

Y ou should justify these for your self.
Define

1 Nj=0
5‘{0 N;=1

Then

Ni+1: Ni+Ri+1—1+5‘fOI‘a|| NI (*)

Again, you should justify thisfor your self.

In steady state, we should have E(N,,)=E(N;), o if we take the expectation of the
eguation above we get

E(Nj;1)=E(N;)+ E(R 1)1+ E(5)
or
£(5)=1-E(R;..)

Now, also in steady state, E(R; ,,) should equal E(R;), or E(R;,,) should be independent
of thetime notation i+ 1.

Given that the i+ 1% service time takes t minutes, the conditional expected number of

arrivalsis At (since the arrivals are Poisson). The unconditional expected number of
arrivalsis 1E(S) where E(S) isthe mean servicetime. So,

E(0)=1-E(R ,1)=1-4E(S)=1-p
where we define p = 1E(S) as before.

More formally, we can say



E( Ri +1‘i +1Stservicetime= r) =Ar
E(Ri.d)= [ 47 7 ()= 2E(S) =7 =
E( Ri2+1‘i 11 servicetime= r) = 227247

E(Ral) J(Mw) (e = 22€(5?)+ 2E(S)
2l g2

=A% +p +p
where 52 =Var(s).
Finally, note that

1. 52=590E(52)= E(5)=1-p
2. NN=0s0E(N)=0

Now square both sides of (*)
N2 1= N2+ R2 1 +1+ 5%+ 2N Ri11- 2N+ 25 Nj - 2Rj 11+ 20 R 41~ 26

Taking expectations, noting that E(N;.)= E(N;)= E(N) and E( 1) E(NF)= E(N2)in
steady stateand N; and R;,; areindependent asare s and R ;, we get

£(N2)= E(N ) B[R+ 1+ E[52)+ 26(NE(R; 1)~ 2E(N)+ 2E(0N) - 2E(Ry 1)+ 2EG)E(R) 1) - 2E(6)

Substituting we find

0= 1262+ p?+ p+1+1-p+2E(N)p—2E(N)-2p + 21— p)p - 2(1- p)
= 1262+ p?-2p%4 p-p-2p+2p+2p+1+1-2+2E(N)p—1]

or
21262- p?+2p=2E(N)L- p]

or



i 2262+ pPe2p—2p2
2(1-p)
_2p-p) 2252+ p°
20-p)  201-p)

E(N)

or

Thisisthe Pollaczek-K hintchine for mula.

So far, this formula appears to apply only when we look at the queue just after a
departure. However, we now show that

Tn= pn

where

7T = Steady state probability of nin thesystemafter adeparture
P,= steady state probability of nin thesystem at any randomly selected time

Following Gross and Harris (pp. 235-236), let

A, (t) bethe number of arrivalsin theinterval (0,t) when thesystemisin staten
D, (t) bethe number of departuresto statenin theinterval (0,t)

Now since the system only moves up or down in unit steps,
|An()-Dp(t) <1 €)

That is, intheinterval (0,t) A,(t) and D, (t) differ by at most 1. Aslong asthe systemis
not saturated (p<1), then

. D(™) .. AT
Jim ) o) ®

where A(T) and D(T) are the total number of arrivals and departuresin time (0, T)
respectively.

Now divide (a) by A(T) and take the limit to obtain
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But (c) implies that

lim An(T)_Dn(T)‘:O
Towl AT) AT
which in turn implies
A D(T)
T AT) I, AT) @
Now
lim AnlT)_ im Dn(T) lim AT)
Tow A(T) Tox A(T) T D(T)
. Dp(T) AT)
~fim AT o) ©
- Jim 20
Tow D(T)

where the first equality uses equation (b). Since arrivals occur according to a Poisson
process independent of time,

AT
Jim Sy o 0

Also, by definition

. Dn(T)
™=, o) 9

Substituting (g) and (f) into (e), we get the desired result that
Zn= Py vn (h)

Thisimplies that the Pollackek-K hintchine formula applies for any point intime. So, we
may write

2,2 2
+p+/10'

T )




and Little'sformula applies, so

2, 2
1 A uPeag? 1 ﬂ(]/ﬂ +0)
W=—+ =—+

uoo 2l-p)  w 21-p)

/1(]//12+02)
Wa=20-p)
A2+ p°
2L-p)

Lq:

Using these equations, we can begin to get afeel for the impact of variability in the
service time distribution on the performance of the queue. Consider two different
gueues: the M/M/1 queue with Exponential service times and the M/D/1 queue with

deterministic service times. For the M/M/1 queue, we have 52 = ]//,12 , While for the

M/D/1 queue we have 52=0. If we now look at the time in the queue before service, we
find

M/D/A___ P 1. M/M/1
Wq 2A(1-p) >Wa

Thus, thewaiting time in the queue for the M/M/1 queue istwice the waiting time in
the queuefor the M/D/1 queue. Variability HURTS.

3. The G/G/1 Queue

In this brief section, we outline the results for an approximation of the behavior of a
single server queue with any general inter-arrival time distribution and any general
service time distribution. We can approximate the waiting time in the queue by:

W] GatCe| o |1
a 2 \1-p)u

is the mean service time as before

isthe utilization ratio or 4/u where 4 isthe arrival rate



c2 is the squared coefficient of variation of the inter-arrival time distribution (the

variance divided by the square of the mean)
2 is the squared coefficient of variation of the service time distribution.

Note that for the M/M/1 queue, we have ¢2=c2=1 and so this equation boils down to

Wq= [%ji which is the exact result for the M/M/1 queue (see equation (50) of the
—p)H

Notes on Queuing Theory). Also note that once we have the value of the waiting timein
the queue, we can get the other three key measures of queueing performance
(L,w,and ) quitereadily.

4.  An approximation of the M/M/s queue

Note that the equations for the M/M/s queue are rather messy and involve arather
difficult formulafor computing p,, the probability that the system is empty. We can

approximate the performance of this system using the following equation:

W P 2(s+l)—1. 1
9 S1-p) u

where p _ A
su

To see how well this approximation works, consider an M/M/5 queue with 1 =500

arrivals per hour and 1 _ 30 seconds (or 1.0 1 hours). The exact formulasyield
u u 3600 120

22.4 seconds for the waiting time in the queue, while the approximation yields 23.0
seconds. If we consider an M/M/9 queue with twice the arrival rate, the exact formula
yields 34.2 seconds while the approximation yields 34.4 seconds.

5.  An approximation of the G/G/s queue

We can al so approximate the G/G/s queue performance as follows:

(cﬁﬁcﬁ} p./2(5+1)—1 1
qu .

5 e —|where all of the terms are as defined above.

sl-p) u
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