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1. Introduction to the problem 
 
A queue is a line for service.  We are all familiar with queues from our everyday 
experiences.  When we call a doctor, we may be placed in a queue until the receptionist 
can answer our call.  If we need to see a doctor, we usually must wait in his/her office 
until (s)he can see us.  When we go to a grocery store, we must join a queue to pay for 
our food.  We wait for busses in cities and for lights to change when we drive our cars.  
And so on…. 
 
Queuing theory is concerned with the mathematical description of queues.  Two basic 
approaches to queueing theory have developed:  models based on fluid approximations 
(e.g., Newell, 1971) and probabilistic queuing analysis.  These notes concentrate on the 
latter, which has received the bulk of the attention to date.  In simplistic terms, the fluid 
approximation approach is a deterministic view of queues and is particularly useful in 
analyzing queues in which the average arrival rate exceeds the average service rate for 
extended periods of time.  Probabilistic queuing theory, as its name implies, adopts a 
stochastic view of queues and is most useful in analyzing queues in which the arrival rate 
is less than the service rate for extended periods of time. 
 
Queuing theory, be it deterministic or stochastic, requires several inputs.  These include: 
 

a) A description of the way in which customers arrive at the system.  This is termed 
the arrival process.  Of particular interest is the distribution of the time between 
customer arrivals. 

b) A description of the way in which customers are served or the service process.  
Of particular concern are estimates of the mean and variance of the time needed to 
serve a customer. 

c) The number of servers 
d) The maximum number of customers that can be in the system 
e) The size of the pool of customers 
f) The way in which waiting customers are chosen for service, or the service 

discipline. 
 
Inputs (a), (b), and (c) are always needed.  Kendall has developed a standard notation for 
these inputs.  The notation is written as X/Y/Z where 
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X and Y are letters used to describe the arrival and service processes respectively, and 
Z is an integer (may be ∞ ) stating the number of servers. 
 

To be more specific, X and Y are used to describe the probability distributions used in 
modeling the interarrival times and service times of customers.  Frequently used 
symbols include: 
 

M Exponential distribution.  Note that as shown below, an exponential 
interarrival time distribution corresponds to Poisson arrivals 

Ek Erlang-k distribution.  Recall that an Erlang-1 distribution is an exponential 
distribution. 

HE Hyperexponential distribution 
D Deterministic 
G, GI Any general distribution with a finite mean and variance.  GI is usually used 

for arrivals and denotes general independent; G is usually used for service 
times.  In both cases, we assume that successive interarrival or service times 
are independent random variables. 

 
The outputs of queueing models include: 
 

a) The mean number in the system (in the queue or line and in service) 
b) The mean number in the queue (waiting for service) 
c) The mean time in the system or in the queue. 
d) The distribution of time in the queue or in the system. 

 
 

2. Relations between key probability distributions 
 
Before proceeding, we derive several key relationships between the Poisson, Exponential, 
and Erlang-k distributions as well as properties of the distributions. 
 
If the number of arrivals in time t, N(t), follows a Poisson process, we have 
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and in particular,  
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If the time between arrivals is Exponential, we have 
 

 2



( ) 01   timealinterarriv
0

≥−==≤ −−∫ tedxetP t
t

x λλλ  (3) 

 

and ( ) 0  timealinterarriv ≥==> −
∞

−∫ tedxetP t

t

x λλλ  (4) 

 
where in (1)-(4), λ  is the rate of customer arrivals per unit time.   
 
From equations (2) and (4), we see that Poisson arrivals imply that the time between 
arrivals is Exponential and vice versa. 
 
The exponential distribution has a key property, the memoryless property, that makes it 
particularly useful in queuing theory.  In words, the property states that if interarrival 
times (for example) are Exponential, then the probability distribution of the remaining 
time until an arrival given that we have already waited T0 minutes is also Exponential 
with the same (original) parameter.  To see this, we note that if t=interarrival time, for 
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but  is the TK 0− remaining time.  So the  
 

( ) ( ) eeTtRTKP RK T λλ −−− ==>=−> 000   timeremaining  (6) 
 

which is Exponential with the original parameter λ .  In other words, if buss arrivals 
follow a Poisson process with a mean of 6 per hour (one every 10 minutes on average), 
the expected additional waiting time given we have been waiting 8 minutes is 10 more 
minutes, not 2 minutes.  Note that an estimate of 2 more minutes would be wrong for 
virtually all distributions of interarrival times. 
 
This property means that, in modeling a queue with Poisson arrivals, we do not need to 
know when the last person arrived to characterize the state of the system.  Similarly, we 
do not need to know how long the current customers have been in service if service times 
are Exponentially distributed.  Qualitatively speaking this means that the state space 
described by the number of people in the system is Markovian, meaning we do not have 
to worry about how we got to the state in order to fully describe the probability 
distribution of the state space at some future point in time.  This leads us to study such 
queues.  In section 4 below, we are more specific about what is needed to have a 
Markovian state space. 
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If  are k independent identically distributed random variables, each with an 
Exponential distribution given by 
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Sometimes we write 
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where νλ k= .  We have 
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So the Erlang-k distribution is the distribution of the sum of k i.i.d. Exponential random 
variables.  The cumulative Erlang-k may be found by noting that 
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So, the Poisson and Erlang-k are related.  In particular,  
 

( ) ( ) k-Erlang cumulative in time arrivalsPoisson  =<= sPskP Sk  
 
Finally, we note that the probability of no Poisson arrivals in time t∆  is 
 

( )( ) ( )( )te ottNP t ∆+∆−≈==∆ ∆− 210 λλ  (11) 
 

where ( )( )to ∆ 2  are terms of order ( )t∆ 2  or smaller.  For small t∆  we have 
 

( )( ) ttNP ∆−≈=∆ λ10  (12a) 
( )( ) ttNP ∆≈=∆ λ1  (12b) 
( )( ) 01 ≈>∆tNP  (12c) 

We will make use of equations (12) in Section 4 below. 
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3. A few basic relations 
 
We define the following quantities 
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Also let 
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The total number of person-minutes of time in the system is given by the area between 
a(t) and d(t).  That is, let 
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and 
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The average waiting time in the interval [0,t] is ( )
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Taking the limit of (14) as ∞→t , we have 
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So 
 

WL λ=  (16) 
 

This is known as Little’s Formula and it holds under very general circumstances.  We 
can similarly show that 
 

WL qq λ=  (17) 
 

and 
 

µ
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where  is the average number in service and W  is the average service time.  Finally 
we also have, 

Ls s

 

µ
1

+=W qW  (19) 

 
or the average time spent in the system is the sum of the average time spent waiting for 
service to begin plus the average service time. 
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4. A framework for Markovian queues 
 
A Markovian stochastic process is one in which the conditional probability of being in 
any state at some future time given the present and past states equals the probability of 
being in the state in the future given only the present state.  That is, the past history of the 
system does not provide any information needed to predict future states. 
 
If the arrivals are Poisson and the service times are Exponential, the underlying process is 
Markovian. 
 
Let  
 

λn  = (Poisson) arrival rate with n people in the system 
µ n  = service rate with n people in the system 
 

Then we can write, letting  be the probability of being in state i at time t, ( )tPi
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If we bring  to the left hand side of (20) and (21) and divide by ( )tPi t∆ , we have 
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Taking the limits as ∆ , we have 0→t
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which are known as the Chapman-Kolmogorov equations.   
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Now, if we are in steady-state, the state probabilities do not depend on time; i.e., 

 and ( ) tit PP ii ∀∀= ;
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Solving (26) for  in terms of  P1 P0
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Let us now write (27) for i=1. 
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We can now verify this by showing that it holds for j+1 
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Q.E.D. 
 
Equation (30) combined with the condition 
 

1
0
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enables us to find all the state probabilities.  From these, additional quantities of interest 
may be found.  For example,  
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and 
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where s is the number of servers. 
 
Before discussing some of the more common examples of the use of equation (30), we 
will show two alternate approaches to developing the steady-state balance equations 
(26) and (27).  Consider the following state-diagram. 
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In which λ j and µ j  may be thought of as the rates at which we move from state j upward 

or downward respectively. 
 
In steady state, the rate at which probability flux (if you will) leaves state j must equal the 
rate at which probability flux enters state j  If we now isolate state j (j=1, 2, …), we have 
 

j-1 j j+1

λ 1−j λ j

µ j µ 1+j

j-1 j j+1

λ 1−j λ j

µ j µ 1+j

 
The rate of probability flux out of the dashed circle must equal the rate in 
 

Rate out = rate in (34) 
 

( ) ,...2,11111 =+=+ ++−− jPPP jjjjjjj µλµλ  (35) 

 
which is identical to equation (27).  Similarly, for state 0, we have 
 

PP 1100 µλ =  (36) 
 

which is identical to equation (26). 
 
An alternative approach is to consider an imaginary slice between states j and j+1 
(j=0,1,…). 
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j j+1

λ j
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j j+1

λ j
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In steady state, the net rate of probability flux across any such cut must be zero.  This 
implies, 
 

Rate to the right = Rate to the left (37) 
 
Or 
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But (38) simply says 
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which aggress with (30). 
 
 

5. Examples 
 

M/M/1 Queue 
 
Consider a queue with a single server, Poisson arrivals (independent of the state of the 
system) and Exponential service times, also state independent.  That is, 
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where 
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Combining equations (14) and (31) we have 
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These are the M/M/1 Queue State Probabilities.  Note that this is a Geometric 
Distribution.  We therefore have: 
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For 1<ρ  we have 
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The condition 1<ρ , needed for equations (44) and (47) is known as the steady-state 
condition.  It says that the arrival rate must be strictly less than the service rate if steady-
state conditions are to hold.  If 1≥ρ , the queue grows without bound. 
 

Note that equations (48)-(51) all are proportional to 
ρ−

1
1

.  As the utilization ratio, ρ , 

approaches 1.0, performance gets very bad.  This is illustrated below: 
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ρ
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For example, consider a single toll 
booth that can serve 360 people 
(cars) per hour, or one every 10 
seconds, on average.  We have the 
values shown in the table below.  
Note that if the arrival rate is 300 
cars per hour (5/6 of the capacity) it 
takes a minute to get through the 
toll.  If the arrival rate increase by 
10 percent, it takes 2 minutes.  At 
345 cars per hour, it takes 4 m
to get through the toll.  Can you 
hear the complaints to the state 
government yet? 

inutes 

 
 
 arrivals 

per hour
λ ρ L W Wq Lq

120 0.333 0.5 15 5 0.167
180 0.500 1 20 10 0.500
240 0.667 2 30 20 1.333
270 0.750 3 40 30 2.250
300 0.833 5 60 50 4.167
330 0.917 11 120 110 10.083
345 0.958 23 240 230 22.042

Times in seconds 
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Now let us compute the variance of the number in the system, denoted by Var  ( )N
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So Var  goes up even faster than does L as ρ approaches 1.0  To continue with the 
example, we get 

( )N
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Note that the standard deviation of 
the number in the system is 
approximately equal to the number 
in the system itself. 
 
Now let us compute the p
of finding m or more people in the
system. 

robability 
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λ ρ L Var(N) STD(N)
120 0.333 0.5 0.750 0.866
180 0.500 1 2.000 1.414
240 0.667 2 6.000 2.449
270 0.750 3 12.000 3.464
300 0.833 5 30.000 5.477
330 0.917 11 132.000 11.489
345 0.958 23 552.000 23.495
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and in particular 
 

( ) ( ) ρ== waitPP moreor  1  (56) 
 
We can also compute the probability density function of the time in the system.  If you 
arrive to find m people ahead of you, which occurs with probability ( , your time 
in the system will be the sum of m+1 independent, identically distributed (iid) 
Exponential random variables, or will have an Erlang m+1 distribution.

)ρρ m−1

1  The moment 
generating function (MGF) of an Erlang m+1 distribution (with parameter λ) is 
 

                                                 
1  This derivation and that which follows for the waiting time distribution assume a first come first 

served (FCFS) queue discipline.  The moment generating function of a random variable X  is given by 
( )esXE
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 where s is a parameter of the MGF which should not be confused with the s used below for 
the number of servers.  For the exponential distribution we have 
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product of the MGFs of the individual random variables.  Thus, the MGF of the Erlang m+1 
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So the unconditional MGF of the time in the system is 
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But this is just the MGF of an Exponential distribution  
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which has a mean of 
 

( ) λµµρ −
=

−
=

1
1

1W  

 
in agreement with (49). 
 
Similarly, if you arrive to find m people ahead of you, , your 1≥m wait time has an 
Erlang-m distribution.  The probability of m people ahead of you, conditional on  is 1≥m
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as before.  Therefore, the unconditional probability distribution of waiting time is 
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with a mean 
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as in (50). 
Finally, let us consider the distribution of times between departures from the system.  To 
do so, we need to consider two cases: 
 

a) If the system is empty, the time until the next departure is the sum of an 
Exponential random variable with mean λ1  (the time until the next arrival) plus 
the service time which is Exponential with mean µ1 .  In this case, the MGF of 

the time until the next departure is 
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− ss µ
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b) If the system is not empty, the time until the next departure is Exponential with 

mean µ1  and the MGF of this time is simply 
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So the unconditional MGF of the time until the next departure is  
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 (60) 

 
 
So the inter-departure times are Exponential or the departure process is Poisson with 
mean rate λ, just like the arrival process.  Note that while it should not be surprising that 
the mean arrival rate and the mean departure rates are equal (since what goes into the 
queue in the long run must come out), what is perhaps more surprising is that the 
distribution of the departure process is the same as the distribution of the input process 
for this queue.  This result is most useful in modeling a series of queues.  Burke has 
shown that this holds for an M/M/s queue.  In both cases, there can be no limit on the 
number in the system for this result to be true. 
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M/M/1 Queue with a restricted queue length 
 
Suppose now that we limit the number in the system to M.  In other words, 
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Then 
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by equation (30) and by (31) we have 
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and 
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 (63) 
 
This is clearly messy.  The table below gives values of L for various values of M and ρ . 
 
 
 
 
 

ρ 1 2 3 10 100 10000000
0.1 0.091 0.108 0.111 0.111 0.111 0.111
0.3 0.231 0.345 0.396 0.429 0.429 0.429
0.5 0.333 0.571 0.733 0.995 1.000 1.000
0.7 0.412 0.767 1.069 2.111 2.333 2.333
0.9 0.474 0.930 1.369 3.969 8.998 9.000

M
 
 
 
 
 
 
As ρ  goes up, the average number in the system goes up.  As M goes up, L approaches 
that of an M/M/1 queue (as shown in the final column) with no restriction on the queue 
length.  For small values of ρ , the limit on the number in the system has little effect; as 
ρ  goes up, the effect of M increases. 
 
To compute W, we need the effective arrival rate, λeff .  Note that when there are M 
customers in the system, any additional arrivals are tuned away or lost.  So, 
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Now 
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and  
 

WLW qeffqq W λµ
=−= and1  (66) 

 
The equations above assume that 1≠ρ .  For 1=ρ , we get the following revised 
equations: 
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M/M/s Queue 
 
We now consider a queue with Poisson arrivals (independent of the state) s identical 
servers each operating with an Exponential service time distribution and no limit on the 
queue lengths.  We assume a single queue (see the diagram below). 
 
 
This yields 
 







+=

=
=

=

,...1,

,...,2,1

ssns

snn

n

n

µ

µ

λ

µ

λ

 (67) 

 
Substituting into equation (30), we get 
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for  
 

1<
µ
λ
s

, the steady state condition (70) 
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We can also derive 
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and again 
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WL λ=  (73c) 

 
Note that if s=1, we have 
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which agree with (45) and (51) respectively. 
 
Note that the configuration assumed here is given by the figure below 
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The state transition diagram is given by 
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Consider, for example, an airport check-in line with 4 servers.  Let min 21
=

µ
, so 5.0=µ  

and we require 2<λ  or less than 120 passengers per hour arriving for checkin at the four 
servers.  The following table gives the results for this case 
 

λ (per min) λ (per hr) µ P0 Lq Wq W L
0.5 30 0.5 0.367 0.007 0.014 2.014 1.007

1 60 0.5 0.130 0.174 0.174 2.174 2.174
1.5 90 0.5 0.038 1.528 1.019 3.019 4.528

1.75 105 0.5 0.015 5.165 2.951 4.951 8.665
1.9 114 0.5 0.005 16.937 8.914 10.914 20.737

1.95 117 0.5 0.002 36.859 18.902 20.902 40.759
 
Now suppose 95.1=λ .  Consider adding servers 

s λ (per min) λ (per hr) µ Lq Wq W L L
4 1.95 117 0.5 0.002 36.859 18.902 20.902 40.759
5 1.95 117 0.5 0.015 1.830 0.939 2.939 5.730
6 1.95 117 0.5 0.019 0.485 0.249 2.249 4.385

 
Note that  
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In the M/M/s case we have 
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So 
µ
λρ
s

=  which is the utilization ratio or the fraction of time each server is busy.  

Note that this is not equal to the probability that all servers are busy.  This is given by 
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M/M/∞ queue, or the Self-Service Queue 
 
In this case, one never has to wait.  We have 
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and  
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which is just the Poisson distribution.  So, 
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and  
 

0== LW qq  (79) 
 
As it turns out, (76) holds for the M/G/∞ queue as well (when we have any general 
service time distribution with a finite mean and variance and the service times are 
independent and identically distributed).  The M/G/∞  results are useful when queuing 
delays are unlikely, as in the case of an EMS (emergency medical services) system. 
 
 
 
 

M/M/s Queue with no waiting room 
 
Now consider an M/M/s queue in which there is no room to wait.  Here we have: 
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and the steady state transition diagram looks like 
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And 
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from which L may be computed numerically.  Alternatively, we can derive 
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Again, to compute W, we need λeff  which is given by 
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and as expected 
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For example, consider a parking lot with 10 spaces and an average stay of hours 21
=

µ
 so 

5.0=µ .  In this case we obtain: 
 

Note that we do not require 5=< µλ s  since we 
have a finite queue.  Also note that 

( ){ }fullPeff −= 1λλ . 

λ (per hr) L P(full)
1 2.00 3.82E-05
2 3.98 0.005
3 5.74 0.043
5 7.85 0.215
7 8.72 0.377
10 9.24 0.538
20 9.69 0.758

 
 
 
 

 
 
Again, it turns out that equations (83) and (84) and (85) hold for an M/G/s queue with no 

waiting area, where (  timeservice1 E=
µ

) .  Note that as ∞→s  we get the results for the 

M/G/  queue, as expected. ∞
 
Equation (83) is known as Erlang’s Loss Formula 
 

 27


	Evanston, IL  60208
	Introduction to the problem
	Relations between key probability distributions
	A few basic relations
	A framework for Markovian queues
	Examples
	M/M/1 Queue
	M/M/1 Queue with a restricted queue length
	M/M/s Queue
	M/M/? queue, or the Self-Service Queue
	M/M/s Queue with no waiting room



