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1. Example of a more complex problem (a classic example) 
 
Consider a gas station.  Let us limit that the number of cars that may wait to one car.  
Assume that the station has 2 pumps as shown below.  If a car arrives to find: 
 

a) No one in the 
station, it goes to 
pump 1 

b) Pump 2 occupied, 
it waits if there is 
room.  Note that we assume that it cannot swing around the car at pump 2 even if 
pump 1 is empty due to space limitations. 

Pump 1 Waiting spacePump 2

Flow of cars

Pump 1 Waiting spacePump 2

Flow of cars

c) Pump 1 busy and pump 2 idle, it goes to pump 2 
d) Someone else waiting, it is lost (like a call to a busy phone line with no answering 

system). 
 
We assume that arrivals occur according to a Poisson process with rate λ, and that 
service times at the pumps are Exponentially distributed with rates µ1 and µ2, 
respectively. 
 
From the above, we see that pump 1 may be in two states:  occupied and empty.  Pump 2 
may be in one of 3 states:  empty, occupied and pumping, and occupied and blocked (the 
car is finished, but cannot leave the station because a car is still at pump 1).  Finally, the 
waiting space may be occupied or empty.  Let us define a 3-dimensional state space 
described by 
 
 (state of pump 1, state of pump 2, number waiting) 
 
So, state (0,1,0) indicates that pump 2 is occupied and pumping.  State (1,b,1) indicates 
that pump 1 is occupied, pump 2 is blocked and one person is waiting.  Some of the 
2x3x2 = 12 states are not possible, e.g., (0,0,1), (0,b,0), (0,b,1), (1,0,1).  Why? 
 
Our state diagram now is shown below.  Our steady state equations are: 
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Our steady state balance equations are 
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All of which are in terms of , which becomes P110
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Consider the case in which 6,10 21 === µµλ .  We find 
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If λ  and µ  are measured in terms of hours, this comes to 15.86 minutes (which clearly is 
rather long). 
 
Now suppose our station owner can invest in one faster pump to replace an existing one.  
The new pump has 8=µ .  She wants to place the pump at the location (pump 1 or pump 
2) that maximizes his throughput or maximizes λ eff  or minimizes 

.  Why is this a good measure for the pump owner to use?  
For 
(  joincannot  arrivalP )queue

 
( ) 3394.0queue joincannot  arrivalget   we,6810 21 ==== Pµµλ  
( ) 3562.0queue joincannot  arrivalget   we,8610 21 ==== Pµµλ  

 
So she should replace pump 1 with the faster pump.  Justify this in your own mind. 
 
 

2. The M/G/1 queue 
 
In this queue, we must be careful.  We lose the Memoryless property of the Exponential 
service time distribution.  To preserve the Markovian analysis, let us examine the queue 
only after (immediately after) a departure.  In so doing, we do not need to be concerned 
with how long the person being served has been in service.  These points in time are 
called renewal points (in the stochastic processes literature) because the system renews 
itself (in some sense) at these points in time.  It turns out that the average number in the 
system just after a departure equals the average number in the system at a randomly 
selected point in time. 
 
To analyze the queue, we will use a “trick” that applies or works well only in this case.  
A more rigorous approach involves a more complete understanding of stochastic 
processes and a very good familiarity with probability generating functions (PGFs) and 
moment generating functions (MGFs).  (See Gross and Harris or Clarke and Disney.) 
 
Let 
 

 timeservice th-i  theduring arrive  topeople ofnumber 
departure th-i after thejust  system  thein people ofnumber  
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You should justify these for yourself. 
 
Define 
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Then 
 

δ+−+= ++ 111 RNN iii  for all  (*) N i
 
Again, you should justify this for yourself. 
 
In steady state, we should have ( ) ( )NN ii EE =+1 , so if we take the expectation of the 
equation above we get 
 

( ) ( ) ( ) ( )δEEEE RNN iii +−+= ++ 111  
 
or 
 

( ) ( )RiEE 11 +−=δ  
 
Now, also in steady state, ( )RiE 1+  should equal ( )RiE , or ( )RiE 1+  should be independent 
of the time notation i+1. 
 
Given that the i+1st service time takes τ minutes, the conditional expected number of 
arrivals is λτ (since the arrivals are Poisson).  The unconditional expected number of 
arrivals is ( )SEλ  where  is the mean service time.  So, ( )SE
 

( ) ( ) ( ) ρλδ −=−=−= + 111 1 SEEE Ri  
 
where we define ( )SEλρ =  as before. 
 
More formally, we can say 
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where . ( )SVar=σ 2

 
Finally, note that 
 

1. ( ) ( ) ρδδ δδ −=== 1 so 22 EE  
2. ( ) 0 so 0 == NEN δδ  

 
Now square both sides of (*) 
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Taking expectations, noting that ( ) ( ) ( )NEEE NN ii ==+1  and ( ) ( ) ( )NNN EEE ii

222
1 ==+  in 

steady state and  and  are independent as are N i Ri 1+ δ  and , we get Ri 1+
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This is the Pollaczek-Khintchine formula. 
 
So far, this formula appears to apply only when we look at the queue just after a 
departure.  However, we now show that 
 

pnn =π  
 
where 
 

 timeselectedrandomly any at  system  thein  ofy probabilit statesteady 
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Following Gross and Harris (pp. 235-236), let 
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Now since the system only moves up or down in unit steps,  
 

( ) ( ) 1≤− tt DA nn  (a) 
 
That is, in the interval (0,t)  and ( )tAn ( )tDn  differ by at most 1.  As long as the system is 
not saturated (ρ<1), then 
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where A(T) and D(T) are the total number of arrivals and departures in time (0,T) 
respectively. 
 
Now divide (a) by A(T) and take the limit to obtain 
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where the first equality uses equation (b).  Since arrivals occur according to a Poisson 
process independent of time,  
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Also, by definition 
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Substituting (g) and (f) into (e), we get the desired result that 
 

npnn ∀=π  (h) 
 

This implies that the Pollackek-Khintchine formula applies for any point in time.  So, we 
may write 
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and Little’s formula applies, so 
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Using these equations, we can begin to get a feel for the impact of variability in the 
service time distribution on the performance of the queue.  Consider two different 
queues:  the M/M/1 queue with Exponential service times and the M/D/1 queue with 
deterministic service times.  For the M/M/1 queue, we have µσ 22 1= , while for the 
M/D/1 queue we have .  If we now look at the time in the queue before service, we 
find 
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Thus, the waiting time in the queue for the M/M/1 queue is twice the waiting time in 
the queue for the M/D/1 queue.  Variability HURTS. 
 
 

3. The G/G/1 Queue 
 
In this brief section, we outline the results for an approximation of the behavior of a 
single server queue with any general inter-arrival time distribution and any general 
service time distribution.  We can approximate the waiting time in the queue by: 
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where 
 

µ
1  is the mean service time as before  

ρ  is the utilization ratio or µλ  where λ  is the arrival rate 
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ca
2  is the squared coefficient of variation of the inter-arrival time distribution (the 

variance divided by the square of the mean) 
ce

2  is the squared coefficient of variation of the service time distribution. 
 
Note that for the M/M/1 queue, we have  and so this equation boils down to 122 == cc ea

µρ
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LqWL  and ,,

 which is the exact result for the M/M/1 queue (see equation (50) of the 

Notes on Queuing Theory).  Also note that once we have the value of the waiting time in 
the queue, we can get the other three key measures of queueing performance 
( ) quite readily. 
 
 

4. An approximation of the M/M/s queue 
 

Note that the equations for the M/M/s queue are rather messy and involve a rather 
difficult formula for computing , the probability that the system is empty.  We can 
approximate the performance of this system using the following equation: 
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To see how well this approximation works, consider an M/M/5 queue with 500=λ  

arrivals per hour and 301
=

µ
 seconds (or 

120
1

3600
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µ

 hours).  The exact formulas yield 

22.4 seconds for the waiting time in the queue, while the approximation yields 23.0 
seconds.  If we consider an M/M/9 queue with twice the arrival rate, the exact formula 
yields 34.2 seconds while the approximation yields 34.4 seconds. 
 
 

5. An approximation of the G/G/s queue 
 

We can also approximate the G/G/s queue performance as follows: 
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ccW  where all of the terms are as defined above. 
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