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Abstract— We address the problem of adaptive command
following and disturbance rejection for a nonlinear planar
multilink mechanism interconnected by torsional springs and
dashpots. We consider a nonlinear multilink mechanism where
a control torque is applied to the hub of the multilink mech-
anism, and the objective is to control the angular position of
the tip, which is separated from the hub by N links. In this
paper, we derive the nonlinear equations of motion for the N
link mechanism. We linearize these equations of motion and
demonstrate that such systems have nonminimum-phase zeros
when the control torque and angular position sensor are not
colocated. To control this mechanism, we use a retrospective cost
adaptive controller, which is effective for nonminimum-phase
systems provided that you have an estimate of the nonminimum-
phase zeros. We consider both command following and distur-
bance rejection problems, where the spectrum of the commands
and disturbance are unknown.

I. INTRODUCTION

Nonminimum-phase zeros present a fundamental impedi-
ment to the achievable performance of a closed-loop system,
limiting the bandwidth and, in the case of positive zeros,
causing initial undershoot or direction reversals under step
inputs [1, p. 289], [2], [3]. Nonminimum-phase zeros are also
challenging for adaptive control methods, which typically
assume that the plant is minimum phase [4]. For discrete-
time systems with nonminimum-phase zeros, the adaptive
control method in [5], [6] requires that the nonminimum-
phase zeros be known.

In view of these challenges, it is of interest to deter-
mine physical properties that give rise to nonminimum-
phase zeros. It is known that the transfer function of a
flexible structure with colocated force actuation and velocity
sensing is positive real and thus minimum phase [7]. This
property suggests that noncolocation is the underlying cause
of nonminimum-phase zeros. It was shown in [8], however,
that, for a string of translating masses interconnected by
springs and dashpots, the noncolocated transfer functions
between every pair of masses are minimum phase. Therefore,
noncolocation per se is not the source of nonminimum phase
zeros.

A vehicle with rear-wheel steering, or, equivalently, a car
driving in reverse, exhibits initial undershoot in the sense that
the driver initially moves in the direction that is opposite to
the ultimate direction of motion. This example, as well as
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the examples in [9], [10], suggest that nonminimum phase
zeros may arise from a combination of noncolocation and
rotational motion.

In place of the translating masses considered in [8], we
thus consider a planar multilink mechanism with rotating
masses interconnected by torsional stiffnesses and dashpots.
This mechanism can be viewed as a lumped approximation
of a flexible rotating arm, whose dynamics and control are
widely studied for applications such as space structures and
hard drives [11], [12].

The multilink mechanism is nonlinear, and thus the deriva-
tion of its equations of motion is more complicated than the
case of translating masses considered in [8], whose dynamics
are linear. Analysis of the zeros of the rotating masses must
therefore be based on a linearized model. A related analysis
is given in [9].

For the linearized model of the rotating masses we show
that the damping and stiffness matrices have the same form as
in the case of translating masses. However, the key difference
between the translational and rotational cases is the inertia
matrix, which is diagonal for the translating masses but
nondiagonal for the rotating masses. With this distinction in
mind, the first objective of this paper is to revisit the analysis
of [8] and show how the off-diagonal entries of the inertia
matrix for the rotating masses give rise to nonminimum-
phase zeros.

Next, we consider adaptive control of the planar multilink
mechanism using the approach of [6]. Since this method
requires knowledge of the nonminimum-phase zeros, we
assume that this information is available, either by analytical
modeling or system identification [13]. We then apply the
retrospective adaptive control algorithm of [6] on both the
linearized and nonlinear system and assess the resulting
performance for problems of command following and dis-
turbance rejection.

II. NONLINEAR EQUATIONS OF MOTION

In this section, we derive the nonlinear equations of
motion for an N -link planar arm system by using Lagrange’s
equations. First, we define the parameters of the system.
Let p1 be the point where the first link is connected to the
horizontal plane, and, for n = 2, ..., N , let pn be the point
where the nth link is connected to the (n− 1)th link. Next,
for n = 1, ..., N , let qn be the center of mass of the nth

link. Furthermore, for n = 1, ..., N , let mn be the mass of
the nth link, let ln be the length of the nth link, let cn be
the damping at the joint pn, let kn be the stiffness of the



joint pn, and let In
4
= 1

12mnl
2
n be the moment of inertia of

the nth link about qn.
Next, we define the inertial frame FA with orthogonal

unit vectors (̂ıA, ̂A, k̂A), where ı̂A and ̂A lie in the plane of
motion of the N -link planar arm, and k̂A is orthogonal to the
plane of motion. For simplicity, we assume that the origin
of FA is located at p1. In addition, for n = 1, ..., N , let FBn

be a frame attached to the nth link. More specifically, FBn

is a body-fixed frame which rotates as the nth link rotates.
For n = 1, . . . , N , let FBn have orthogonal unit vectors
(̂ıBn

, ̂Bn
, k̂Bn

), where ı̂Bn
is in the direction from p1 to q1,

̂Bn
is orthogonal to ı̂Bn

and in the plane of motion, and
k̂Bn

is orthogonal to the plane of motion. Note that, for all
n = 1, . . . , N , k̂Bn = k̂A. Finally, for n = 1, . . . , N , let
θn be the angle from ı̂A to ı̂Bn . The N -link planar arm is
shown in Figure 1. To construct the Lagrangian for the N -
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Fig. 1. N-link planar arm system. All motion is in the horizontal plane.

link system, we derive expressions for kinetic and potential
energies, and thus we require the translational and rotational
velocities of each linkage. For n = 1, . . . , N , the rotational
velocity of FBn

with respect to FA resolved in FA is given
by ωn

4
=
⇀
ωBn/A

∣∣∣
A

=
[

0 0 θ̇n
]T

. Furthermore, for n =
1, . . . , N , the orientation matrix of FBn

with respect to FA

is given by

OBn/A =

 cos(θn) sin(θn) 0
− sin(θn) cos(θn) 0
0 0 1

 . (1)

Next, for n = 1, . . . , N , let
⇀
r qn/p1 be the position vector

from p1 to qn. For n = 1, . . . , N , the velocity of qn relative
to p1 with respect to FA is given by

⇀

V qn/p1/A
4
=

A•
⇀
r qn/p1=

A•
⇀
r qn/pn

+
n−1∑
i=1

A•
⇀
r pi+1/pi

, (2)

where
A•
⇀
r denotes the derivative of

⇀
r taken in the frame FA.

Next, we apply the transport theorem to each term in (2),
which yields

⇀

V qn/p1/A =

(
Bn•
⇀
r qn/pn

+
⇀
ωBn/A ×

⇀
r qn/pn

)

+
n−1∑
i=1

(
Bi•
⇀
r pi+1/pi

+
⇀
ωBi/A ×

⇀
r pi+1/pi

)
.

Note that, for n = 1, . . . , N ,
⇀
r qn/pn

is fixed relative

to FBn , and thus
Bn•
⇀
r qn/pn

= 0. Furthermore, note that for
i = 1, . . . , N − 1

⇀
r pi+1/pi

is fixed relative to Bi, and thus
Bi•
⇀
r pi+1/pi

= 0. Therefore,
⇀

V qn/p1/A =
⇀
ωBn/A ×

⇀
r qn/pn

+
n−1∑
i=1

⇀
ωBi/A ×

⇀
r pi+1/pi

.

For n = 1, . . . , N , resolving
⇀

V qn/p1/A in FA yields
⇀

V qn/p1/A

∣∣∣
A

=
⇀
ωBn/A

∣∣∣×
A

⇀
r qn/pn

∣∣∣
A

+
n−1∑
i=1

⇀
ωBi/A

∣∣∣×
A

⇀
r pi+1/pi

∣∣∣
A
, (3)

where, for n = 1, . . . , N ,

⇀
ωBn/A

∣∣∣×
A

=

 0 −θ̇n 0
θ̇n 0 0
0 0 0

 , (4)

⇀
r qn/pn

∣∣∣
A

= OBn/A

[
ln
2 0 0

]T
, (5)

and, for n = 1, . . . , N − 1,
⇀
r pn+1/pn

∣∣∣
A

= OBn/A

[
ln 0 0

]T
. (6)

Furthermore, for n = 1, . . . , N , define Vn
4
=∣∣∣∣∣∣∣∣⇀V qn/p1/A

∣∣∣
A

∣∣∣∣∣∣∣∣. For demonstration, it follows from (3)-(6)

that
⇀

V q1/p1/A

∣∣∣
A

=

 0 −θ̇1 0
θ̇1 0 0
0 0 0

OB1/A

 l1
2
0
0


=

 − 1
2 l1 sin(θ1)θ̇1

1
2 l1 cos(θ1)θ̇1

0

 ,
and thus V1 = 1

2 l1θ̇1. Following this same procedure for
n ≥ 2, yields, for n = 1, . . . , N ,

Vn =

[
1
4 l

2
nθ̇

2
n +

n−1∑
i=1

(
l2i θ̇

2
i + lnliθ̇nθ̇i cos(θi − θn)

)

+2
n−1∑
i 6=j

lilj θ̇iθ̇j cos(θi − θj)

1/2

. (7)

For n = 1, . . . , N , the kinetic energy of the nth link is

Tn
4
= 1

2mnV
2
n + 1

2In‖ωn‖
2

= mn

2

(
1
3 l

2
nθ̇

2
n +

n−1∑
i=1

(
l2i θ̇

2
i + lnliθ̇nθ̇i cos(θi − θn)

)

+2
n−1∑
i 6=j

lilj θ̇iθ̇j cos(θi − θj)

 , (8)

and the total kinetic energy is defined by T
4
=
∑N
n=1 Tn.

Next, for n = 1, . . . , N , the potential energy of the nth link
is



Un
4
=

{
1
2k1θ

2
1, n = 1,

1
2kn(θn−1 − θn)2, n > 1,

(9)

and the total potential energy is defined by U
4
=
∑N
n=1 Un.

Thus, the Lagrangian for the N -link system is L
4
= T−U .

Next, for n = 1, . . . , N , let Fcn
be the dissipative torque

resulting from the damping at joint pn, that is,

Fcn

4
=

{
1
2c1θ̇

2
1, n = 1,

1
2cn(θ̇n−1 − θ̇n)2, n > 1.

(10)

Furthermore, for n = 1, . . . , N , let un be an external
torque applied at pn. Therefore, for n = 1, . . . , N the
nonlinear equations of motion are given by

d

dt

∂L

∂θ̇n
− ∂L

∂θn
+
∂Fcn

∂θ̇n
= un. (11)

Now, we specialize to the case where N = 2. In this case,
the Lagrangian is

L = 1
2m1( 1

3 l
2
1θ̇

2
1)− 1

2k1θ
2
1 − 1

2k2(θ1 − θ2)2

+ 1
2m2( 1

3 l
2
2θ̇

2
2 + l21θ̇

2
1 + l1l2θ̇1θ̇2 cos(θ1 − θ2)), (12)

and it follows from (11) and (12) that the equations of motion
are given by

u1 = ( 1
3m1l

2
1 +m2l

2
1)θ̈1 + 1

2m2l1l2 sin(θ1 − θ2)θ̇22
+ 1

2m2l1l2 cos(θ1 − θ2)θ̈2 + (k1 + k2)θ1 − k2θ2

+ (c1 + c2)θ̇1 − c2θ̇2, (13)

u2 = ( 1
3m2l

2
2)θ̈2 − 1

2m2l1l2 sin(θ1 − θ2)θ̇21
+ 1

2m2l1l2 cos(θ1 − θ2)θ̈1 − k2θ1 + k2θ2

− c2θ̇1 + c2θ̇2. (14)

III. LINEARIZED EQUATIONS OF MOTION

In this section, we derive linearized equations of motion
for N -link system. First, we linearize the equations of motion
for the two-link case. Then, we linearize the equations of
motion for the three-link case. Finally, we generalize the
linear equations of motion to the N -link case.

First, define

Θ
4
=
[
θ1 . . . θN

]T
, Υ

4
=
[
u1 . . . uN

]T
.

We linearize about the (Θ, Θ̇) ≡ 0 equilibrium. Note that
if, for all n = 1, ..., N , kn > 0, then (Θ, Θ̇) ≡ 0 is the
only equilibrium of the N -link system . Let δΘ be the linear
approximation of Θ around the equilibrium (Θ, Θ̇) ≡ 0. To
obtain the linearization, we use the small angle approxima-
tions sin(θ1 − θ2) ≈ δθ1 − δθ2, cos(θ1 − θ2) ≈ 1.

Linearizing the two-link system, with nonlinear equations
of motion (13) and (14), about (Θ, Θ̇) ≡ 0 yields

MδΘ̈ + CdδΘ̇ +KδΘ = Υ, (15)

where

M
4
=
[

(m1
3 +m2)l21

m2
2 l2l1

m2
2 l1l2

m2
3 l

2
2

]
,

Cd
4
=
[
c1 + c2 −c2
−c2 c2

]
,K

4
=
[
k1 + k2 −k2

−k2 k2

]
.

Similarly, linearizing the three-link system about (Θ, Θ̇) ≡
0 yields (15), where

M
4
=

 (m1
3 +m2 +m3)l21 (m2

2 +m3)l2l1 m3
2 l1l3

(m2
2 +m3)l1l2 (m2

3 +m3)l22
m3
2 l2l3

m3
2 l1l3

m3
2 l2l3

m3
3 l

2
3

 ,
Cd
4
=

 c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

 ,
K
4
=

 k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

 .
Finally, extending this technique, we obtain the lineariza-

tion for the N -link system, which is given by (15), where

M
4
=

 γ1,1 . . . γ1,N

...
. . .

...
γN,1 . . . γN,N

 ,

Cd
4
=


c1 + c2 −c2 0 . . . 0
−c2 c2 + c3 −c3 . . . 0
0 −c3 c3 + c4 . . . 0
...

...
...

. . .
...

0 0 0 . . . cN

 ,

K
4
=


k1 + k2 −k2 0 . . . 0
−k2 k2 + c3 −k3 . . . 0
0 −k3 k3 + k4 . . . 0
...

...
...

. . .
...

0 0 0 . . . kN

 ,
where, for g = 1, ..., N,

γg,g
4
=

mg

3
+

N∑
i=g+1

mi

 l2g, (16)

and, for g = 1, ..., N and h = g + 1, ..., N ,

γg,h
4
=

(
mh

2
+

N∑
i=h+1

mi

)
lglh, (17)

and, for g, h = 1, ..., N , γh,g = γg,h.

IV. NONMINIMUM-PHASE ZEROS OF THE N -LINK ARM

In this section, we prove that, for the two-link system, the
linear transfer function from u1 to δθ2 has one nonminimum
phase zero. In fact, this transfer function has one positive
zero. For the N -link system, we numerically demonstrate
that the linear transfer function from u1 to δθN (i.e., from
the hub to the tip of the multilink mechanism) has N − 1
nonminimum-phase zeros.

For the N -link system, the linearized equations of motion
(15) can be written as[

δΘ̇
δΘ̈

]
= A

[
δΘ
δΘ̇

]
+BΥ, (18)

where

A
4
=
[

0N×N IN
−M−1K −M−1Cd

]
, B
4
=
[

0N×N
M−1

]
.



Next, for n = 2, . . . , N , the transfer function from u1 to
δθn is given by

Gn(s)
4
=
δθn(s)
u1(s)

= Cn(sIN −A)−1B1, (19)

where

Cn
4
=
[

01×n−1 1 01×2N−n
]
, B1

4
= B

[
1

01×N−1

]
.

For the two-link case (i.e., N = 2), the transfer function
from u1 to δθ2 can be expressed as

G2(s) =
δθ2(s)
u1(s)

=
a2s

2 + a1s+ a0

b4s4 + b3s3 + b2s2 + b1s+ b0
,

where the coefficients a0, . . . , a2, b0, . . . , b4 depend on the
physical parameters of the system. More specifically, the
numerator coefficients of G2(s) are given by a2 =
−18l1l2m2, a1 = 36c2, a0 = 36k2. Since the zeros of G2(s)
are the roots of the quadratic polynomial a2s

2+a1s+a0, we
can solve for these roots expressed in the physical parameters
of the system. More specifically, the quadratic polynomial

a2s
2 + a1s + a0 has the roots zc,1 = c2+

√
c22+2k2l1l2m2

l1l2m2

and zc,2 = c2−
√
c22+2k2l1l2m2

l1l2m2
. Since the physical parameters

l1, l2,m2, c2, and k2 are positive, it follows that zc,1 is
positive and zc,2 is negative. Thus, we conclude that G2(s)
has one nonminimum-phase zero.

For the N -link case, where N > 2, we conduct a numer-
ical study to investigate the properties of the zeros of the
transfer function from u1 to δθN . In particular, we let N =
3, . . . , 10, and for each value of N , we randomly generate
10,000 multilink systems. For each of the multilink systems,
the masses m1, . . . ,mN , the stiffnesses k1, . . . , kN , the
damping coefficients c1, . . . , cN , and the lengths l1, . . . , lN
are sampled from a uniformly generated random variable on
the interval (0, 100]. Next, we compute the linearized transfer
function GN (s) from u1 to δθN . For N = 3, . . . , 10, all
10,000 randomly generated multilink systems have N − 1
nonminimum-phase zeros in the transfer function GN (s). In
fact, all of the randomly generated multilink systems have
N − 1 positive zeros in the transfer function GN (s). Future
work will include a proof of the conjecture that, for an N -
link system, the linearized transfer function GN (s) from the
control torque at the hub to the angular position of the N th

link has N − 1 positive zeros.
Next, we discretize G2(s) using a zero-order hold on the

inputs. For this example, we consider the system parameters
given by m1 = 2 kg, m2 = 1 kg, l1 = 3 m, l2 = 2 m,
k1 = 7 N−m

rad , k2 = 5 N−m
rad , c1 = 10 kg−m2

rad , and c2 = 1
kg−m2

rad .
Discretizing G2(s) using a zero-order hold on the in-

puts results in a discrete-time transfer function, which
also has one nonminimum-phase zero. The location of this
nonminimum-phase zero depends on the sampling time used
for the discretization. The discrete-time nonminimum-phase
zero of G2(z) with the system parameters above and sampled
at a rate of 20Hz is located at approximately 1.08. Further-
more, note that the discrete-time system has one zero, which

results from sample data effects. In this case, the sampled-
data zero is located at −0.94.

V. REVIEW OF THE ADAPTIVE CONTROLLER

In this section, we review the cumulative retrospective cost
adaptive controller presented in [6]. First, consider the multi-
input, multi-output discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (20)
y(k) = Cx(k) +Du(k) +D2w(k), (21)
z(k) = E1x(k) + E2u(k) + E0w(k), (22)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu ,
w(k) ∈ Rlw , and k ≥ 0. Our goal is to develop an adaptive
controller that generates a control signal u that minimizes
the performance z in the presence of the exogenous signal
w. We assume that measurements of y and z are available
for feedback; however, we assume that a direct measurement
of w is not available. Note that w can represent either a
command signal to be followed, an external disturbance to
be rejected, or both.

We represent (20) and (22) as the time-series model from
u and w to z given by

z(k) =
n∑
i=1

−αiz(k − i) +
n∑
i=d

βiu(k − i) +
n∑
i=0

γiw(k − i),

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ Rlz×lu , γ0, . . . , γn ∈
Rlz×lw , and the relative degree d is the smallest non-negative
integer i such that the ith Markov parameter, either H0

4
= E2

if i = 0 or Hi
4
= E1A

i−1B if i > 0, is nonzero. Note that
βd = Hd.

Now, we present an adaptive control algorithm for the
general control problem represented by (20)-(22). We use
a strictly proper time-series controller of order nc, such that
the control u(k) is given by

u(k) =
nc∑
i=1

Mi(k)u(k − i) +
nc∑
i=1

Ni(k)y(k − i), (23)

where, for all i = 1, . . . , nc, Mi : N → Rlu×lu and
Ni : N → Rlu×ly are determined by the adaptive control
law presented below. The control (23) can be expressed as
u(k) = θc(k)φ(k), where

θc(k)
4
=
[
N1(k) · · · Nnc(k) M1(k) · · · Mnc(k)

]
,

φ(k)
4
=
[
yT(k − 1) · · · yT(k − nc)

uT(k − 1) · · · uT(k − nc)
]T ∈ Rnc(lu+ly).

Next, we define the retrospective performance

ẑ(θ̂c, k)
4
= z(k) +

ν∑
i=d

β̄i

[
θ̂c − θc(k − i)

]
φ(k − i), (24)

where ν ≥ d, θ̂c ∈ Rlu×(nc(ly+lu)) is an optimization
variable used to derive the adaptive law, and β̄d, . . . , β̄ν ∈
Rlz×lu . The parameters ν and β̄d, . . . , β̄ν must capture the



information included in the first nonzero Markov param-
eter and the nonminimum-phase zeros from u to z [6].
In this paper, we let β̄d, . . . , β̄ν be the coefficients of
the portion of the numerator polynomial matrix β(z)

4
=

zn−dβd + zn−d−1βd+1 + · · ·+ zβn−1 +βn that includes the
nonminimum-phase transmission zeros. More specifically,
let β(z) have the polynomial matrix factorization β(z) =
βU(z)βS(z), where βU(z) is an lz× lu polynomial matrix of
degree nU ≥ 0 whose leading matrix coefficient is βd, βS(z)
is a monic lu×lu polynomial matrix of degree n−nU−d, and
each Smith zero of β(z) counting multiplicity that lies on or
outside the unit circle is a Smith zero of βU(z). Next, we
can write βU(z) = βU,0znU +βU,1znU−1+· · ·+βU,nU−1z+
βU,nU , where βU,0

4
= βd. In this case, we let ν = nU + d

and for i = d, . . . , nU + d, β̄i = βU,i−d. For other choices
of the parameters ν and β̄d, . . . , β̄ν , see [6].

Defining Θ̂c
4
= vec θ̂c ∈ Rnclu(ly+lu) and Θc(k)

4
=

vec θc(k) ∈ Rnclu(ly+lu), it follows that

ẑ(Θ̂c, k) = z(k)−
ν∑
i=d

ΦT
i (k)Θc(k − i) + ΨT(k)Θ̂c, (25)

where, for i = d, . . . , ν, Φi(k)
4
= φ(k − i) ⊗ β̄T

i ∈
R(nclu(ly+lu))×lz , where ⊗ represents the Kronecker prod-
uct, and Ψ(k)

4
=
∑ν
i=d Φi(k).

Now, define the cumulative retrospective cost function

J(Θ̂c, k)
4
=

k∑
i=0

λk−iẑT(Θ̂c, i)Rẑ(Θ̂c, i)

+ λk(Θ̂c −Θc(0))TQ(Θ̂c −Θc(0)), (26)

where λ ∈ (0, 1], and R ∈ Rlz×lz and Q ∈
R(nclu(ly+lu))×(nclu(ly+lu)) are positive definite.

The cumulative retrospective cost function (26) is mini-
mized by a recursive least-squares (RLS) algorithm with a
forgetting factor [14]–[16]. Therefore, J(Θ̂c, k) is minimized
by the adaptive law

Θc(k + 1) = Θc(k)− P (k)Ψ(k)Ω(k)−1zR(k), (27)

P (k + 1) =
1
λ
P (k)− 1

λ
P (k)Ψ(k)Ω(k)−1ΨT(k)P (k), (28)

where Ω(k)
4
= λR−1 + ΨT(k)P (k)Ψ(k), P (0) = Q−1,

Θc(0) ∈ Rnclu(ly+lu), and the retrospective performance
measure zR(k)

4
= ẑ(Θc(k), k). Note that the retrospec-

tive performance measure is computable from (25) using
measured signals z, y, u, θc, and the matrix coefficients
β̄d, . . . , β̄ν . The cumulative retrospective cost adaptive con-
trol law is thus given by (27), (28), and

u(k) = θc(k)φ(k) = vec −1(Θc(k))φ(k). (29)

VI. NUMERICAL EXAMPLES

In this section, we use the retrospective cost adaptive
controller (27)-(29) to control the linearized and nonlinear
two-link system. In particular, we consider both the com-
mand following and disturbance rejection problems for the
linearized and nonlinear two-link system. We assume that u1

is the only available control input. We consider the two-link
system with parameters given in Section IV. The adaptive
controller (27)-(29) is implemented in feedback at 20Hz with
λ = 0.99, R = 1, nc = 8, P (0) = 1016I16, and θc(0) = 0.
Additionally, for each example, the system is allowed to run
open-loop for 7.5 seconds and then the adaptive controller
is turned on.

First, numerical simulations are performed using the lin-
earized and nonlinear two-link system to asses the adaptive
control’s performance on a command following problem.
The control objective is for θ2 to track a 0.8 Hz sinusoid
with a magnitude of 0.3 rad. We assume that the relative
degree d and the first nonzero Markov parameter are known,
that is, we let ν = d + 1 and β̄d = Hd. In this example,
d = 1 and Hd = −0.00032. In addition, we assume that
the location of the nonminimum-phase zero is known, but
no other information about the system is assumed to be
known. Figure 2 shows that the adaptive controller drives
performance variable z to zero.
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Fig. 2. Command following for the linearized two-link system: The adaptive
control (27)-(29) uses knowledge of the nonminimum-phase zero to track
a sinusoid with unknown frequency and amplitude. The adaptive control is
turned on after 7.5 seconds and drives the performance to zero.

Next, we implement the adaptive controller in feedback
with nonlinear plant, using the estimate of the nonminimum-
phase zero obtained from the linearized two-link system.
Figure 3 shows that the adaptive controller drives the per-
formance variable z toward zero, and the performance is
comparable to the linear case shown in Figure 2.

We simulated the nonlinear two-link system with physical
parameters given in Section IV and the adaptive controller
in feedback for various command amplitudes, and we found
that the adaptive controller is able to drive z toward zero for
all command amplitudes less than 0.4 rad (or 23 degrees).

Next, we consider the disturbance rejection problem,
where the control objective is to drive θ2 to zero, while a 1.6
Hz sinusoidal disturbance is applied at both p1 and p2. The
magnitudes of the disturbances at p1 and p2 are 0.2 rad and
0.4 rad, respectively. We assume that the relative degree d,
the first nonzero Markov parameter, and the location of the
nonminimum-phase zero are known, but no other information
about the system is assumed to be known. Figure 4 shows
that the adaptive controller is able to reject the disturbance



from θ2, and thus drives z to zero.
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Fig. 3. Command following for the nonlinear two-link system: The adaptive
control (27)-(29) uses knowledge of the linearized nonminimum-phase zero
to track a sinusoid with unknown frequency and amplitude. The adaptive
control is turned on after 7.5 seconds and drives the performance to zero.
The performance with the nonlinear system is comparable to the linear case
shown in Figure 2.
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Fig. 4. Disturbance rejection for the linearized two-link system: The
adaptive control (27)-(29) uses knowledge of the nonminimum-phase zero
to reject an unknown sinusoidal disturbance acting on both joints of the
two-link mechanism. The adaptive control is turned on after 7.5 seconds
and drives the performance to zero.

Next, we implement the adaptive controller in feedback
with nonlinear plant, using the estimate of the nonminimum-
phase zero obtained from the linearized two-link system.
Figure 5 shows that the adaptive controller drives z toward
zero, and the performance is comparable to the linear case
shown in Figure 4.

VII. CONCLUSION

In this paper, we investigated a nonlinear planar multi-
link mechanism that is interconnected by torsional springs
and dashpots. More specifically, we considered a nonlinear
multilink mechanism where a control torque is applied to
the hub of the multilink mechanism, and the objective is
to control the angular position of the tip, which is separated
from the hub by N links. We derived the nonlinear equations
of motion, linearized these equations of motion, and demon-
strated that the linear transfer function from the hub to the
tip of the multilink mechanism has N − 1 nonminimum-
phase zeros. Finally, we implemented a retrospective cost
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Fig. 5. Disturbance rejection for the nonlinear two-link system: The
adaptive control (27)-(29) uses knowledge of the nonminimum-phase zero
to reject an unknown sinusoidal disturbance acting on both joints of the
two-link mechanism. The adaptive control is turned on after 7.5 seconds
and drives the performance to zero. The performance with the nonlinear
system is comparable to the linear case shown in Figure 4.

adaptive controller [6] to control the multilink mechanism.
We demonstrated both command following and disturbance
rejection where commands and disturbances had unknown
spectra.
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