Chemistry 616: Physical Inorganic Chemistry – Electronic Structure and Spectroscopy (Winter 2022)

Professor: Nicolai Lehnert; 2807 Chem

Office Hours: By Appointment, email: <u>lehnertn@umich.edu</u>, phone: 615-3673 <u>Class Hours</u>: Tuesday, Thursday, 10.00 am – 11.30 am, 1624 CHEM

	Торіс	Assigned Reading
Jan 06	General Considerations: electromagnetic radiation,	Introductory textbooks to physical chemistry
	nature and energy of light, lifetime and bandshape	
Jan 11	<u>General Considerations (cont.)</u> : lifetime and bandshape	
Jan 13	<u>Electronic Absorption Spectroscopy</u> : the interaction of matter with light, QM treatment	
Jan 18	Einstein coefficients, <u>Integrated Absorption</u> : the Lambert-Beer Law	Introductory textbooks to physical chemistry
Jan 20	<u>Ligand Field Transitions</u> : fundamental concepts of orbitals & states	McMillin in: Physical Methods in Bioinorganic Chemistry (Que)
Jan 25	The Pauli principle and the antisymmetric wave function, atomic states	
Jan 27	<u>Ligand Field Transitions (cont.)</u> : Atomic states, Tanabe-Sugano Diagrams, electronic selection rules	McMillin in: Physical Methods in Bioinorganic Chemistry (Que)
Feb. 01	<u>Ligand Field Transitions (cont.)</u> : Franck-Condon principle, vibronic coupling	McMillin in: Physical Methods in Bioinorganic Chemistry (Que)
Feb. 03	Ligand Field Transitions (cont.): Vibronic coupling	McMillin in: Physical Methods in Bioinorganic Chemistry (Que)
Feb 08	Charge-Transfer Transitions: Franck-Condon factors	McMillin in: Physical Methods in Bioinorganic Chemistry (Que)
Feb 10	Electron Paramagnetic Resonance (EPR): angular and spin momentum, the Zeeman effect	Palmer in: Physical Methods in Bioinorganic Chemistry (Que)
Feb 15	<u>EPR (cont.)</u> : the S = $\frac{1}{2}$ system, g shifts and anisotropy, spin-orbit coupling	Palmer in: Physical Methods in Bioinorganic Chemistry (Que)
Feb 17	$\underline{\text{The S} = \frac{1}{2} \text{ system (cont.)}}$	McMillin in: Physical Methods in Bioinorganic Chemistry (Que)
Feb 22	The Spin Hamiltonian: application and case studies	Palmer in: Physical Methods in Bioinorganic Chemistry (Que)
Feb 24	<u>Hyperfine coupling</u> : coupling of electron and nuclear spins	Palmer in: Physical Methods in Bioinorganic Chemistry (Que)
Mar 08	<u>EPR (cont.)</u> : spin systems with $S > \frac{1}{2}$, zero-field splitting	Palmer in: Physical Methods in Bioinorganic Chemistry (Que)
Mar 10	<u>The Spin Hamiltonian (cont.)</u> : spin systems with S > ¹ / ₂ , zero-field splitting	Palmer in: Physical Methods in Bioinorganic Chemistry (Que)
Mar 15	<u>Magnetic Circular Dichroism (MCD)</u> : the Stevens equation, A, B, C terms	Johnson in: Physical Methods in Bioinorganic Chemistry (Que)
Mar 17	<u>MCD (cont.)</u> : $S = \frac{1}{2}$ systems, the MCD selection rules, types of MCD intensity	Johnson in: Physical Methods in Bioinorganic Chemistry (Que)
Mar 22	<u>MCD (cont.)</u> : spin systems with $S > \frac{1}{2}$, saturation curves and electronic polarizations, case studies	Johnson in: Physical Methods in Bioinorganic Chemistry (Oue)
Mar 24	<u>Normal Coordinate Analysis (NCA)</u> : vibrational analysis, multidimensional harmonic oscillator, the g and f matrix, symmetrization, case study: water	Chemical Applications of Group Theory (Cotton)
Mar 29	X-ray absorption spectroscopy *	
Mar 31	X-ray absorption spectroscopy (cont.) *	
Apr 05	Resonance Raman Spectroscopy: classical treatment, QM scattering equation	Spiro in: Physical Methods in Bioinorganic Chemistry (Que)
Apr 07	<u>Resonance Raman Spectroscopy (cont.)</u> : vibronic coupling, the A, B, C terms, the resonance Raman effect	Spiro in: Physical Methods in Bioinorganic Chemistry (Que)

	Торіс	Assigned Reading
Apr 12	Resonance Raman Spectroscopy (cont.): case studies:	Handout
	[Fe(TPP)(Cl)] and Cytochrome P450cam	
Apr 14	Mössbauer Spectroscopy	Handout
Apr. 19	Mössbauer Spectroscopy (cont.) and Nuclear Resonance Vibrational Spectroscopy	Handout

* Guest lecture by Prof. Jim Penner-Hahn

Preparation:	In order to prepare for the class, you she and the basics of spectroscopy. In the recommended:	buld refresh on quantum mechanics (!) he latter case, the following book is		
	Inorganic Spectroscopic Methods; Brisdon, A. K.; Oxford Chemistry Primers, Vol. 62, Oxford University Press, New York, 2000			
Requirements:	Your grade will be based on the homework and two exams.			
	Exam 1 (Date and Location TBA) Final Exam (Date and Location TBA) Homework (9 problem sets)	30% of final grade 30% of final grade 40% of final grade		
	Homework sets and other materials will be distributed via the Canvas course site.			
	NOTE: If you will not be able to attend Professor Lehnert <i>before</i> the exam take make-up exam unless this policy is follow	an exam <i>for any reason</i> , you must notify as place. You will <i>not</i> be able to take a yed.		
Textbooks:	Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism; Que, L., ed.; University Science Books, Sausalito, CA, 2000			
Other Resources: – Handouts – Inorganic Electronic Structu – Physical Methods in Chemis available in the library – – Chemical Applications of Gr – Molecular Vibrations (Wilson) – Modern Quantum Chemistry – Quantum Mechanics in Chemistry		ectroscopy Part I & II (Solomon, Lever) o); unfortunately out of print, but maybe ory (Cotton) s, Cross) Ostlund) mons, Nichols)		

Grievance policy:

Departmental policy indicates the first step in inquiring about the accuracy of a final grade should be directed to the lead instructor of the course. This initial inquiry should take place within the first fifteen University business days of the first full term following the term in which the disputed grade was issued. If, after this inquiry, the student is not satisfied with the instructor's response, the student may choose to initiate a formal grade grievance. To initiate a formal grade grievance, the student should contact the Associate Chair of Undergraduate Studies (ACUS) of the home department of the course in question

before the end of the fifth week of classes in the first full term following the term in which the disputed grade was issued.