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1. Introduction 

Usability testing is one of the key processes of user-centered design for interactive systems. 

The traditional approaches for usability testing typically rely on human test subjects, who are asked 

to perform certain tasks using the designs being tested. The subjects’ interactions with the designs 

and their performances and comments are recorded and then analyzed. This approach is often 

considered of great value as it provides direct information about how people use and think of the 

designs. However, they are often time-consuming and costly to conduct. And thus the number of 

designs that can be afforded for testing is often very limited. Compared with this traditional 

approach, digital human models could be used as a supplemental method to test design concepts 

and prototypes with lower costs in both time and manpower (Chaffin, 2007). They allow the user 

interface (UI) designers to compare multiple design concepts, explore a larger design space, and 

address usability issues at the early stages of the design process.  

Digital human models have been a valuable asset in many industries to analyze the physical 

ergonomics problems of product or biomechanical injury risk of workplace designs (Feyen, et al., 

2000; Chaffin, 2007). One of the most successful digital human models is Jack which was 

originally developed by the University of Pennsylvania and later became commercial software 

(SIEMENS) to address the ergonomic aspects of manual operations. The University of Michigan 

developed Human Motion Simulation (HUMOSIM) framework that could simulate realistic 

human movements and be used for ergonomic analysis of products and workplaces (Reed, et al., 
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2006). Despite the success of these digital models, they are largely based on human biomechanics 

and focused on the physical ergonomics (e.g., related to human posture and movements). In this 

paper we focus on modeling drivers simultaneously performing driving and other secondary tasks 

which are primarily perceptual and cognitive in nature.   

Many driver models have been developed in the past with focuses on particular aspects of the 

driving task, such as car-following, lane-keeping, and overtaking. Several models have been 

developed based on task-independent cognitive architectures, including the ACT-R driver models 

(Salvucci, 2006) and the QN-MHP (Queuing Network-Model Human Processor) driver model 

(Wu & Liu, 2007a). QN-MHP simulates the human cognition as a queuing network of information 

processing servers derived from the psychological and neuroscience fields (Liu 1996, 1997, Liu, 

et al., 2006). The modeling framework has been successfully used to simulate a wide variety of 

human performance including transcription typing (Wu & Liu, 2008a), visual search (Feng & Liu, 

2013), vehicle steering (Tsimhoni & Liu, 2003), driver performance and workload (Wu & Liu, 

2007). Recent work has also fully implemented ACT-R as a special case of the queuing network 

model (Cao & Liu, 2013). Nonetheless, even for the generic cognitive architecture-based models, 

there is still a gap that prevents them from being deployed in practice. This is largely because using 

these models usually requires the designers to have a fairly deep understanding of their theoretical 

foundations and mechanisms as well as programming skills to setup simulations for any particular 

task at hand.  

Pew (2008) listed three major challenges for a successful digital human model: (1) Simplified 

model development; (2) better capabilities for articulating and visualizing how the models work, 

and (3) model validation. With these three challenges in mind in this paper we aim at developing 

a Computer-Aided Engineering (CAE) software toolkit that could make quantitative predictions 

of the usability of in-vehicle infotainment systems to be tested. To achieve this goal, the core of 

the software needs to be built upon a model that is capable of simulating human multi-task 

performance that includes both driving and a wide variety of secondary tasks in an accurate and 

reliable way. In addition, the software also needs to allow the UI designers to set up the simulation 

with a user-friendly and easy-to-follow interface.  

2. Methods 

2.1. Software Development 

2.1.1. Model structure 



 

 

QN-MHP simulates human cognition as a queuing network of information processing servers 

that can be grouped into three subnetworks (i.e., perceptual, cognitive, and motor subnetwork). 

Each subnetwork is composed of individual servers that represent certain brain functions for 

processing information. More details on the QN-MHP cognitive architecture can be found in Liu, 

et al., (2006).  

 

Fig. 1. Software structure and major components of the driver model 

Figure 1 shows the software structure and major components of the driver model. At the front 

end is a graphic user interface (GUI) that allows the software users to setup and run the simulation 

in four steps. At the back end is the simulation environment with four major components. The task 

environment (box a in Figure 1) represents the environment with which the digital driver could 

interact with. It stores the information about the driving environments once they are specified 

during the simulation setup. During the simulation run it receives outputs from the QN-MHP’s 

body part servers (e.g., the hand server to turn the steering wheel), and supplies updated input 

stimulus to the QN-MHP (box d)’s perceptual servers.  The vehicle dynamics (box b) is a built-in 

module that receives input from the QN-MHP’s driving related actions (e.g., steering), and 

generates the vehicle responses which are used to update the driving environment in box a. 

Currently a three-Degree-Of-Freedom (longitudinal, lateral and yaw) bicycle model is 

implemented for its simplicity. The QN-MHP (box d) represents the generic digital human. Its 
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procedural long-term memory server stores the task information once it is specified in the 

simulation setup. During the simulation the task information is used as instructions to the digital 

driver on how to perform the tasks on the QN-MHP framework. During the simulation, the QN-

MHP is able to generate the task performance based on the information about the status of the 

queuing network. The software toolkit was implemented in MATLAB/Simulink software. Figure 

2 is a screenshot of the implementation of the back end described above.   

 

Fig. 2. A screenshot of the model implementation in MATLAB 

2.1.2. Design prototyping  

To evaluate a design, first a prototyping tool is needed to create a digital mockup of the design 

that the driver model could interact with. The interaction may include the driver model perceiving 

information from the digital mockup (e.g., visual information from a display, auditory information 

from a warning sound), and the driver model generating motor actions upon the digital mockup 

(e.g., pressing a button). A prototyping tool was developed using MATLAB GUIDE (Graphical 

User Interface Design Environment, see Figure 3a). MATLAB GUIDE allows creating interface 

designs with the support of common GUI objects including text, push buttons, etc.  These GUI 

objects could be created graphically with drag-and-drop and edited by editing the property 

inspector of the selected object (see Figure 3b). A GUI object’s behavior upon user actions (e.g., 

a button being clicked) could be specified in its callback functions. MATLAB GUIDE also 

supports WYSIWYG (What You See Is What You Get) and allows users to check the current 

design’s look and behavior at any time during the prototyping process. Once a design mockup is 



 

 

created, it can be saved as a stand-alone file that can be imported in to the simulation environment 

during the simulation setup.  

        

                                              (a) Main screen                                         (b) Object property inspector 

Fig. 3. Using MATLAB GUIDE for prototyping interface designs 

2.1.3. Simulation setup 

Once the digital mockups of the to-be-tested designs are created, the software user could setup 

the simulation using the software GUI.  At the front end the GUI allows the software users to setup 

and run the simulation in a few steps. Figure 4 shows the main window of the software GUI.  

 

Fig. 4. Main window of the usability testing tool 

Step 1: The setup starts with adding virtual devices (i.e., digital mockups created in Section 

2.1.2 above) to the task environment. A virtual device could be added by filling out a single row 

in the virtual device table (see Figure 5a) with a device name, type (currently support pre-defined 

types of physical panel, touch screen, and display), viewing distance, and an option of whether the 

device shall be included in the simulation (note this option is to allow users to temporarily disable 



 

 

a device rather than having to delete it and add it back later). The device profile could be imported 

to the simulation environment from the design mockup file that is saved during the prototyping.  

   

          (a)  Step 1: define virtual devices                                      (b) Step 2: define tasks 

Fig. 5. Define to-be-tested designs and tasks 

Step 2: After the virtual devices are specified in Step 1, the related task information needs to 

be specified as instructions to the driver model on how to perform the task on the QN-MHP 

framework. Similar to adding a new device in Step 1, a new task could be added by filling out a 

single row in the task table (see Figure 5b) with a task name, type (either user-defined or driving), 

and task starting time. The details of a user-defined task can be specified in a new window (see 

Figure 6) in a NGOMSL-style (Natural Goals, Operators, Methods, and Selection rules Language, 

Kieras, 1996). The NGOMSL task analysis breaks down the task in a “top-down, breadth-first” 

manner into “atomic-level” Task Components (TC). Each task component is associated with a task 

independent context-free QN-MHP operator from the QN-MHP operator library. The operators 

are set with parameters either explicitly by the modeler when specifying the task. The sequential 

dependency of the task components is set by the modeler. More details on how to perform a 

NGOMSL-style task analysis for QN-MHP could be found in Liu et al. (2006). The built-in driving 

task could be included by simply creating a new task and selecting “driving” as its type. 



 

 

 

Fig. 6. Define details of a user-defined task 

Step 3: Once the device and task information are specified in Step 1 and 2, the initial conditions 

of the simulation need to be specified. For example, where the digital driver’s visual attention is 

initially located, what is the initial states of the devices (e.g., which screen a display is on) and the 

vehicle (e.g., initial speed). Once Step 3 is completed, the user can run the simulation.  

2.1.4. Simulation output 

During the simulation the software is able to generate instantaneous outputs of the vehicle 

states and the digital driver’s performance. Figure 7 shows the simulation outputs including the 

steering wheel angle, vehicle lane position, and time-to-lane-crossing, as well as the driver eye 

gaze location (on or off the road) and estimated mental workload. The method on estimating driver 

mental workload is based on the utilizations of the related QN-MHP servers. The details of the 

method could be found in Wu and Liu (2007a).  

The software also generates a trace window that shows in chronological order the important 

event log that have occurred at the QN-MHP server level (e.g., at time 12.0 s an eye saccade is 

completed at the Eyes server with visual attention now on device X at location (100, 200) mm). 

This event log could be useful for the users to verify the simulation and examine the details of the 

task execution. When a simulation is completed, the software generates a summary report on the 

simulation results, as well as a time-series table containing detailed information of the driver and 

vehicle states during the course of the simulation. 



 

 

 

Fig. 7. Simulation outputs 

2.2. Validation Experiment 

2.2.1. Participants and tasks 

An experiment with twenty human drivers (10 male and 10 female) was conducted to validate 

the software outputs. All the participants were employees from a company in the United States, 

and had gotten their driver license for at least one year. For the age distribution, 10 (50%) 

participants were 20-39 years old, 9 (45%) participants were 40-59 years old, and 1 (5%) 

participant was 60-69 years old. The time the participants spent during the experiment counted as 

their company work time. The experiment was conducted in a fix-based driving simulator (shown 

in Figure 8). The front road scene was projected on a flat screen in front of the driving buck.  

       

   (a) using the touch screen              (b) using the physical buttons               (c) using the knob 

Fig. 8. Participants performing the radio-tuning task while driving the simulator 

A. Instantaneous output B. Trace window

C. Summary report



 

 

The participants were asked to drive the simulator on a virtual highway and maintain a speed 

of about 60-70 miles per hour (97-113 km/h). The highway is a square loop with two lanes in one 

direction. The participants were asked to stay in the left lane in which there is no other vehicle. 

The participants were asked to always put both hands on the steering wheel except when 

performing the radio-tuning task.  

2.2.2. Experimental design 

There are two independent variables in this experiment: (1) task condition (single or dual task), 

and (2) radio-tuning method (using the physical buttons, knob, or touch screen). In the single task 

condition, the participants were instructed to perform the radio-tuning task while the simulator is 

parked on road side. In the dual task condition, the participants were asked to drive the simulator, 

and at certain points, they were verbally instructed by the experimenter to start the radio-tuning 

task when they believe it is safe to do so. Three radio-tuning methods were tested in the experiment 

with the details described in Table 1.  

Table 1. Task procedures of tuning the radio to FM 98.7 

Steps Method 1: physical buttons Method 2: knob Method 3: touch screen  

Initial state  System OFF System OFF Home screen  

Step 1 Press ‘Power’ Press ‘Power’ Press ‘Entertainment’ 

Step 2 Press ‘AM/FM’ Press ‘AM/FM’ Press ‘FM1’ 

Step 3 Press ‘DIRECT’ Turn the knob to 98.7 Press ‘Direct Tune’ 

Step 4 Press ‘9’ --- Press ‘9’ 

Step 5 Press ‘8’ --- Press ‘8’ 

Step 6 Press ‘7’ --- Press ‘7’ 

Step 7 --- --- Press “Enter” 

There are three dependent variables in this study: (1) task completion time, (2) total eyes-off-

road time (TEORT), and (3) subjective mental workload. One camera (sampling rate 30 Hz) facing 

the center console area was used to capture the participant’s operations on the physical panel or 

touch screen. In the single task condition, task completion time is measured from the time when 

the subject started to move his/her right hand away from the steering wheel to the time when the 

correct radio frequency (e.g., FM 98.7) is reached. For the dual task condition, the task completion 

time is measured from the time when the participant started to move his/her eyes away from the 

road to the device, to the time when the correct radio frequency is reached. Another camera 



 

 

(sampling rate 30 Hz) was used to capture the participant’s face, which was used to determine 

whether the participant was looking on or off the road. The total eyes-off-road time (TEORT) 

could then be calculated for each radio-tuning task. At the end of each session the subjects were 

asked to rate their workload using the standard NASA-Task Load Index (NASA-TLX, Hart & 

Staveland, 1988). A full factorial within-subject design was used in this experiment. Two 

independent variables and three trials for each combination give a total of 18 (= 2x3x3) trials for 

each participant. 

2.2.3. Procedures 

Once the participants arrive at the laboratory and complete the consent form, they were given 

an introduction using slides to ensure that they understood the tasks they were about to perform. 

This was followed by a practice session for both the radio-tuning and driving task. Then the data 

collection started. 10 (50%) participants started with the single task session, while 10 (50%) started 

with the dual task. 10 (50%) participants started with the method using the touch screen, 5 (25%) 

started with the method of using the physical buttons, and 5 (25%) started with us the method of 

using the knob. 

2.3. Task Modeling 

2.3.1. Radio-tuning task 

   

Fig. 9. The touch screen used in the experiment (left) and its digital mockup (right) 



 

 

    

Fig. 10. The physical panel used in the experiment (left) and its digital mockup (right) 

To simulate the radio-tuning task, A NGOMSL-style task analysis needs to be conducted. 

Figure 11 shows the NGOMSL-style task analysis of tuning the radio using the physical buttons. 

The task analyses of using the knob and touch screen follow a similar format. 

 

Fig. 11. NGOMSL-style task analysis of tuning the radio to FM 98.7 using the physical buttons 

The task analyses of tuning the radio using the knob and touch screen follow a similar format. 

However, there are differences on the sequential dependency of the task components (TCs) due to 

the inherent characteristics of the devices.  For example, clicking a virtual button on a touch screen 

without tactile feedback requires visual attention to confirm that the button is successfully clicked 

(by using visual cues of, for example, a change of the button’s color). And in some cases, the next 

button to click (e.g., the ‘FM’ button in the entertainment screen) would simply not appear before 

the previous button is clicked (e.g., the ‘Entertainment’ button in the home screen). For the 

GOAL: Tune the radio to FM 98.7 using the direct tune on the physical panel

Method to accomplish goal of tuning the radio to FM 98.7 using the direct tune 

TC 1: Look at <text feature> on <physical panel> at location <190, 46>

TC 2: Store <feature value> to short-term memory

TC 3: Retrieve <feature value> from short-term memory

TC 4: Compare <feature value> to <“Power”>

If match, return result = 1, else return result = 0

TC 5: If  result = 1, go to TC 6, else go to TC 999    //  999 is a dummy TC 

TC 6: Reach <location> with <right hand> <with visual guidance>

TC 7: Click with <right hand> <index finger> 

TC 8: Look at <text feature> on <physical panel> at location <224, 88>

...  :  ...

TC N-1: Click with <right hand> <index finger> // click the last button (“7”)

TC N: Return with goal accomplished



 

 

physical buttons on the other hand, searching for the next button could start as soon as the previous 

button is reached by the hand, with the assumption that clicking on a physical button could be 

confirmed by the tactile feedback without the need for visual attention. We do assume that the 

driver needs the visual guidance for reaching the button (i.e., no ‘touch typing’), so searching for 

the next button could start as early as the button is reached by hand, but not earlier.  

 

(a) radio-tuning using the physical buttons 

 

(b) radio-tuning using the touch screen 

Fig. 12. Sequential dependency of the task components for single task 

2.3.2. Multitasking modeling with driving included 

Given that a secondary task by itself may take more than a few seconds to, when it is performed 

while driving, the driver is likely not able to complete the task with a single off-road glance. For 

this reason, the secondary task needs to be segmented so that the driver would operate the vehicle 

in a safer manner by not having his/her eyes off the road for too long. For the physical buttons, we 

assume the driver could use the tactile feedback to confirm the successful click of a button, and 

thus can start looking back to the road as soon as his/her hand reaches a button. However, when 

using the touch screen without the tactile feedback, the driver can only start looking at the road 

after the clicking is completed. Figure 13 illustrates the sequential dependency of the task 

components when tuning the radio using the physical buttons and touch screen while driving. 

These task specifications were loaded to the software as instructions on how to perform the task 

during the simulation. 
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(a) Using the physical panel 

 

(b) Using the touch screen 

 Fig. 13. Sequential dependency of the task components of tuning radio while driving 

3. Results 

3.1. Task completion time 

The task completion time in each experiment trial was calculated from the center-console-

facing camera video using the method described in the above section. Wilcoxon signed-rank tests 

was conducted to test whether there is significant difference of task completion time between the 

two task conditions and among the three radio-tuning methods. The results show that by including 

the driving task, the task completion time is significantly longer when using the touch screen (p < 

0.001), the physical buttons (p < 0.05), and the knob (p < 0.050). In both the parked and driving 

condition, the task completion time is significantly longer when using the touch screen than either 

the physical buttons or the knob (both p < 0.001 in both the parked and driving condition). 

However, there is no significant difference between the physical buttons and knob (p = 0.500 in 

the parked condition, and p = 0.277 in the driving condition). The model predictions of the task 

completion time are shown in Figure 14. The predictions are fairly similar to the empirical data. 

For the parked condition, the mean absolute percentage error (MAPE) is 5.7%. The root-mean-

square error (RMSE) is 0.38 s. For the driving condition, the MAPE is 9.0%. The RMSE is 0.81 

s. 
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Fig. 14. Simulation results of task completion time in comparison to experiment results 

3.2. Total Eyes-Off-Road Time (TEORT) 

The TEORT in each experiment trial was calculated from the driver-facing camera video. 

Wilcoxon signed-rank tests show that the TEORT was significantly longer when using the touch 

screen than either the physical buttons or the knob (both p < 0.001). However, there is no 

significant difference between the physical buttons and knob (p = 0.709). The model outputs of 

the TEORT are shown in Figure 15. The predictions are fairly similar to the empirical data, with 

the MAPE of 12.1% and the RMSE of 0.71 s. 

 

Fig. 15. Simulation results of TEORT in comparison to experiment results 

3.2. Mental workload 

The mental workload between the two task conditions and among the three radio-tuning 

methods were reported by the subjects using a 0-10 scale from NASA-TLX. Wilcoxon signed-

rank tests show that by including the driving task, the mental workload is significantly higher when 

using any of the three radio-tuning method (all p < 0.001). In the parked condition, the mental 
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workload when using the knob is significantly lower than both the physical buttons and touch 

screen (both p < 0.05), while there is no significant difference between the physical button and 

touch screen (p = 0.088).  In the driving condition, the mental workload when using the knob is 

significantly lower (p < 0.01) than using the physical buttons, which is significantly lower (p < 

0.01) than using the touch screen. The model predictions of the task completion time are shown in 

Figure 16. The predictions are fairly similar to the empirical data, except the model seems to over-

estimate the workload when using the knob in the driving condition. For the parked condition, the 

MAPE is 14.1%, and the RMSE is 0.50. For the driving condition, the MAPE is 18.8%, and the 

RMSE is 1.13. 

 

Fig. 16. Simulation results of mental workload in comparison to experiment results 

4. Discussion 

This paper describes the development and validation of a CAE software for designers of in-

vehicle infotainment systems to predict and benchmark certain aspects of the system usability such 

as task completion time, eyes-off-road time, and mental workload. The software does not require 

the user to know any programming language to simulate tasks with specified designs, as the entire 

simulation can be set up within the software’s GUIs by following a few rather simple steps. The 

software also adopts the MATLAB GUIDE as the design prototyping tool, which allows the users 

to create and edit design mockups graphically. These features enable designers to use the software 

as a usability testing tool with less training and reduced modeling time.  

An experiment with human drivers was conducted to validate the software outputs. In general, 

the software could produce fairly similar outputs (task completion time, TEORT, and mental 

workload) to the results from the human drivers. The observed performance differences among the 

three radio-tuning methods and the two task conditions may be accounted for by the digital driver 
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model in several aspects. The increased task completion time when driving is included, could be 

simply accounted by the fact that the radio-tuning task is partitioned into multiple eyes-off-road 

glances to allow the driver to move his/her visual attention back on the road. This essentially makes 

the task longer to complete. The task completion time using the physical buttons is shorter than 

the time using the touch screen, because the task using physical buttons is executed by the driver 

model in a more parallel fashion by, for example, clicking one button while simultaneously 

directing the visual attention to the next button. However, this is not possible for the touch screen, 

which requires the driver’s visual attention to confirm if a button is successfully clicked before 

he/she could start searching for the next button. Similarly, the TEORT when using the physical 

buttons or knob is shorter than using the touch screen, because the secondary task and the driving 

task are executed in a more parallel fashion, so some of the task components (e.g., clicking a 

physical button) can be performed when the driver’s eyes are on the road (see Figure 13 for details). 

The mental workload is higher when driving is included, because whenever the driver’s visual 

attention is switched off the road while driving, the driver model initiates an internal clock to track 

the current eyes-off-road time, and switch the visual attention back to the road to make sure a 

single eyes-off-road glance never exceeds a certain safety value (e.g., 2 s). This essentially 

increases the QN-MHP server utilizations which are used to estimate the workload. These 

differences were naturally captured during setting up the simulation in the software. Lastly, the 

model seems to have over-estimated the workload when using the knob to turn the radio while 

driving. One possible explanation is that currently tuning a knob is modeled as a process that 

requires continuous visual attention at the radio frequency display to make sure the correct 

frequency is reached, while in reality a human driver may rely on the knowledge that each 

increment of the knob equals to 0.2 Hz to change the radio frequency to or near the target value 

without having to switch the visual attention off the road and increase the mental workload.  

This work demonstrates the potential of using a CAE software toolkit as a usability testing tool 

for user interface designers. We are exploring several further developments of the software in 

several directions. First, currently the software requires the user to be able to conduct a NGOMSL 

task analysis (described in detail in Liu, et al, 2006).  This may require some initial training time 

to the software user, and the accuracy of the model outputs may be affected by the accuracy of the 

task analysis. In the future we are planning to add “templates” for specifying typical in-vehicle 

operations at a level higher than the GOMS’s perceptual, cognitive, and motor level. By doing so 



 

 

it may reduce the knowledge and skill required to conduct accurate task analysis, and thus reduce 

the required training time and the potential errors and discrepancy during the task analysis.  

Second, we are currently using the MATLAB GUIDE for prototyping the design interfaces. In 

some applications, the designs may be already implemented on some other user interface 

languages (e.g., HTML, XML). To test these designs, the software users need to firstly recreate 

the designs in MATLAB GUIDE. In the future we may explore the techniques to support direct 

import of popular user interface formats into the software, so that the designs could be directly 

tested in their original formats. This would further reduce the time and efforts required to use the 

software.  

Third, the software structure treats the driving task (box c in Figure 1) as a built-in extension 

module to the task-independent QN-MHP architecture (box d in Figure 1). This structure allows 

the software developers to add other extension modules in the future if the needs arise. For 

example, a potential module for flying an airplane could be added as another built-in task. This 

flexibility makes it possible to extend the scope of this software to the usability testing of other 

domains with human-in-the-loop systems.  

5. Conclusions 

This paper reports the development and validation of a computer-aided engineering (CAE) 

usability testing tool for user interface designers to predict and benchmark the usability of in-

vehicle infotainment systems. A digital human model was built to simulate the driver cognition 

and performance based on the cognitive architecture of QN-MHP. At the front end of the software 

toolkit a graphical user interface (GUI) was developed that allows UI designers to create digital 

design prototypes and set up the tasks for simulation. The software is able to simulate a driver 

performing in-vehicle secondary tasks (e.g., tuning radios) while steering a vehicle, quantitatively 

correlate to driver’s task performance such as task completion time, eyes-off-road time, and mental 

workload. To validate the software outputs, an experiment was conducted on a fix-base driving 

simulator with two typical in-vehicle infotainment systems (a physical panel and a touch screen). 

And a radio-tuning task were used as a test case. The results show that the software is able to 

generate task completion time, total eyes-off-road time, and mental workload estimates that are 

similar to the empirical data collected from human subjects. This toolkit has the potential to enable 

the UI designers to explore a larger design space and address usability issues at the early design 

stages with lower cost both in time and manpower. 
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