## ChE 344

Week 7
Problem Set 11
Due Tuesday, February 19, 2013 (Lecture 12)

## Individual Assignment

1. PLQ 12 -What is the solution to the following ODE $\frac{d C}{d t}+k_{2} C=C_{0} e^{k_{1} t}$ At $\mathrm{t}=0, \mathrm{C}=0$. [Hint: See summary notes on the integrating factor and Appendix A.]

## Group Assignment

1. P6-8 $\mathrm{B}_{\mathrm{B}}$ (omit (d))
2. P6-11 ${ }_{\mathrm{B}}$ Parts (a) and (b) only
3. $\mathrm{P} 6-13_{\mathrm{C}}$
4. P7-6 (omit (c))
5. $\mathrm{P} 7-15_{\mathrm{B}}$
6. If you did not finish In Class Problem 10, then continue and finish part (c) The irreversible liquid phase reaction

$$
\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C}
$$

is carried out in a batch reactor. The following data were collected during the course of the reaction.

| $\mathrm{t}(\mathrm{min})$ | 0.0 | 0.5 | 1.0 | 2.0 | 3.0 | 4.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{A}}$ | 2.00 | 1.63 | 1.41 | 1.15 | 1.0 | 0.89 |

Determine the order of reaction and the specific reaction rate using two methods to differentiate your data.
(a) Use graphical technique (equal area differentiation) and explain when one would want to use the graph differential and the one advantage of it.
(b) If you were to make additional runs to take additional data points, at what times would you measure the concentration? Explain.
(c) Use regression to find the specific reaction rate and the reaction order of the data above.

