Web Appendix A.5:
 Using Semilog Plots in Rate Data Analysis

Semilog graph paper is used when dealing with either exponential growth or decay, such as

$$
\begin{equation*}
y=b e^{\mathrm{mx}} \tag{WA.5-1}
\end{equation*}
$$

For the first-order elementary reaction

$$
\mathrm{A} \longrightarrow \text { Products }
$$

which is carried out at constant volume, the rate of the disappearance of A is given by

$$
\begin{equation*}
\frac{-d C_{\mathrm{A}}}{d t}=k C_{\mathrm{A}} \tag{WA.5-2}
\end{equation*}
$$

When $t=0, C_{\mathrm{A}}=C_{\mathrm{A} 0}$, where the units of C_{A} are $\mathrm{g} \mathrm{mol} / \mathrm{dm}^{3} ; t$ is expressed in minutes; and k is expressed in reciprocal minutes. Integrating the rate equation, we obtain

$$
\begin{equation*}
\operatorname{In} \frac{C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=-k t \tag{WA.5-3}
\end{equation*}
$$

We wish to determine the specific reaction rate constant, k. A plot of $\ln C_{\mathrm{A}}$ versus t should produce a straight line whose slope is $-k$. We may eliminate the calculation of the log of each concentration data point by plotting our data on semilog graph paper. The points in Table WA.5-1 are plotted on the semilog graph shown in Figure WA.5-1.

Table WA.5-1					
$t(\mathrm{~min})$	0	2	4	8	14
$C_{\mathrm{A}}\left(\mathrm{gmol} / \mathrm{dm}^{3}\right)$	2.0	1.64	1.38	0.95	0.60

Figure WA.5-1

Algebraic Method. Draw the best straight line through your data points. Choose two points on this line, t_{1} and t_{2}, and the corresponding concentrations $C_{\mathrm{A} 1}$ and $C_{\mathrm{A} 2}$ at these times:

$$
\begin{gather*}
\operatorname{In} \frac{C_{\mathrm{A} 1}}{C_{\mathrm{A} 0}}=-k t_{1} \quad \operatorname{In} \frac{C_{\mathrm{A} 2}}{C_{\mathrm{A} 0}}=-k t_{2} \\
\operatorname{In} C_{\mathrm{A} 2}-\operatorname{In} C_{\mathrm{A} 1}=-k\left(t_{2}-t_{1}\right) \tag{WA.5-4}
\end{gather*}
$$

Rearranging yields

$$
\begin{equation*}
k=-\frac{\operatorname{In} C_{\mathrm{A} 2}-\operatorname{In} C_{\mathrm{A} 1}}{t_{2}-t_{1}}=\frac{\operatorname{In}\left(C_{\mathrm{A} 2} / \operatorname{In} C_{\mathrm{A} 1}\right)}{t_{2}-t_{1}} \tag{WA.5-5}
\end{equation*}
$$

When $t=8, C_{\mathrm{A}}=1.05$; when $t=12, C_{\mathrm{A}}=0.75$. Substituting into Equation (WA.5-5) gives us

$$
\begin{aligned}
k & =\frac{\operatorname{In}(1.05 / 0.75)}{12-8 \mathrm{~min}}=\frac{0.336}{4 \mathrm{~min}} \\
& =(0.084 \mathrm{~min})^{-1}
\end{aligned}
$$

Graphical Technique In the preceding example, we had

$$
\begin{equation*}
\operatorname{In} \frac{C_{\mathrm{A} 1}}{C_{\mathrm{A} 0}}=-k t_{1} \tag{WA.5-6}
\end{equation*}
$$

Dividing by 2.3 , we convert to \log base 10 :

$$
\frac{\operatorname{In}\left(C_{\mathrm{A}} / C_{\mathrm{A} 0}\right)}{2.3}=\log \left(C_{\mathrm{A}} / C_{\mathrm{A} 0}\right)=\frac{-k t}{2.3}
$$

The slope of a plot of $\log C_{\mathrm{A}}$ versus time should be a straight line with slope $-k / 2.3$. Referring to Figure WA. $5-1$, we draw a right triangle with the acute angles located at points $C_{\mathrm{A}}=1.6, t=2.8$ and $C_{\mathrm{A}}=0.7, t=12.8$. Next, the distances x and y are measured with a ruler. These measured lengths in y and x are 1.35 and 4.65 cm , respectively:

$$
\begin{aligned}
\Delta \mathrm{y} & =-1.35 \mathrm{~cm} \times \frac{1 \text { cycle }}{3.9 \mathrm{~cm}}-0.35 \text { cycle } \\
\Delta \mathrm{x} & =4.65 \mathrm{~cm} \times \frac{14 \mathrm{~min}}{6.7 \mathrm{~cm}} 9.7 \mathrm{~min} \\
\text { slope } & =\frac{-0.35}{9.7}-0.0361 \\
k & =-2.3(\text { slope })=-2.3(-0.0361) \mathrm{min}^{-1} \\
& =0.083 \min ^{-1}
\end{aligned}
$$

A modification of the algebraic method is possible by drawing a line on semilog paper so that the dependent variable changes by a factor of 10. From Equation (WA.5-5) in the form

$$
\begin{align*}
k & =\frac{\operatorname{In}\left(C_{\mathrm{A} 1} / C_{\mathrm{A} 2}\right)}{t_{2}-t_{1}} \\
& =\frac{2.3 \log \left(C_{\mathrm{A} 1} / C_{\mathrm{A} 2}\right)}{t_{2}-t_{1}} \tag{WA.5-7}
\end{align*}
$$

choose the points $\left(C_{\mathrm{A} 1}, t_{1}\right)$ and $\left(C_{\mathrm{A} 2}, t_{2}\right)$ so that $C_{\mathrm{A} 2}=0.1 C_{\mathrm{A} 1}$:

$$
\begin{equation*}
k=\frac{2.3 \log 10}{t_{2}-t_{1}}=\frac{2.3}{t_{2}-t_{1}} \tag{WA.5-8}
\end{equation*}
$$

This modification is referred to as the decade method.

