
MATLAB Tutorial on ordinary differential equation solver (Example 12-1) 

Solve the following differential equation for co-current heat exchange case and plot  X, Xe, T, Ta, and 

-rA down the length of the reactor (Refer LEP 12-1, Elements of chemical reaction engineering, 5th 
edition) 

Differential equations 

d(Ta)/d(V) = Ua*(T-Ta)/m/Cpc                                     

d(X)/d(V) = -ra/Fa0 

d(T)/d(V) = ((ra*dH)-Ua*(T-Ta))/Cpo/Fa0 

 

 Explicit equations 

 Cpc = 28 

 m = 500 

 Ua = 5000 

 Ca0 = 1.86 

 Fa0 = 14.67 

 dH = -34500 

 k = 31.1*exp((7906)*(T-360)/(T*360)) 

 Kc = 3.03*exp((dH/8.314)*((T-333)/(T*333))) 

 Xe = Kc/(1+Kc) 

 ra = -k*Ca0*(1-(1+1/Kc)*X) 

 Cpo = 159 

 

Initial and final values 

 Ta(0) =315 

 T(0)= 305 

 X(0)=0 

 V(0)=0 

 V(f)= 5 

 

Repeat the similar exercise for other cases: 

 Counter-current heat exchange: Plot X, Xe, T, Ta, and –rA down the length of the reactor 

 Constant ambient temperature, Ta: Plot X, Xe, T, and –rA down the length of the reactor 

 Adiabatic operation: Plot X, Xe, T, Ta, and –rA, down the length of the reactor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Step 1: First, launch MATLAB which you can access on CAEN computers (University of Michigan 

computer) or download from http://www.mathworks.com . You will see that multiple window opens 

which looks like this 

 

The central window is called Command window. In the command window you can enter statements, 

run your files, generate output etc. 

 

Step 2: Change the current folder location 

The only folder which MATLAB can access is shown by red circle. In this case the folder name is 

“MATLAB”. You must change the access location so that it refers to your particular folder which you 

are using for this project. Let’s create a folder LEP-12-1 on desktop. Now change the MATLAB folder 

location to this location as shown below 

 

 

 

 

http://www.mathworks.com/


To solve ODE in MATLAB, you need to create two kind of program files: 

1. Script file where you enter data such as integration span, initial guess, produce graphical 
outputs,etc 

2. Function file where you enter all your explicit and differential equations 

We will first create function file 

Creating function file 
Step 3: On the toolbar, Click on the New menu and select Function  

 

 

 

You will see a new window opens that looks like this. MATLAB automatically creates syntax for 

writing function file. To use solver in MATLAB, you need to write codes in the space provided. 

 

 



The first line of function starts with the keyword function followed by the output arguments. The right 

side contains function name (Untitled) and its input arguments. In this tutorial, we have chosen the 

function name as ODEfun which takes two input arguments i.e. V and Y. The first input argument “V” 

is a vector containing the integration span i.e. initial and final value of volume of reactor (in this case, 

Vinit=0, Vfinal=5). 

So V= [Vinit Vfinal] 

Or, V= [0 5] 

Second input argument “Y” is also a vector and contains initial values of the dependent variable i.e Ta, 

T, and X (in this case, Ta(0)=315, T(0)=305, and X(0)=0 ).  

So Y= [Ta(0) T(0) X(0)] 

Or, Y= [315 305 0] 

The values of V and Y will be defined in the script file and then passed to the function file. This will 

become clearer as you go through the tutorial 

Step 4: SAVE your file. 

Let’s name the function file as ODEfun. MATLAB file is saved with extension “.m”. In this case, 

your function file is saved with the name “ODEfun.m” 

 

 

http://in.mathworks.com/help/matlab/ref/function.html


Step 5: Define function output arguments by f. The syntax for creating function file in our case becomes 

Function f=ODEfun(V, Y) 

Where V, Y are local to function. 

Note that f, V, and Y are just variables. You can use whatever terms you like. Just remember that if you 

have defined a variable, then you have to always refer to it by the same name. 

Now, edit the inbuilt format of function file for your case as shown below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Step 6: As the differential equation contains 3 dependent variables (Ta, T, & X), so Y vector contains 

initial values of these 3 variables, where, Ta is the first element, T is the second element and X is the 

third element of Y vector 

So,  

Ta=Y(1), T= Y(2) and X=Y(3) 

Assign the initial values of these variable as shown below. Put a semi-colon after each line to prevent 

the value from being displayed on the command window each time you run the file 

 

Step 7: Before entering all the explicit equations, we will first write comments (which are not executed). 

To write comments, use percent symbol (%) followed by the comment. By default MATLAB uses green 

colour for writing comments. Let’s put the comment “% Explicit equations” 

 

 

 

 



Step 8: Now, enter all the explicit equations with semi colon at end  

 

 

 

Step 9: Next, you need to enter your differential equations. For this example, you have three differential 

equation in Ta, T and X. 

In MATLAB, LHS of differential equations cannot be entered in derivative form (dy/dx), so you need 

to define variable representing left side of differential equation 

In this case we will use the following definition for differential equation  

dTa/dV=dTadV,  

dT/dV=dTdV, and 

dX/dV=dXdV              

                                                                                                                                                                                               

 

 

 

 

 

 

 

 

 

 



Enter the comment for differential equation and then enter your differential equations. After all the 

equations are entered, you need to define the output f. In the function file, f contains the differential 

equation. So, define f as shown below. ODEfun must return column vectors, so, you need to put semi-

colon between differential equations to get column vector for different dependent variable. 

 

 

The function file returns the value in the form [v y] where, v is a column vector [
𝑉1
𝑉2
𝑉𝑛

] of independent 

variable (i.e. volume for this case) and y is a matrix [
𝑇𝑎1 𝑇1 𝑋1
𝑇𝑎2 𝑇2 𝑋2
𝑇𝑎𝑛 𝑇2𝑛 𝑋𝑛

] of dependent variable (i.e. Ta, 

T, & X for this case). Note that no of rows are same in vector v and matrix y.  The return value of the 

function will be used in the script file which would be discussed in next section 

 

 

 

 

 

 

 



Creating a script file 

Step 10: Go back to New menu and select Script  

 

 

A black window will appear like this 

 

 

 

 

 



Step 11: First we will create the codes for Temperature profile. So save your script file with the name 

“Temp_profile”. You can also save it with other name as per your wish. We will save this file in the 

folder LEP-12-1 as shown 

 

 

Step 12: In the blank space, Enter clc in the first line. It will clear all the input and output from the 

Command Window display, giving you a “clean screen” 

Next you need to enter the integration time span. In this case we want to integrate the volume of reactor 

from V=0 to V=5. Let’s define the integration time span variable as Vspan. To enter this in a row vector 

format, type “Vspan = [0 5]” with space between 0 & 5 else enter Vspan= [0 ; 5] to create a column 

vector. You can either create row or column vector, the output will remain same for this case. We will 

create a row vector. 

Next you need to enter the initial values of the dependent variable, Ta, T, X i.e. Ta (0) =315, T (0) =305, 

and X (0) =0 

Enter the initial value of the dependent variable in the vector form 

y0= [315 305 0] 

Again putting semi-colon at the end of each statement prevents the value from being displayed on the 

command window. We will also put comment against each line as shown below 

 

 



 

Step 13: Next, you need to choose your ODE solver. There are different kind of solver available in 

MATLAB which you can use as per your problem requirement. The following is the list of all the solver 

with details: 

Solver Problem 

Type 

Order of 

Accuracy 

Method When to Use 

ode45 

 

Nonstiff 

 

Medium 

 

Explicit Runge-Kutta Most of the time. This should 

be the first solver you try. 

ode23 

 

Nonstiff 

 

Low 

 

Explicit Runge-Kutta 

,pair of Bogacki and 

Shampine 

For problems with crude error 

tolerances or for solving 

moderately stiff problems. 

ode113 

 

Nonstiff 

 

Low to high 

 

Adams-Bashforth-

Moulton PECE 

For problems with stringent 

error tolerances or for solving 

computationally intensive 

problems 

ode15s 

 

Stiff 

 

Low to 

medium 

 

Numerical 

differentiation formulas 

(NDFs) 

If ode45 is slow because the 

problem is stiff. 

ode23s 

 

Stiff 

 

Low 

 

Modified Rosenbrock If using crude error tolerances 

to solve stiff systems and the 

mass matrix is constant. 

ode23t Moderately 

Stiff 

 

Low 

 

Trapezoidal rule using a 

"free" interpolant. 

For moderately stiff problems if 

you need a solution without 

numerical damping 

ode23tb Stiff Low 

 

Implementation of TR-

BDF2, an implicit 

Runge-Kutta formula 

with a first stage that is 

a trapezoidal rule step 

and a second stage that 

is a backward 

differentiation formula 

of order two 

If using crude error tolerances 

to solve stiff systems. 

 

The first choice for solving differential equation should be Ode45 as it performs well with most ODE 

problems. Hence, we will use ode45 solver. To use ODE solver, MATLAB uses following Syntax 

[v y] = solver (@ODEfun, Vspan, y0) 

Where ODEfun is the function file which you have created. The function file name must be same as that 

is invoked/called from the script file. Vspan is a vector specifying the interval of integration, and y0 is 

a vector of initial conditions 

 

 

 

 



Step 14: Write down the solver equation in the required format as shown below. In the script file, we 

call/invoke function file and pass input arguments to function file. In this case input arguments are 

Vspan and y0.  

 

When you run the script file, it will call function file and evaluate the differential equation for different 

values of independent variable and the output will be stored in [v y]. As described earlier, v is a column 

vector of volume and y is a column vector of [T, Ta, X]. We will not run the script file at this moment. 

In this tutorial, you will learn to plot temperature profile, conversion profile and rate profile along the 

volume of the reactor. 

a) Temperature profile 

Step 15: The ‘y’ output of the function file contains value of Ta, T, and X where the value of Ta, T and 

X are in first, second column and third column respectively, so the values of these variables can be 

obtained as 

Ta = y(:,1) ; T = y(:,2) ; X = y(:,3)  where, Ta, T and X are column vector 

To plot Ta and T along the volume of the reactor, we will use MATLAB plot function.  

The syntax for using plot function is 

plot(X1,Y1,...,Xn,Yn) 

Where X1, Y1 is the first set of data point. Similarly Xn, Yn is the nth set of data point. You can put 

multiple graph on the same plot by using comma between two data sets (X1, Y1) and (X2, Y2) 

So to plot Ta vs v, the syntax is plot (v, y(: ,1))This will take the values of v (column vector) and 1st 

column vector of y. To plot T vs v on the same graph, the syntax becomes  

Plot (v, y(:1),v, y(:,2)) 

This will plot Ta and T on Y axis and v on the X axis. You may or may not put semi-colon at the end 

of Plot statement as this gives only graph and does not return any value on command window 

 



 

We can also put legend, axis label, title, and range to your plot. The syntax are: 

1) For legend : legend(‘comments’, ‘comments’, ‘comments’) 

You can put your legend name under inverted comma. To put legend to different graphs, use comma 

between different legend names. By default, the order of the legend is same as the order of the graph 

defined in plot function  

2) y axis label :ylabel(‘comments’) 

3) x axis label : xlabel(‘comments’)  

4) title: title(‘comments’) 

5) range: axis([a b c d]), where a, b refers to the range of X axis and c, d refers to the range of Y 

axis 

The word in green can be replaced with the word you want to be displayed in your graph. In this case, 

there are two graphs: 1st is for Ta and 2nd for T. On X axis you want volume V (m3) and temperature T 

(K) on Y axis. The graph is made for co-current case, so accordingly define all the graphical features to 

your plot. 

Enter the above codes as shown below 

 

 

Now you have created both the script file and function file. You need to run only script file as the 

function file will be automatically called from the script file. Don’t run function file as it will give error. 

This is because function file takes input arguments which are defined in the script file.  Make sure that 

the function file is present in the same location as that of script file, else MATLAB won’t be able to 

find the function file when you invoke the function file from script file. 

In this case, we have put both the files under the folder “LEP-12-1” 



On the left side window, you will find that under current folder (shown by red rectangular box), both 

the files are present. If it is not so, then change the current folder location (shown by blue box) to the 

folder containing your files.  

Step 16: In the Temp_profile file, press the run button           shown by black circle in the above 

screenshot.  Alternatively, you can also run your script file by using the command window. In the 

command window type “Temp_profile and” press enter as shown below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



You will see that following graph is generated which gives Ta and T profile down the length of the 

reactor. 

 

You can also check that axis title, legend, chart title and axis range are as per defined by you in the 

code. 

 

 

 

 

 

 

 

 

 

 

 



Step 17: If you wish to see the values of the Ta, T and X at various reactor volumes, you can do so by 

typing v and y in the file as shown below. Remember that typing without semi-colon will display the 

values in the Command window. Press run. 

You will see that values of v and y are displayed in Command window in vector form. The nth row of 

y contains value of Ta, T, and X at the reactor volume corresponding to nth row of v vector 

 

If you wish to see the value of a particular variable at a given volume, then you can do so by entering 

command “y(a,b)”where a and b are row and column number of y matrix. So by varying “b”, you can 

evaluate the value of different dependent variable (Ta. T or X) at fixed reactor volume (i.e. volume 

corresponding to row “a” of v vector) and by varying “a” you can evaluate the value of that dependent 

variable (i.e. variable corresponding to “b” column) at different reactor volume. 

So, suppose, you want to get the value of volume and T at 20th row ,then  type “v(20)” to get the volume 

of reactor at this row and type “y(20,2)” to get the value of T at 20th row as shown below 

From the below figure, you can see that T=329.7 K at V=0.6212 m3 

 



Next, you need to create conversion and rate profile along the length of the reactor 

b) Conversion profile 

Step 18: Create a new Script file and save it as “Conversion_profile” in the folder LEP-12-1 

In this, you need to plot both actual conversion (X) and equilibrium conversion (Xe) along the length 

of the reactor.  

The function ODEfun gives conversion, X= y(:,3) as its output at different values of reactor volume. 

To get the value of Xe at different reactor volume you need to write few more codes. 

The function file for this case will remain same as all the explicit equation and differential equations 

are going to be same. All you need to do is modify your script file to include the expression for Xe.  

The function file will return the value of T at different values of v from which you can calculate value 

of Kc and Xe at different value of T. To get the total no of elements present in T vector, use MATLAB 

inbuilt “size” function which returns the size (no of rows and columns) of an array or matrix. 

The values of temperature are stored in 1st column of matrix y, so you need to find the size of y 

The syntax for using size function is 

Z=size (y); this will return the size of matrix y.  Suppose size of y is n x m then Z= [n m] 

Write the codes as shown below 

 

Step 19: We are only concerned with the row no of y i.e. z (1, 1) 

Now Xe=Kc/(1+Kc) 

And Kc = 3.03*exp((-34500/8.314)*((T-333)/(T*333))) 

To evaluate the value of Xe at z (1,1)  number of points, we need to create a “for” loop. We will first 

evaluate the value of Kc at different temperature and then calculate the value of Xe at different Kc. In 

the equation of Kc and Xe, T can be replaced by y(i, 2) as temp is the second dependent variable of y 

matrix 

Now we will evaluate the value of Xe at i=1: z(1,1) 



 

This will create a column vector of Xe with row no same as that of y matrix 

Step 20: Next, you just need to add plot function as was done for case of temperature profile. The output 

y has X as the third element i.e. X=y(:,3). The vector Xe has been generated just now. So, write down 

plot function along with the graphical features. It is not necessary to specify axis range always as 

MATLAB can select the range automatically. 

 

 

Step 21: Now run the conversion file either by clicking run button or typing “Conversion_profile” and 

pressing enter in command window. The following graph will be generated 



 

c) Rate profile 

Step 22: Create a new Script file and save it as “Rate_profile” in the folder LEP-12-1 

Step 23: For plotting rate profile, we need to determine the value of ra at different points. Again you 

need to edit only your script file. Create a “for” loop and replace T by y(i,2) and X by y(i,3) in the 

expression of k, Kc, and rate. So the equation for rate becomes: 

 k(i) = 31.1*exp((7906)*(y(i,2)-360)/(y(i,2)*360)) 

 Kc(i) = 3.03*exp((-34500/8.314)*((y(i,2)-333)/(y(i,2)*333))) 

 ra(i) = -k(i)*Cao*(1-(1+1/Kc(i))*y(i,3)) 

 

Insert the codes in the file as shown below. This will create a column vector of k, Kc and ra 



 

 

 

 

 

 

 

 

 

 

 

 

Step 24: Next, add plot function, label your axis, define the range, legend and title on the graph. If the 

graph doesn’t fit it the axis range you have provided, then go back to file and re-set the axis range. You 

need to plot rate function which is negative of ra (rate= - ra). So, in the plot function ‘–ra’ is used to 

plot rate. 



 

Step 25: Now run the file. You will get an output that looks like this 

 

Counter- current heat exchange 

Step 26: For counter-current flow, we only need to make two changes in the program. First, we modify 

the expression for Ta for counter-current flow. Multiply the right hand side of differential equation for 

Ta with -1. The following equation is obtained  



 
                         d(Ta)/d(V) = -Ua*(T-Ta)/m/Cpc 

To modify equation for Ta, open the function file ODEfun and put a minus sign on the right hand side 

of Ta equation as shown below: 

 

Step 27: Save your file.  

Step 28: Next, we guess Ta at V = 0 and see if it matches Tao=315 at V = 5 m3. If it doesn’t, we guess 

again. In this example, we will make first guess Ta (V = 0) = 330 K and see if Ta = Ta0 = 315 K at V = 

5 m3. 

 

Change the initial value of y0 in all the script file as described below 

 

 

 

 

 

 

 

 

 

 

 

a) Temperature profile 

To make the changes, open your script file “Temp_profile” and change the 1st guess value in y0 to 330 

instead of 315 as shown below. The value of Ta at the end of reactor will be the last element of 1st 

column vector of y. So find the size of y and evaluate the value of y(n,1), where n is the last point  



So, 

z=size(y); 

The value of Ta at the end of reactor will be given by  

 y(z(1,1),1), where z(1,1) gives the row number of last element 

 

Don’t put semi-colon at the end of above line as you want the value of Ta to be displayed on command 

window. Also change the title of the graph from co-current to counter-current. 

Step 29: Now save your file and run the program. In the command window, you can see that outlet 

temperature of Ta is 303.3 K but you want Ta=315 K 

 

 

 

 

 

 

 

 

 

Step 30: Make another guess and check the Value of Ta. The final guess we obtain is Ta (V)=340.3 K 

where Ta (0)=315 K 



 

The following graph is obtained 

 

 

 

b) Conversion profile 



Step 31: Change the initial value of Ta (i.e. Ta=340.3) and graph title in “Conversion_profile.m” file 

as shown 

 

When you run the program, you will get an output that looks like this 

 

c) Rate profile 



Step 32: Change the initial value of Ta and graph title in rate profile as shown 

 

You will get an output like this 

 

 



Constant Ta case 

Step 33: For Constant Ta, we only need to make one change i.e. modify the expression for Ta. Multiply 

the right hand side of differential equation for Ta with 0. The following equation is obtained 

 

d(Ta)/d(V) = 0 *Ua*(T-Ta)/m/Cpc 

In the function file, modify the equation of Ta only. All other equations will remain as it is. 

 

 

In the script file all the parameters and equation will remain same as for co-current case except the title 
of the graph 

Change the title of the different graphs in all the script file and run the program to generate output. 

 

 

 

 

 

 

 

 



a) Temperature profile 

Step 34: The script file for Temp_profile should look like this 

 

 

When you run the program, you should see an output like this 

 

 

 



b) Conversion profile 

Step 35: The script file for Conversion_profile should look like this 

 

When you run this file, you should get an output like this 

 

 



c) Rate profile 

Step 36: The script file should look like this 

 

When you run the above file, the output generated would be 

 

 



Adiabatic operation 

Step 37: For the adiabatic operation, heat exchange is zero i.e. Ua=0 

In the function file, modify the expression for Ua (under explicit equation section). Make Ua=0 instead 

of 5000 

 

Your modified function file should look like this 

 
 

All the other expression and equation will remain same as per co-current case. 

In the script file, all expression and equation will remain same as per co-current case except the graph 

title. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



a) Temperature profile 
 
Step 38: The script file for Temp_profile should look like this 

 

 
 

Run the above program to generate the output shown below 

 

 

 

 

 



 

b) Conversion profile 
 

Step 39: The script file for Conversion_profile is as shown in screenshot 

 

 

 

The output generated after running the file is 

 



 

c) Rate profile 
Step 40: The modified Rate_profile for adiabatic operation is 

 

 

 

 

When you run the above file, the output generated is 

 

 

 

 This is all basically all you need to get started with solving differential equations in MATLAB. If you 

face any problem then restart MATLAB or try to solve error. To get the value of particular parameter, 
remove the semi-colon from the file and you will find that value is displayed on the command window 


