A \square B

Table 13-1 Physical Insight For Segregation Model
To obtain some physical insights into the segregation model, consider drops falling into a reactor. There are three equally sized reactors per drop, each reactor will spend a different amount of time in the reactor. The reaction $A \square B$ is occurring in each reactor
$t_{r}=2$. This reactor (2) will spend 2 minutes in the reactor

$\mathrm{t}_{\mathrm{r}}=1$. This reactor (1) will spend 1 minute in the reactor
$\mathrm{t}_{\mathrm{r}}=3$. This reactor (3) will spend 3 minutes in the reactor
The drops will be spaced one minute apart as they leave the pipe on the way to the reactor. The reaction does not begin until the drop hits the reactor. To follow read up to $t=3$.

At the end of three minutes Reactor (1) from Drop C will leave along with Reactor (2) from Drop B and Reactor (3) from Drop A.

$$
\bar{X}=\square_{d} X(t) E(t) d t=\square X d F
$$

Let's say the reaction A \square B is occurring in each of these little batch reactors. Because reactor $3(A)$ will be in the reactor a longer time (3 min) it will have the highest conversion and reactor $1(C)$ will be in the reactor the shortest time and have the lowest conversion. Lets say the conversion in reactor 1 is $X_{1}=0.3$, and reactor 2 is $X_{2}=0.5$, and reactor 3 is $X_{3}=0.6$. Each reactor represents one third of the total. The mean conversion is then

$$
\bar{X}=\frac{1}{3}(0.3)+\frac{1}{3}(0.5)+\frac{1}{3}(0.6)=0.47
$$

