
IdiomsDesPattsCreational

1

Idioms & Design Patterns Creational

Singleton, Factory Method, Abstract Factory, Named Constructor

Creational Patterns and idioms

Composite, Facade, Adapter, Compiler Firewall

Structural patterns and idioms

Observer, MVC, Double-dispatch

Behavioral patterns and idioms

Idioms are small-scale patterns, in this context

E.g. normally everything has an abstract base class that defines the working
interfaces between the parts of the pattern

But an actuall implementation might not need this - the abstract base can be
collapsed into a single concrete class

One thing about most of the design patterns: presented in a very general form

Using one or more base classes to hide details from the client

e.g. Singleton

Other clever ideas using encapsulation, interfaces, class responsibilities to hide
details from the client.

Design patterns come in two basic flavors:

Patterns and idioms can be grouped roughly into:

You aren't taking advantage of the design pattern just by having some classes with
the "buzzword" names organized kinda like the pattern. The exact way in which the
classes relate to each other, and how key details are handled, is where the real power
of the pattern is!

Take the class relationships and the details seriously!

This means that a special case solution to a design problem will take less code, and
maybe run faster, but it will be much harder to generalize when new features and
capabilities get added to the code.

The need to extend a program is very common, even if it wasn't planned for.

The goal of many of the patterns is to achieve easy extensibility, at the expense of some
verbosity and some run-time overhead.

Key concepts for using design patterns:

Introduction to Design Patterns

IdiomsDesPattsCreational

2

Either use a design pattern from the beginning, to allow for future extensibility, or be
ready to refactor the special case solution to make use of a design pattern so that
future extensions will go more smoothly.

Don't wreck the pattern to make the code shorter or more efficient - you're missing the
point!

So the goal of the patterns is not short code, or fast code, but easy-to-extend code.

IdiomsDesPattsCreational

3

Sometimes you need exactly one object of a class and it should be globally accessible, but
only in certain ways, relevant everywhere in the system, but there should be only one of
them, and its creation, initialization, and destruction must be clear and well defined.

Datum * get_datum_ptr(const std::string& name);

can we put this into an object somewhere so that it will be available everywhere, and
easily kept accurate?

Common use: This object provides resources - e.g. data that is needed widely, gets
updated, has to be kept consistent - so easiest if in exactly one place.

Access is open - anybody can change it in any way desired.

When is its initial value determined?

What if initial value requires run-time computation?

there is a single repository or set of services in the program.

If there really is only one, can't we treat this stuff as a global variable?

But what's to stop code from accidently modifying something directly?

Also, how do we make sure it is always only one variable for each kind of data - no
inadvertent copies to get out of synch?

Need the encapsulation, access control of classes, but global access

Common temptation to use global variables:

What's wrong with global variables?

map<string, Datum *> // a map container of datum names to pointers
void add_Datum_ptr(Datum * ptr);
bool is_datum_present(const std::string& name);
Datum * get_datum_ptr(const std::string& name);
void remove_datum_ptr(const std::string& name);
void remove_datum_ptr(Datum * ptr);

Define a class that has the data members and services that you want

Ensure that only one object of that class can be created.

Ensure that this one object gets created when it needs to be created.

Provide a way to globally access the object's services, but control access as required.

Singleton pattern solves these problems

file Singleton.h

Basic pattern:

Singleton: Unique, globally-accessible Objects

IdiomsDesPattsCreational

4

class Singleton {
 public:
 static Singleton * get_Instance();
 // services member functions
 // prevent copy/move construction and assignment
 Singleton(const Singleton&) = delete;
 Singleton& operator= (const Singleton&) = delete;
 Singleton(const Singleton&&) = delete;
 Singleton& operator= (const Singleton&&) = delete;
 private:
 // constructor is private nobody else can create one
 Singleton();
 static Singleton * ptr; // only one, class-wide

 // services data members initialized by ctor

 // prevent accidental deletion
 ~Singleton();
 };

file Singleton.cpp
 Singleton * Singleton::ptr = 0; // initialized during or
 immediately after loading
 // create the object if it doesn't already exist
 Singleton * Singleton::get_Instance()
 {
 if (!ptr)
 ptr = new Singleton();
 return ptr;
 }
 // code for ctor, dtor (if needed), service functions

Usage:
 class Data // the singleton class
 Datum * find_datum(const string& name);
 void add_datum(Datum *);
 void remove_datum(Datum *)
 etc
 // in other modules
 #include "Data.h"
 ...
 cin >> name;
 Datum * p = Data::get_Instance()->find_datum(name);

have get_Instance return a reference instead of a pointer

Refinements:

IdiomsDesPattsCreational

5

syntactically more convenient, less error prone

Singleton& Singleton::getInstance()
 {
 if (!ptr)
 ptr = new Singleton();
 return *ptr;
 }

Datum * p = Data::getInstance().find_datum(name);

Singletons usually endure for the length of the program run; most OSs will recover
memory and most other resources when a program terminates, so there is an
argument for not worrying about this.

But in this course, and more generally, we will want to follow the rule of cleaning up at
program termination. How to do this with a Singleton?

class Singleton {
 ...
 friend class Singleton_destroyer;
 };
class Singleton_destroyer {
 public:
 ~Singleton_destroyer()
 {
 delete Singleton::ptr; // friend status, so access ptr directly
 }
 };
// somewhere in code (Singleton.cpp is probably the best place)
// create a global static Singleton_destroyer object
Singleton_destoyer the_destroyer;

Can have an auxiliary static object SingletonDestroyer, from a friend class whose
destructor reaches in and does a delete ptr; of the singleton object - for example:

When program starts, the destroyer object will be created (does nothing).

When program terminates, all global/static objects are destroyed by the runtime
library shutdown code (inserted by the linker), so the_destroyer will be destroyed;
its destructor will delete the Singleton, running its destructor.

Auxiliary Destructor Class

just define the get_Instance function differently:

The Meyers singleton: Neat solution contributed by C++ Wizard Scott Meyers: make
the actual object a static local variable in the getInstance function.

How does it get destroyed?

IdiomsDesPattsCreational

6

static Singleton& Singleton::get_Instance ()
 {
 static Singleton s;
 return s;
 }

Compiler automatically builds code that creates 's' first time through the
declaration, not thereafter, and then deletes the static object at program
termination

But can get into very difficult situation if objects rely on each other at the time of
termination - when does the Singleton disappear relative to other objects? Can read
further for various ideas. But for simple applications, this works fine.

Why? A key feature is that it is guaranteed to be there if you need it provided you call the
get_instance() function. If you rely on a stored pointer/reference to it, now if your code
changes and you need it in a different place or time, the pointer or reference may not be
available or valid.

Note that get_instance is simple and can be defined in the class declaration and get
inlined, so no significant function call overhead. Can also give it a shorter name, though
get_instance() is the customary name for the function.

Idiomatic use of the Singleton: Always call get_instance() function to access the Singleton -
do not attempt to save a reference or pointer to it for more convenient use later.

If a bunch of naked static variables, no control over how they're accessed - just global
variables.

The static members will have their ctor's called during program startup, and before
main() gets executed, but no guarantee on when or what order ACROSS translation
units. Can get into strange and difficult situations if initializing a static member variable
somewhere else requires the object, but its static member hasn't been initialized yet.

But built-in types like pointers that are static and have constant initial values are
always initialized before any initializations that involve function calls! Might even
happen during loading (constant initial value might actually be part of program text in
memory image loaded from disk).

Therefore, Singleton using a static pointer intialized to zero or the Meyers singleton
will always be well defined no matter when other code makes use of it! - it gets
created the first time it is used, no matter what.

Answer:

Why not simply use global/static variables to solve the problem, or just have static members
for every member variable in the singleton?

IdiomsDesPattsCreational

7

Control how an object is created

make the constructors private

class Thing {
public:

static shared_ptr <Thing> create(int i);
~Thing{};

private:
Thing(int i = 0) : i_(i) {}

int i_;
};

shared_ptr <Thing> Thing::create(int i)
{

shared_ptr <Thing> p (new Thing(i));
return p;

}

use a static "create" function that takes constructor parameters, constructs and returns
the object

common case - only on the heap, so e.g. refer to with a pointer or shared_ptr.

Named constructor idiom

IdiomsDesPattsCreational

8

Not really a virtual constructor - but has that sort of effect - construct an object based on the
run-time type of an existing object

Given an object that has some derived type, create another object like it, and return a Base
class pointer to it

class Base {
public:

virtual Base * create() = 0;

class Derived : public Base {
public:

Base * create() override {return new Derived;}

.....
Base * p = some object address;
Base * new_p = p->create(); // another object of the same type, whatever it is

Create an object of a type without having to know what exact type it is

class Base {
public:

virtual Base * clone() = 0;

class Derived : public Base {
public:

Base * clone() override {return new Derived(*this);}

.....
Base * p = some object address;
Base * new_p = p->clone(); // a copy of the object, whatever type it is

Related: virtual clone function - return a copy of the object

Virtual constructor idiom

IdiomsDesPattsCreational

9

Battleship

Torpedo_boat

Warship

Trawler

Freighter

Merchant

Ship

We usually refer to all of the objects by base class pointers, Ship *

Suppose we have a class hierarchy of polymorphic objects:

Normally, to create an object of a particular type, you have to write
 explicit code in which the type explicitly appears
 list<Ship *> ships;
 // put some ships into the list
 ships.push_back(new Torpedo_boat(data));
 ships.push_back(new Battleship(data));
 ships.push_back(new Trawler(data));

Enter command: create PT_boat PT109

type and name of object not known until program is running.

E.g. create a new ship from a user command:

BB Indefatigable 23000 12 15 24 18

PT 109 5 4 0.5 4

MF City_of_Peoria 10000

...

E.g. create a bunch of ships from data in a file:

but suppose information and data about which objects is coming in from outside ..

Reminder: Constructors can have other parameters beside values for member variables,
and can get those values from some other place besides the supplied parameters.

Two problems: who decides what kind of object to create, and how do we get the objects
initialized with the proper values?

Common problem: create an object whose type and initial values are specified by run-
time data

IdiomsDesPattsCreational

10

ifstream infile;

...

constructor parses the data in the file, uses it to initialize the object.

ships.push_back(new Battleship(infile));

constructor parses the data in the file, uses it to initialize the object.

ships.push_back(new Merchant_ship(infile));

e.g., a file can provide a source of the parameter data

So, once we know what kind of object to build, we can delegate to each class the
responsibility of handling the details, instead of in a single "know-it-all" place in the code.

IdiomsDesPattsCreational

11

simple factory function - stand-alone function like in Project 4

Simplest idea: A parameterized factory function - given information, create and return the
desire kind of object

class Ship: {
static Ship * build_ship(int type_code, const string& name, int num_guns);

class Ship: {
 static Ship * build_PT_boat(const string& name);
 static Ship * build_submarine(const string& name);
 static Ship * build_battleship(const string& name, int gun_size, int
 num_guns, int armor_thickness);
 static Ship * build_cargoship(const string& name, int capacity, int
 max_speed);

Or can give the functions different names to allow client to specify the type needed, and
specify the parameters better:

Ship * Ship::build_ship(ifstream& infile)
 {
 string ship_kind;
 infile >> ship_kind;
 if (ship_kind == "BB")
 return new Battleship(infile);
 else if (ship_kind == "PT")
 return new Torpedo_boat(infile);
 ...
 else
 throw Error("Unknown kind of ship");
 }

Can combine a static factory method with constructors that initialize from a data source,
so that each subtype of Ship knows how to read its own initialization data

while(infile)
 ships.push_back(Ship:: build_ship(infile));

Client can then construct ships from a file:

DISADVANTAGE of factory method: Ship.cpp has to #include alll the headers for the
derived types, meaning lots of coupling between the base and derived

Elementary factory method concept: A static member of the relevant class interprets the
data and decides what kind of object to create, and makes the initialization data available to
it.

Instead of returning a pointer to the new object, the factory could simply supply the pointer
directly to a "centralized data bank" that keeps it for rest of program to use.

Factories: create objects for a client who doesn't need to know their actual types

IdiomsDesPattsCreational

12

A possible use of a Singleton - the centralized keeper of all the object pointers.

IdiomsDesPattsCreational

13

 More sophisticated, a function for each type of object (possibly with parameters also),
grouped into a concrete factory class - so-called Factory Method pattern, Concrete Factory
version

Concrete Factory

AbstractProductA

ProductA1 ProductA2

ConcreteFactory
CreateProductA()!
CreateProductB()

Client

factory = new Factory!
!
productA = factory->CreateProductA()!
productB = factory->CreateProductB()

factory!
productA!
productB

creates

Concrete Factory/ Factory Method

IdiomsDesPattsCreational

14

e.g. use either this GUI library or that GUI library - client decides which to use, creates
the corresponding factory object.

uses the factory to create the objects it needs

generally, the products from different families will share interfaces

Another problem - what if at run time we have different families of objects to create?

Abstract Factory

AbstractProductA

ProductA1 ProductA2

CreateProductA()!
CreateProductB()

AbstractFactory

ConcreteFactory1
CreateProductA()!
CreateProductB()

ConcreteFactory2
CreateProductA()!
CreateProductB()

AbstractProductB

ProductB1 ProductB2

Client

factory = new ConcreteFactoryn!
!
productA = factory->CreateProductA()!
productB = factory->CreateProductB()

factory!
productA!
productB

creates creates

Abstract Factory

