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This paper presents a new approach for incorporate gust load alleviation (GLA) in the
multidisciplinary design optimization (MDO) process. With this approach, closed-loop control
considerations are incorporated into the MDO problem formulation through the inclusion of
the parameterization of the sensitivity to stress transfer function of the aircraft. The parameters
of this function are included as design variables and a constraint based on the Bode integral
relation is imposed on it. This approach is control agnostic in the sense that it does not explicitly
design a controller or its gains, which can be relegated to a later design phase. Two constraints
related to the gust loads are added to the MDO problem: one for peak gust stress, based on the
design envelope criterion, and the other for fatigue life under continuous turbulence. While the
GLA feedback controller does not need to be designed, the optimizer designs the closed-loop
sensitivity function directly. The parameterization of the sensitivity function is chosen to
guarantee robustness of the closed-loop system. The use of this new approach is demonstrated
by performing multidisciplinary design optimization of a flexible free-flying aircraft model
subjected to gust loads. The matrix-free adjoint derivatives are verified against finite differences,
and the optimum designs with and without control considerations are compared. The use of
the proposed approach was able to reduce the optimal wing mass for the closed-loop design in
relation to the open-loop design while still satisfying the other constraints.

I. Introduction
The first time gust load alleviation (GLA) control was considered in the multidisciplinary design optimization

(MDO) of aircraft was in 1993 [1], when the structural design of a cantilevered wing was considered simultaneously
with the design of a proportional integral (PI) controller that uses the measurement of the wing tip acceleration to
command a control surface also located at the tip of the wing. The analysis was done in time domain and the assumed
gust model was stochastic but simplified, since the turbulence input was generated based on a first order filter driven by
Gaussian white noise.

An increased number of studies in this area was conducted in the last 10 to 15 years, due to renewed interest in
aircraft MDO. Hunten et al.[2] showed results of the optimization of a blended wing-body (BWB) configuration using
flap deflection for drag reduction, as well as for maneuver and gust load alleviation, considering only quasi-static gusts
and maneuvers. Haghighat et al.[3] performed MDO of an aircraft considering a linear quadratic (LQ) controller for
reducing gust loads, which are evaluated in time domain for a discrete gust. Xu and Kroo [4] performed an aerostructural
design optimization of an aircraft considering a proportional derivative control system for GLA, which took the angle of
attack as an input, and deflections for the two most outboard control surfaces on the wing being designed as outputs.
They considered a discrete gus,t and the simulations to obtain the gust loads were performed in the time domain.

Most recently, Stanford [5] considered the design of a wingbox with trailing edge control surfaces used for GLA,
including a static output feedback controller and control surface sizing into the design. To evaluate the gust loads, the
turbulence model was added to the state-space representation of the airplane. No time-domain simulation was performed,
instead a Lyapunov equation was solved to obtain the statistics of the stresses due to gust, which were then used to
inform constraints for the optimization problem. Krengel and Hepperle [6] proposed a wing optimization problem in
which the GLA controller was based on feedback of the lift coefficient, in addition to a pitch damper designed using
sequential loop closure on pitch rate and angle-of-attack. They reported a 14% reduction in bending moment, with a
corresponding 11.6% reduction in block fuel consumption, which was the cost function of the proposed MDO problem.
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Meanwhile, there has been much research done on the design of GLA controllers for for an already designed aircraft.
In particular, Vartio et al. [7] designed a linear quadratic Gaussian (LQG) controller for a half BWB scaled model
with multiple trailing edge control surfaces, which was then tested in free pitch and plunge at the NASA Langley’s
Transonic Dynamics Tunnel. The closed-loop system exhibited over 50% reduction in gust loads compared to a non-GLA
controller. Zeng et al. [8] presented an adaptive feedforward controller capable of significantly reducing gust loads in the
2 to 20 Hz range. Dillsaver et al. [9] designed LQG controller considering a reduced-order flexible aircraft model and
obtained expressive reduction of wing root curvature in simulation. Haghighat et al. [10] employed a model predictive
controller (MPC) for the GLA problem, and compared its performance with a LQG controller in simulation. Pereira
[11] also considered MPC-based architectures for GLA with LIDAR-based gust preview in a flexible aircraft. Ting et
al.[12] designed and performed wind tunnel tests of preview 𝐻2 and 𝐻∞ controllers, reporting reduction in the wing
root strains for both controllers. Fournier et al. [13] presented structured mixed 𝐻2/𝐻∞ controller designs for gust load
alleviation with the use of LIDAR measurements, and achieved 50% bending moment reduction for both discrete and
continuous turbulence in simulation. Düssler et al. [14] designed an LQG controller that showed promising reductions
in wingtip displacement of a very flexible aircraft model under continuous turbulence in linear simulations, although it
presented robustness issues when tested with the non-linear simulation model.

As can be seen, there is a gap between the techniques employed to design the controllers for an already designed
aircraft vs. the ones assumed in the setting of aircraft control co-design. Moreover, there is no agreed on choice of
control architecture that should be used for GLA. This makes it desirable to develop an approach that guarantees the
existence of a controller which gives satisfactory GLA performance for a closed-loop aircraft system without directly
designing such a controller. We refer to such an approach as controller-agnostic.

This paper proposes such a controller-agnostic approach, which involves the direct optimization of the closed-loop
sensitivity to stress transfer function. This transfer function reflects the combined effects of the aircraft response to
control inputs and the controller. This avoids restricting the controller architecture from the beginning of the design
process and leaves it for later, while guaranteeing desirable closed-loop shaping based on the designed sensitivity
function [15]. The ultimate goal with this new approach is to ensure that an upper bound on the closed-loop performance
informed by the airframe design exists and satisfies the design requirements, thus guaranteeing that a suitable controller
exists.

The calculation of gust stresses due to continuous turbulence is performed in the frequency domain [16] and is
synergistic with the classical control framework (i.e., transfer functions). This procedure allows for very fast evaluation
of the gust loads as compared to time domain simulations, which would have to be run for extended periods of time in
order to capture rare gust events.

Notation is mostly standard, and the vectorization operation and the Kronecker product are used to to avoid dealing
with tensors of order larger than two. In what follows, (i) 𝐼𝑛 is the identity matrix in R𝑛×𝑛; (ii) 1 denotes a vector in
which every element is one; (iii) 0 denotes a vector of zeros; (iv) 𝑗 is the complex unit ( 𝑗2 = −1) (v) 𝑍 and |𝑍 | are the
element-wise complex conjugate and the element-wise absolute value of 𝑍 ∈ C𝑚×𝑛, respectively; (vi) ·⊤ is the transpose
operator; (vii) ·H is the conjugate transpose (Hermitian) operator; (viii) ·−⊤ and ·−𝐻 denote the inverse transpose and
inverse conjugate transpose, respectively; (ix) vec · is the vectorization operation, which stacks the columns of a matrix
to produce a column vector; (x) when applied to a vector, diag · yields a diagonal matrix with the vector elements in the
diagonal, and when applied to a matrix it extracts the diagonal elements into a vector; (xi) · ◦ · denotes the element-wise
(or Hadamard) product; and (xii) · ⊗ · denotes the Kronecker product; (xiii) ·◦· denotes element-wise power (or Hadamard
power). A thorough exposition on these and other topics in matrix calculus can be found in, e.g., [17].

When deriving expressions for directional derivatives, we make use of the simplified notation described in [17,
Section 5.16], that is, if 𝑔(𝑥) : 𝑈 → 𝑉 is a vector function;𝑈,𝑉 are vector spaces; and L(𝑈,𝑉) is the space of linear
operators that map 𝑈 to 𝑉 , then we write d𝑔 =

𝜕𝑔
𝜕𝑥 (𝑥) d𝑥, where d𝑥 ∈ 𝑈 is a direction in the input space and d𝑔 ∈ 𝑉

is a direction in the output space. 𝜕𝑔
𝜕𝑥 ∈ L(𝑈,𝑉) is the derivative of 𝑔 defined as the linear mapping that locally

approximates 𝑔, i.e., limd𝑥→0
𝑔 (𝑥+d𝑥 )−𝑔 (𝑥 )− 𝜕𝑔

𝜕𝑥
(𝑥 ) d𝑥

∥ d𝑥 ∥ = 0. We also define the adjoint derivative
(
𝜕𝑔
𝜕𝑥 (𝑥)

)∗
∈ L(𝑉,𝑈)

such that ⟨d𝑔, 𝜕𝑔𝜕𝑥 (𝑥) d𝑥⟩ = ⟨
(
𝜕𝑔
𝜕𝑥 (𝑥)

)∗
d𝑔, d𝑥⟩. For example, if 𝑈 = R𝑛 and 𝑉 = R𝑚, then 𝜕𝑔

𝜕𝑥 (𝑥) ∈ R𝑚×𝑛 and(
𝜕𝑔
𝜕𝑥 (𝑥)

)∗
=

(
𝜕𝑔
𝜕𝑥 (𝑥)

)⊤
.

Some useful relations are recalled for the convenience of the reader: (xiv) the absolute value squared function,
| · |2 : C→ R+ is not differentiable in the complex plane because it does not satisfy the Cauchy-Riemann equations,
but is differentiable when viewed as a R2 → R+ mapping, i.e., |𝑎 + 𝑗 𝑏 |2 = 𝑎2 + 𝑏2, where 𝑎, 𝑏 ∈ R, and its differential

2



is given by d|𝑎 + 𝑗 𝑏 |2 = 2𝑎 d𝑎 + 2𝑏 d𝑏 = 2ℜ
[
(𝑎 + 𝑗 𝑏) d(𝑎 + 𝑗 𝑏)

]
; (xv) the differential of the matrix inverse is

given by d𝐴−1 = −𝐴−1 d𝐴 𝐴−1; (xvi) the vectorization operation is distributive over the element-wise product, i.e.,
vec(𝑋 ◦𝑌 ) = vec(𝑋) ◦ vec(𝑌 ); (xvii) if 𝑢 and 𝑣 are vectors of the same dimension, then 𝑢 ◦ 𝑣 = diag(𝑢)𝑣; and (xviii) if
𝑋,𝑌, 𝑍 are matrices such that the product 𝑋𝑌𝑍 is defined, then vec(𝑋𝑌𝑍) = (𝑍⊤ ⊗ 𝑋) vec(𝑌 ) —this relation is known
as the “vec trick”.

This paper is organized as follows. Section II presents the theoretical framework for the calculation of gust stresses
and fatigue damage resulting from a stochastic turbulence input, along with their matrix-free direct and adjoint directional
derivatives. Section III describes how to incorporate the sensitivity function into that formulation, and Section IV
proposes a simplified MDO problem that will be solved integrating these elements. Section V presents and analyzes
the resulting MDO designs, comparing open and closed-loop solutions. Finally, Section VI presents the concluding
remarks.

II. Stochastic gust metrics

A. Calculations of moments of the power spectral density of stress
Consider the transfer functions from gust to normal and shear stresses at one point in the structure, given by

𝐺𝜎 (𝑠) = 𝐶𝜎 (𝑠𝐼 − 𝐴)−1𝐵 + 𝐷𝜎 (1)

𝐺𝜏 (𝑠) = 𝐶𝜏 (𝑠𝐼 − 𝐴)−1𝐵 + 𝐷𝜏 (2)

where 𝐴 ∈ R𝑛𝑥×𝑛𝑥 ; 𝐵 ∈ R𝑛𝑥×𝑛𝑢 ; 𝐶𝜎 , 𝐶𝜏 ∈ R𝑛𝑦×𝑛𝑥 ; 𝐷𝜎 , 𝐷𝜏 ∈ R𝑛𝑦×𝑛𝑢 . The tuples (𝐴, 𝐵, 𝐶𝜎 , 𝐷𝜎) and (𝐴, 𝐵, 𝐶𝜏 , 𝐷𝜏),
are the state space representations of the responses from gust to normal stresses and from gust to shear stresses,
respectively.

The transfer functions for shear stress and gust stresses are used to calculate the magnitude of the transfer function
from the gust input to the von Mises stress [18]:

|𝐺VM (𝑠) |◦2 = |𝐺𝜎 (𝑠) |◦2 + 3 |𝐺𝜏 (𝑠) |◦2 (3)

The PSD of the von Mises stress is calculated by

ΦVM (𝜔) = |𝐺VM ( 𝑗𝜔) |◦2 Φ𝑤𝑔
(𝜔) (4)

where Φ𝑤𝑔
(𝜔) ∈ R𝑛𝑢 is the PSD of the gust that is the input into the system, e.g., given by the von Kárman power

spectral density for vertical continuous turbulence (FAR §25.341):

Φ𝑤𝐺
(𝜔) = 𝑈2

𝑔

𝐿𝑤
𝜋𝑈∞

1 + 8
3 (1.339𝐿𝑤𝜔/𝑈∞)2

[1 + (1.339𝐿𝑤𝜔/𝑈∞)2] 11
6

(5)

where 𝑈𝑔 is the turbulence intensity, 𝐿𝑤 is the turbulence scale, and 𝑈∞ is the free stream velocity. The first two
parameters can be found in the FAR.

The moments of the PSD can then be calculated by integration:

_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ΦVM (𝜔) d𝜔, 𝑚 = 0, 1, 2, 4. (6)

Combining (1) to (4) and (6), it follows that

_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚

(
|𝐶𝜎 ( 𝑗𝜔𝐼 − 𝐴)−1𝐵 + 𝐷𝜎 |◦2 + 3|𝐶𝜏 ( 𝑗𝜔𝐼 − 𝐴)−1𝐵 + 𝐷𝜏 |◦2

)
Φ𝑤𝑔

(𝜔) d𝜔 (7)

For this integral to converge, it suffices that the integrand is bounded by 𝐶∗𝜔−𝑥 , for some 𝐶∗, 𝑥 ∈ R, 𝑥 > 1, and
for large values of 𝜔. If the term Φ𝑤𝑔

(𝜔) represents the von Kármán power spectral distribution for turbulence in the
vertical direction, it decays proportionally to 𝜔−5/3 at high frequencies, which means that the moment of order 𝑚 will
be finite if the relative degree of each gust-to-stress transfer function is greater or equal to

√
𝑚.
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B. Computation of derivatives of the PSD moments
The following matrices of frequency response functions are introduced in order to keep the expressions for the

derivatives of (7) compact:

𝜒(𝜔) = ( 𝑗𝜔𝐼 − 𝐴)−1𝐵 ∈ R𝑛𝑥×𝑛𝑢 (8a)
𝜓𝜎 (𝜔) = 𝐶𝜎 ( 𝑗𝜔𝐼 − 𝐴)−1 ∈ R𝑛𝑦×𝑛𝑥 (8b)
𝜓𝜏 (𝜔) = 𝐶𝜏 ( 𝑗𝜔𝐼 − 𝐴)−1 ∈ R𝑛𝑦×𝑛𝑥 (8c)

𝐺𝜎 (𝜔) = 𝐶𝜎 ( 𝑗𝜔𝐼 − 𝐴)−1𝐵 + 𝐷𝜎 ∈ R𝑛𝑦×𝑛𝑢 (8d)

𝐺𝜏 (𝜔) = 𝐶𝜏 ( 𝑗𝜔𝐼 − 𝐴)−1𝐵 + 𝐷𝜏 ∈ R𝑛𝑦×𝑛𝑢 (8e)

Differentiating (7) with the use of (xiv) and (xv), and swapping the order of the integration with differentiation (the
precise assumptions under which this is possible are presented in e.g., [19]):

d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ℜ

[
2𝐺𝜎 (𝜔) ◦

(
d𝐶𝜎 𝜒(𝜔) + 𝜓𝜎 (𝜔) d𝐴 𝜒(𝜔) + 𝜓𝜎 (𝜔) d𝐵 + d𝐷𝜎

)
+ 6𝐺𝜏 (𝜔) ◦

(
d𝐶𝜏 𝜒(𝜔) + 𝜓𝜏 (𝜔) d𝐴 𝜒(𝜔) + 𝜓𝜏 (𝜔) d𝐵 + d𝐷𝜏

) ]
Φ𝑤𝑔

(𝜔) d𝜔
(9)

This equation allows the calculation of the directional derivatives at a point (𝐴, 𝐵, 𝐶𝜎 , 𝐶𝜏 , 𝐷𝜎 , 𝐷𝜏) given directions
for the inputs, i.e., values for d𝐴, d𝐵, d𝐶𝜎 , d𝐶𝜏 , d𝐷𝜎 , and d𝐷𝜏 . Note that d_𝑚 in (9) is linear in the differentials,
which are independent of the integration variable 𝜔, allowing it to be written as

d_𝑚 =
𝜕_𝑚
𝜕𝐶𝜎

d𝐶𝜎 + 𝜕_𝑚
𝜕𝐶𝜏

d𝐶𝜏 +
𝜕_𝑚
𝜕𝐴

d𝐴 + 𝜕_𝑚
𝜕𝐵

d𝐵 + 𝜕_𝑚
𝜕𝐷𝜎

d𝐷𝜎 + 𝜕_𝑚
𝜕𝐷𝜏

d𝐷𝜏 (10)

where the Jacobians are third-order tensors.
This equation can be vectorized by applying the vec operator to both sides of the equal sign and using the properties

presented in Section I, starting with the “vec-trick” (xviii):

vec d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)

vec
{
ℜ
[
2𝐺𝜎 (𝜔) ◦

(
d𝐶𝜎 𝜒(𝜔) + 𝜓𝜎 (𝜔) d𝐴 𝜒(𝜔) + 𝜓𝜎 (𝜔) d𝐵 + d𝐷𝜎

)
+ 6𝐺𝜏 (𝜔) ◦

(
d𝐶𝜏 𝜒(𝜔) + 𝜓𝜏 (𝜔) d𝐴 𝜒(𝜔) + 𝜓𝜏 (𝜔) d𝐵 + d𝐷𝜏

) ]}
d𝜔

(11)

Using the fact that vec is distributive over the element-wise product (xvi):

vec d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)

ℜ
{
2 vec𝐺𝜎 (𝜔) ◦

[ (
𝜒(𝜔)⊤ ⊗ 𝐼𝑛𝑦

)
vec d𝐶𝜎 +

(
𝜒(𝜔)⊤ ⊗ 𝜓𝜎 (𝜔)

)
vec d𝐴

+
(
𝐼𝑛𝑢 ⊗ 𝜓𝜎 (𝜔)

)
vec d𝐵 + vec d𝐷𝜎

]
+ 6 vec𝐺𝜏 (𝜔) ◦

[ (
𝜒(𝜔)⊤ ⊗ 𝐼𝑛𝑦

)
vec d𝐶𝜏 +

(
𝜒(𝜔)⊤ ⊗ 𝜓𝜏 (𝜔)

)
vec d𝐴

+
(
𝐼𝑛𝑢 ⊗ 𝜓𝜏 (𝜔)

)
vec d𝐵 + vec d𝐷𝜏

]}
d𝜔

(12)

Applying the property that the element-wise product of two vectors is equal to multiplying a vector by the matrix with
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the elements of the other in the diagonal (xvii):

vec d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)

ℜ
{
2 diag

(
vec𝐺𝜎 (𝜔)

) [ (
𝜒(𝜔)⊤ ⊗ 𝐼𝑛𝑦

)
vec d𝐶𝜎 +

(
𝜒(𝜔)⊤ ⊗ 𝜓𝜎 (𝜔)

)
vec d𝐴

+
(
𝐼𝑛𝑢 ⊗ 𝜓𝜎 (𝜔)

)
vec d𝐵 + vec d𝐷𝜎

]
+ 6 diag

(
vec𝐺𝜏 (𝜔)

) [ (
𝜒(𝜔)⊤ ⊗ 𝐼𝑛𝑦

)
vec d𝐶𝜏 +

(
𝜒(𝜔)⊤ ⊗ 𝜓𝜏 (𝜔)

)
vec d𝐴

+
(
𝐼𝑛𝑢 ⊗ 𝜓𝜏 (𝜔)

)
vec d𝐵 + vec d𝐷𝜏

]}
d𝜔

(13)

The linear caracter of this relation can be made explicit by writing it as

vec d_𝑚 =
𝜕 vec(_𝑚)
𝜕 vec(𝐶𝜎)

vec d𝐶𝜎 + 𝜕 vec(_𝑚)
𝜕 vec(𝐶𝜏)

vec d𝐶𝜏 +
𝜕 vec(_𝑚)
𝜕 vec(𝐴) vec d𝐴

+ 𝜕 vec(_𝑚)
𝜕 vec(𝐵) vec d𝐵 + 𝜕 vec(_𝑚)

𝜕 vec(𝐷𝜎)
vec d𝐷𝜎 + 𝜕 vec(_𝑚)

𝜕 vec(𝐷𝜏)
vec d𝐷𝜏 (14)

where the Jacobians of the vectorized input-output pairs are given by:

𝜕 vec(_𝑚)
𝜕 vec(𝐶𝜎)

=

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)
ℜ

[
2 diag

(
vec𝐺𝜎 (𝜔)

) (
𝜒(𝜔)⊤ ⊗ 𝐼𝑛𝑦

) ]
d𝜔 (15a)

𝜕 vec(_𝑚)
𝜕 vec(𝐶𝜏)

=

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)
ℜ

[
6 diag

(
vec𝐺𝜏 (𝜔)

) (
𝜒(𝜔)⊤ ⊗ 𝐼𝑛𝑦

) ]
d𝜔 (15b)

𝜕 vec(_𝑚)
𝜕 vec(𝐴) =

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)
ℜ
[
2 diag

(
vec𝐺𝜎 (𝜔)

) (
𝜒(𝜔)⊤ ⊗ 𝜓𝜎 (𝜔)

)
+ 6 diag

(
vec𝐺𝜏 (𝜔)

) (
𝜒(𝜔)⊤ ⊗ 𝜓𝜏 (𝜔)

) ]
d𝜔 (15c)

𝜕 vec(_𝑚)
𝜕 vec(𝐵) =

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)
ℜ
[
2 diag

(
vec𝐺𝜎 (𝜔)

) (
𝐼𝑛𝑢 ⊗ 𝜓𝜎 (𝜔)

)
+ 6 diag

(
vec𝐺𝜏 (𝜔)

) (
𝐼𝑛𝑢 ⊗ 𝜓𝜏 (𝜔)

) ]
d𝜔 (15d)

𝜕 vec(_𝑚)
𝜕 vec(𝐷𝜎)

=

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)
ℜ
[
2 diag

(
vec𝐺𝜎 (𝜔)

) ]
d𝜔 (15e)

𝜕 vec(_𝑚)
𝜕 vec(𝐷𝜏)

=

∫ ∞

𝜔=0
𝜔𝑚

(
Φ𝑤𝑔

(𝜔)⊤ ⊗ 𝐼𝑛𝑦
)
ℜ
[
6 diag

(
vec𝐺𝜏 (𝜔)

) ]
d𝜔 (15f)

The adjoint operatosr in the vectorized basis are the transpose of the direct operators, shown in (15). They can be

5



Table 1 Dimensions of explicit and matrix-free derivatives

Direct Jacobian Adjoint
𝜕_𝑚
𝜕𝐶𝜎

R𝑛𝑦×𝑛𝑥 → R𝑛𝑦 R𝑛𝑦×𝑛𝑦×𝑛𝑥 R𝑛𝑦 → R𝑛𝑦×𝑛𝑥

𝜕_𝑚
𝜕𝐶𝜏

R𝑛𝑦×𝑛𝑥 → R𝑛𝑦 R𝑛𝑦×𝑛𝑦×𝑛𝑥 R𝑛𝑦 → R𝑛𝑦×𝑛𝑥

𝜕_𝑚
𝜕𝐴

R𝑛𝑥×𝑛𝑥 → R𝑛𝑦 R𝑛𝑦×𝑛𝑥×𝑛𝑥 R𝑛𝑦 → R𝑛𝑥×𝑛𝑥
𝜕_𝑚
𝜕𝐵

R𝑛𝑥×𝑛𝑢 → R𝑛𝑦 R𝑛𝑦×𝑛𝑥×𝑛𝑦 R𝑛𝑦 → R𝑛𝑥×𝑛𝑢
𝜕_𝑚
𝜕𝐷𝜎

R𝑛𝑦×𝑛𝑢 → R𝑛𝑦 R𝑛𝑦×𝑛𝑦×𝑛𝑢 R𝑛𝑦 → R𝑛𝑦×𝑛𝑢

𝜕_𝑚
𝜕𝐷𝜏

R𝑛𝑦×𝑛𝑢 → R𝑛𝑦 R𝑛𝑦×𝑛𝑦×𝑛𝑢 R𝑛𝑦 → R𝑛𝑦×𝑛𝑢

evaluated and written in the original (not-vectorized) basis, yielding the following matrix-free adjoint equations:(
𝜕_𝑚
𝜕𝐶𝜎

)∗
d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ℜ

{[
2𝐺𝜎 (𝜔) ◦

(
d_𝑚Φ𝑤𝑔

(𝜔)⊤
) ]
𝜒(𝜔)⊤

}
d𝜔 (16a)(

𝜕_𝑚
𝜕𝐶𝜏

)∗
d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ℜ

{[
6𝐺𝜏 (𝜔) ◦

(
d_𝑚Φ𝑤𝑔

(𝜔)⊤
) ]
𝜒(𝜔)⊤

}
d𝜔 (16b)(

𝜕_𝑚
𝜕𝐴

)∗
d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ℜ

{
𝜓𝜎 (𝜔)⊤

[
2𝐺𝜎 (𝜔) ◦

(
d_𝑚Φ𝑤𝑔

(𝜔)⊤
) ]
𝜒(𝜔)⊤

+ 𝜓𝜏 (𝜔)⊤
[
6𝐺𝜏 (𝜔) ◦

(
d_𝑚Φ𝑤𝑔

(𝜔)⊤
) ]
𝜒(𝜔)⊤

}
d𝜔 (16c)(

𝜕_𝑚
𝜕𝐵

)∗
d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ℜ

{
𝜓𝜎 (𝜔)⊤

[
2𝐺𝜎 (𝜔) ◦

(
d_𝑚,Φ𝑤𝑔

(𝜔)⊤
) ]

+ 𝜓𝜏 (𝜔)⊤
[
6𝐺𝜏 (𝜔) ◦

(
d_𝑚Φ𝑤𝑔

(𝜔)⊤
) ] }

d𝜔 (16d)(
𝜕_𝑚
𝜕𝐷𝜎

)∗
d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ℜ

[
2𝐺𝜎 (𝜔) ◦

(
d_𝑚Φ𝑤𝑔

(𝜔)⊤
) ]

d𝜔 (16e)(
𝜕_𝑚
𝜕𝐷𝜏

)∗
d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ℜ

[
6𝐺𝜏 (𝜔) ◦

(
d_𝑚Φ𝑤𝑔

(𝜔)⊤
) ]

d𝜔 (16f)

The direct derivatives, (9), allow the calculation of the directional derivative of the function given a direction in the
input space, while the adjoint derivatives, (16), allow the calculation of this directional derivative given a direction in
the output space. They can be used to calculate the total derivatives for the optimization problem without forming the
potentially very big Jacobian matrices of (15). Table 1 summarizes the sizes of the matrices involved in these different
forms of obtaining derivatives.

C. Peak stress metric
To constrain the peak stress to which the wingbox is subjected to under continuous turbulence, the continuous

turbulence design criterium from the FAR §25.341 is employed, considering the transfer function from gust to stress as
suggested in the AC 25.341-1§6.3.2.6.4. See also [16] for a more detailed description of the method. This calculation
yields the peak gust stress, 𝜎gust, as a function of the 1-g stress, 𝜎1-g, and the turbulence intensity, 𝜎gust, which is a
design parameter specified by the FAR. All stresses are considered to be von Mises aggregated stresses. The relation∗ is
given by:

𝜎gust =
√︁
_0𝑈gust (17)

∗The FAR notation for
√
_0 is 𝐴
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where _0 is calculated by (7) considering the normalized von Kármán power spectral density given by (5) with𝑈𝑔 = 0.
The total stress is calculated by summing the 1-g straight and level flight stress to the peak gust stress, in order to
calculate the margin of safety (MS), given by

MS =
𝜎allowable

|𝜎gust + 𝜎1-g |
− 1.5 (18)

where 𝜎allowable is the allowable stress for the application. The margin of safety of the peak gust stress is constrained to
be non-negative, i.e.,

MS ≥ 0 (19)

D. Fatigue metric
When formulating an MDO problem that involves gust loads, it is important to incorporate a fatigue constraint

to correctly evaluate designs with large stress power at high frequency bands. Even if the peak stress to which these
designs are exposed is safe, they may be subjected to a high number of stress cycles that will lead to fatigue damage.

The most widely used method to calculate fatigue damage is based on the Palmgreen-Miner rule [20, 21] combined
with the rainflow count of cycles in the stress time history to calculate the damage experienced by the material over time
(see e.g., [22]). Since the approach herein in the frequency domain, it would be very costly to generate a representative
time signal of the stress (e.g., by designing a filter driven by white noise). Instead, the preferred approach is to use
Dirklik’s empirical method for approximating the rate of damage due to gust [23], and then constraining this damage
rate by a limit based on the expected flight hours in turbulence for the lifetime of the airframe. Dirklik’s method has
been shown to provide good agreement with the time-domain rainflow counting analysis [24].

This method uses the moments of order 0, 1, 2 and 4 of the stress PSD to estimate the mean damage rate of the
rainflow count method denoted by ¤𝐷𝐷𝐾𝑅𝐹𝐶 . The von Mises aggregated stresses are considered as proposed by [18]. The
equations that define Dirklik’s method are reproduced below, for a single point in the structure (i.e., _0, _1, _2, _4 ∈ R)

¤𝐷𝐷𝐾𝑅𝐹𝐶 =
a𝑝

𝐶

√︁
_0

[
𝐷1𝑄

𝑘Γ(1 + 𝑘) + 2𝑘/2Γ(1 + 𝑘/2) (𝐷2 |𝑅 |𝑘 + 𝐷3)
]

(20)

where:

a0 =
1

2𝜋

√︂
_2
_0

a𝑝 =
1

2𝜋

√︂
_4
_2

𝛼2 =
_2√
_0_4

𝑥𝑚 =
_1
_0

√︂
_2
_4

𝐷1 =
2(𝑥𝑚 − 𝛼2

2)
1 + 𝛼2

2
𝐷2 =

1 − 𝛼2 − 𝐷1 + 𝐷2
1

1 − 𝑅

𝐷3 = 1 − 𝐷1 − 𝐷2 𝑄 =
1.25(𝛼2 − 𝐷3 − 𝐷2𝑅)

𝐷1
𝑅 =

𝛼2 − 𝑥𝑚 − 𝐷2
1

1 − 𝛼2 − 𝑥𝑚 − 𝐷1 + 𝐷2
1

(21)

The parameters a0 and a𝑝 correspond to the frequency of zero crossing and frequency of peaks of the random signal,
respectively, Γ(·) is the Gamma function, and 𝐶 and 𝑘 are the parameters of the material’s S-N curve expressed as
𝑁 = 𝐶𝜎−𝑘 , which can be obtained from, e.g., MIL-HDBK-5J with unity stress ratio.

The expected life in fatigue is then given by

E[fatigue life] = 1
¤𝐷𝐷𝐾𝑅𝐹𝐶

(22)

A safety factor of 3 is usually applied to this value, and an additional factor of 1.5 is applied to allow for the
variability of loading between different aircraft of the same type [25]. The appropriate gust intensity for using with the
von Kármán model when doing the fatigue life calculation described can be obtained from, e.g., MIL-HDBK-1797.

It was found that the optimization converges better when the logarithm of the expected fatigue life is considered, ı.e.
a constraint is imposed on

log10 E[fatigue life] = log10 [1/ ¤𝐷𝐷𝐾𝑅𝐹𝐶 ] (23)
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Fig. 1 Block diagram of the aircraft closed-loop system partition with a GLA controller.

E. Flutter metric
In order to ensure that the system is open-loop stable (flutter-free), the approach proposed in [26] is adopted. It

consists of constraining the real part of the eigenvalues of the 𝐴 matrix (poles of the system) to be less than zero. These
constraints are aggregated using the Kreisselmeier-Steinhauser (KS) function [27–29] to achieve greater numerical
efficiency in the calculation of the derivatives in the adjoint mode, as well as removing the need for mode tracking. The
derivative of the eigenvalues with respect to the 𝐴 matrix can be obtained by the method proposed by Nelson [30]: let
𝐴 ∈ R𝑛𝑥×𝑛𝑥 be diagonalizable, i.e., 𝐴 = 𝑉Λ𝑉−1, where Λ is the diagonal matrix of eigenvalues and 𝑉 is the matrix of
eigenvectors. Then:

dΛ = 𝑉−1 d𝐴𝑉 (24)
The vec-trick (xviii) can be applied to this equation

vec dΛ = (𝑉⊤ ⊗ 𝑉−1) vec d𝐴 (25)

From (25), the adjoint vectorized Jacobian can be computed by taking its conjugate transpose(
𝜕 vecΛ
𝜕 vec 𝐴

)∗
vec dΛ = (𝑉⊤ ⊗ 𝑉−1)H vec dΛ = (𝑉 ⊗ 𝑉−H) vec dΛ = vec(𝑉−H dΛ𝑉H) (26)

Therefore, (
𝜕Λ

𝜕𝐴

)∗
dΛ = 𝑉−H dΛ𝑉H (27)

III. Sensitivity function approach

A. Calculation of closed loop moments of the stress PSD
The new approach starts with separating the aircraft plant into a gust response part and a control response part, as

shown in Figure 1, where 𝐾 (𝑠) denotes the controller, 𝐺𝑢 (𝑠) denotes the control input response part of the plant, and
𝐺𝑤 (𝑠) is the disturbance response part of the plant. The feedback loop, consisting of the controller and control response
parts of the plant, is then considered and characterized by its sensitivity function,

𝑆(𝑠) =
(
𝐼𝑛𝑦 + 𝐺𝑢 (𝑠)𝐾 (𝑠)

)−1
(28)

The sensitivity function represents the closed-loop response to a disturbance applied at the plant’s output, in this
case the von Mises stress due to gust. By parameterizing it and using the parameters as additional design variables in
the MDO problem, which incorporates the gust constraints described in Section II, it is possible to assess the impact
of the GLA system on the airframe optimal design, without explicit controller design. Specifically, (6) is modified to
account for the assumed sensitivity function, which acts as a filter at the output of 𝐺𝑤 , yielding

_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚 |𝑆( 𝑗𝜔) |◦2ΦVM (𝜔) d𝜔, 𝑚 = 0, 1, 2, 4 (29)
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B. The Bode integral relation
Assuming a linear time invariant (LTI) plant and controller without time delays, the sensitivity function must satisfy

the Bode integral relation: ∫ ∞

𝜔=0
log |𝑆( 𝑗𝜔) |d𝜔 = 𝜋

𝑛𝑢∑︁
𝑘=1

Re(𝑝𝑘) (30)

for a single-input single-output (SISO) system [31, 32], or∫ ∞

𝜔=0
log | det 𝑆( 𝑗𝜔) |d𝜔 = 𝜋

𝑛𝑢∑︁
𝑘=1

Re(𝑝𝑘) (31)

for a multiple-input multiple-output (MIMO) system (see, e.g., [33] and references therein), where in both cases 𝑝𝑘 ,
𝑘 = 1, . . . , 𝑛𝑢, are the open-loop poles in the open right half plane.

The Bode integral relation is a fundamental control limitation that captures the effects of finite actuation bandwidth
and reflects the inherent difficulty of stabilizing an unstable plant. It ensures that any reduction in sensitivity over some
frequency range is accompanied by an increase in sensitivity at other frequencies (the water bed effect),

For simplicity, each gust-to-stress transfer function is considered as its own SISO system and (30) is added to the
problem as an aditional constraint. A single sensitivity function is designed for all points where the stress is evaluated.
For a stable plant, which is the case considered in this paper due to the flutter constraint, this is equivalent to assuming a
diagonal structure in the MIMO matrix of senstivity functions, with repeated entries in the diagonal.

Finally, robustness constraints can be imposed on the sensitivity function. For the case of a single-input single-output
(SISO) system, the peak of the sensitivity function can be bounded through the parameterization, which in turn provides
bounds to the gain and phase margins [34, 35].

Specifically, peak of the magnitude of the sensitivity function is related to the robustness of the closed-loop system,
specifically, the sensitivity peak magnitude 𝑀𝑆 is the minimum distance between the Nyquist curve and the critical point
−1 [33]. The following bounds on the gain margin (GM) and on the phase margin (PM) can be stated in terms of 𝑀𝑆:

GM ≥ 𝑀𝑆
𝑀𝑆 − 1

, PM ≥ 2 sin−1
(

1
2𝑀𝑆

)
. (32)

For example, 𝑀𝑆 ≤ 2 guarantees a gain margin of at least 6 dB and phase margin of at least 29◦, which are usual
requirements for control design.

C. Derivatives of PSD moments with respect to the sensitivity function
Differentiating (29) yields

d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚

{
d
[
|𝑆( 𝑗𝜔) |◦2] ΦVM (𝜔) + |𝑆( 𝑗𝜔) |◦2 dΦVM (𝜔)

}
d𝜔 (33)

from which the direct matrix-free directional derivative can be obtained:

𝜕_𝑚
𝜕 |𝑆( 𝑗𝜔) |◦2 d

[
|𝑆( 𝑗𝜔) |◦2] = ∫ ∞

𝜔=0
𝜔𝑚 d

[
|𝑆( 𝑗𝜔) |◦2] ΦVM (𝜔) d𝜔 (34)

where d
[
|𝑆( 𝑗𝜔) |◦2] ∈ { 𝑓 | 𝑓 : R+ → R𝑛𝑦×𝑛𝑦 } is a matrix of functions which represent the direction in which the

derivative is taken, and 𝜕_𝑚
𝜕 |𝑆 ( 𝑗𝜔) |◦2 : { 𝑓 | 𝑓 : R+ → R𝑛𝑦×𝑛𝑦 } → R𝑛𝑦 maps a direction in the space of matrices of

magnitude squared of sensitivity functions evaluated in frequency to a direction in the space of PSD moments.
Equation (34) makes more sense when the sensitivity function is parameterized by parameters 𝑝 ∈ R𝑛𝑝 , in which

case the chain rule can be applied yielding:

𝜕_𝑚
𝜕𝑝

=
𝜕_𝑚

𝜕 |𝑆( 𝑗𝜔; 𝑝) |◦2
𝜕 |𝑆( 𝑗𝜔; 𝑝) |◦2

𝜕𝑝
(35)

The adjoint matrix-free directional derivative can be readily calculated by transposition:(
𝜕_𝑚

𝜕 |𝑆( 𝑗𝜔) |◦2

)∗
d_𝑚 =

∫ ∞

𝜔=0
𝜔𝑚ΦVM (𝜔)⊤ d_𝑚 d𝜔 (36)
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Fig. 2 XDSM diagram showing the information flow for the calculation of the proposed gust metrics

IV. Optimization problem

A. Statement of the problem
In order to illustrate the integration of the proposed combination of sensitivity function parameterization, gust

stress constraints (both peak and fatigue), and Bode integral constraint, a simplified wingbox optimization problem
is considered. The uniform rectangular wingbox is parameterized in terms of its height, ℎ, width 𝑤, side surfaces
thickness, 𝑡ℎ, upper and lower surfaces thickness, 𝑡𝑤 , and distance between the airfoil leading edge and the reference
axis of the wingbox normalized by the chord, 𝑟𝑎, which is defined as the geometric center of the rectangle. In particular,
if 𝑟𝑎 = 0 then the reference axis is located at the leading edge and if 𝑟𝑎 = 1 then it is located at the trailing edge.

The sensitivity function is parameterized considering a series arrangement of a second-order Butterworth high-pass
filter and a peaking filter. It is defined by

𝑆(𝑠) = 𝑠2

𝑠2 +
√

2𝜔𝑐𝑠 + 𝜔2
𝑐︸                ︷︷                ︸

high-pass filter

𝑠2 + 𝑔0𝜔0𝑠/𝑞0 + 𝜔0
2

𝑠2 + 𝜔0𝑠/𝑞0 + 𝜔02︸                     ︷︷                     ︸
peaking filter

(37)

The design variables of the sensitivity function are the high-pass filter’s cutoff frequency 𝜔𝑐, and the peaking filter’s
gain 𝑔0, center frequency 𝜔0, and quality factor 𝑞0.

For the proposed parameterization, the peak of the magnitude of the sensitivity function bounded by the value of 𝑔0,
i.e.. 𝑀𝑆 ≤ max(1, 𝑔0). Therefore, 𝑔0 is constrained (via a bound in the optimizer) to be less or equal to 2 to ensure the
robustness margins mentioned in Section III.B.

Additionally, the trim angle-of-attack, 𝛼1𝑔, is included as a design variable to find the equilibrium point around
which the system is linearized to obtain the state space representation used in the calculations of the peak gust stress,
fatigue, and flutter metrics described in Section II.

The objective is to minimize the wingbox mass, which is calculated by multiplying the cross-sectional mass by the
length of the wingbox, 𝐿.

The aircraft model chosen for this study is a free-flying blended wing-body (BWB) configuration shown in Figure 3,
which is simulated using the University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [36].
The simple aeroelastic representation is composed of a geometrically exact, strain-based, beam structural model with
strip theory aerodynamics. The BWB model consists of three rigid elements with an 80-kg concentrated mass at the
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nose (the body) and 8 flexible elements with parameterized distributed mass and stiffness (the wing). The aerodynamic
coefficients along the span are computed based on the local effective angle of attack using a lookup table for the
NACA0012 airfoil. Unsteady aerodynamic effects are considered using the 2D Peters’ theory [37]. This model was
previously used for aeroelastic optimization studies in [38]

The calculation process of the constraints is represented graphically in Figure 2, making use of the eXtended Design
Structure Matrix (XDSM) diagram [39]. First the equivalent beam properties (in the strain basis) of the parameterized
cross section are calculated using standard formulae (see, e.g., [25]). These properties are the axial stiffness, the
torsional stiffness, the in- and out-of-plane bending stiffnesses, the mass linear density and the moments of inertia linear
densities. These, along with 𝛼1𝑔 and 𝑟𝑎, are then input into UM/NAST for the calculation of the residual vertical force
𝐹𝑧,1𝑔, which is used to inform a trim constraint, and for the calculation of the 1-g strains which are input into the stress
model described in Section IV.B to calculate the 1g von Mises aggregated stress 𝜎VM, 1g for the points of interest (which
are also described in Section IV.B). The vertical gust to strain system is linearized using algorithmic differentiation
(AD) [40] to yield the state space matrices 𝐴 and 𝐵. The stress model is also linearized using AD to obtain the linear
relations from strains to normal and shear stresses at the points of interest, 𝐶𝜎 and 𝐶𝜏 . The state space representation
thus obtained is then used to calculate the moments of the von Mises stress PSD using (7), modified to account for the
designed sensitivity function as shown in (29). The left hand side of Bode integral relation is also computed.

The integrals involved in these calculations are computed numerically using the trapezoidal rule with 400 equally
spaced points and truncated to the interval 𝜔 ∈ [0.001, 50]Hz. The truncation to this finite interval avoids numerical
challenges with infinite integration intervals and with the poles at the origin present in the UM/NAST linearized system
due to the states representing the aircraft reference frame position in space, its heading, and the use of quaternions for
attitude representation.

The moments of the stress PSDs are used to compute the the log expected fatigue life, as described in Section II.D,
and, combined with the 1g stresses, the margin of safety peak gust stresses (Section II.C) at the points of interest. The
values thus obtained are aggregated using the Kreisselmeier-Steinhauser (KS) function [27–29]

KS(𝑔, 𝜌) = 1
𝜌

log
∑︁
𝑗

𝑒𝜌𝑔 𝑗 (38)

where 𝑔 is the vector of constraints to be aggregated and 𝜌 is a positive aggregation parameter. The use of the KS
function is motivated by the useful property that it is smooth and approximates the maximum function, in the sense that
lim𝜌→∞ KS(𝑔, 𝜌) = max(𝑔). The following aggregated constraints are considered:

KSpeak stress = KS(−MS, 100) (39)
KSfatigue = KS(log10 [design fatigue life] − log10 E[fatigue life], 100) (40)

The choice of the aggregation parameter 𝜌 tries to balance the smoothness of the KS-function with overconservativeness.
Although not shown in Figure 2, the eigenvalues of the 𝐴 matrix are calculated and used to inform a flutter metric as

described in Section II.E:
KSflutter = KS(ℜ(diagΛ) − 1 · threshold, 100) (41)

3.25 m

0.89 m

1.39 m

0.55 m

Body

Wing

Fig. 3 BWB model planform (dashed line: beam reference axis; markers: beam element ends).
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where ℜ(diagΛ) is a vector containing the real part of the eigenvalues of 𝐴, 1 is a vector of ones of appropriate size
and threshold is a small number of allowable positive damping to compensate for the conservativeness introduced by the
KS function combined with the aforementioned eigenvalues at the origin.

Finally, the packaging constraints described in Section IV.C are imposed. They consist of the distance that the
wingbox extends vertically over the airfoil outer mold line, for both the fore and aft corners, denoted respectively ℏfore
and ℏaft. Only the upper surface is considered since both the airfoil and the wingbox cross sections are symmetric.

The complete problem is stated as follows, and relevant parameters are given in Table 2.

minimize 4𝜌(𝑡ℎℎ + 𝑡𝑤𝑤)𝐿 (wingbox mass) (42a)
with respect to ℎ, 𝑤, 𝑡ℎ, 𝑡𝑤 , 𝑟𝑎, 𝛼1g (physical design variables) (42b)

𝜔𝑐, 𝜔0, 𝑔0, 𝑞0, (sensitivity function design variables) (42c)
subject to KSpeak stress ≤ 0 (peak gust stress constraint) (42d)

KSfatigue ≤ 0 (fatigue constraint) (42e)
KSflutter ≤ 0 (flutter constraint) (42f)
𝐹z,1g = 0 (trim constraint) (42g)∫ 𝜔max

𝜔min

log |𝑆( 𝑗𝜔) | d𝜔 = 0 (Bode integral relation constraint) (42h)

ℏfore ≤ 0 (fore packaging constraint) (42i)
ℏaft ≤ 0 (aft packaging constraint) (42j)

Table 2 Optimization parameters

Parameter Value Source

Flight speed 120 m/s Design requirements
Flight Altitude 20000 ft
Threshold (flutter) 0.07
Design fatigue life 100 000 h
Turbulence scale 2500 ft Typical choice for altitude
Fatigue gust intensity 10 ft/s MIL-STD-1797A
Peak gust intensity 70 ft/s Hoblit [16]
Young’s modulus 70 GPa Aluminum 7075-T6
Density (𝜌) 2700 kg/m3

Shear modulus 26 GPa
𝜎allowable 430 MPa
𝑘 5.80 MIL-HDBK-5J p. 3-409 Fig. 3.7.6.1(d)
log10 𝐶 14.86 𝑘

√
ksi

𝜔min 0.001 Hz Representative range for this aircraft
𝜔max 50 Hz

This MDO problem was implemented in the OpenMDAO optimization framework [41] and solved using SciPy’s
SLSQP optimizer.†

B. Stress calculation
Usually, the stress constraint used for maneuver loads in high-fidelity static aerostructural optimization is derived

from the von Mises stress (or an equivalent for composite constructions) of the wingbox walls at various points along
†https://scipy.org

12

https://scipy.org


the span [42]. To obtain a similar metric from a beam based model, it is necessary to reintroduce information about the
wingbox cross section, which was lost during the condensation process. Hence, a simplified stress model, previously
used in [43], is described in what follows.

From the Euler-Bernoulli beam formulation for isotropic material, the normal stress due to bending at a given
spanwise station and at a point (𝑥, 𝑧) in the cross section is given by

𝜎𝑦 = 𝐸 [^𝑥𝑧 − ^𝑧𝑥] (43)

where 𝐸 is the Young’s modulus of the material and ^𝑥 and ^𝑧 are the out-of-plane and in-plane bending curvatures,
respectively.

The shear stresses are calculated based on the cross section shear flow. First, the shear flow 𝑞 b is divided into the
basic shear flow 𝑞 b ,𝑏 and closed-section shear flow 𝑞 b ,0, so that

𝑞 b = 𝑞 b ,𝑏 + 𝑞 b ,0 (44)

The basic shear flow is obtained by introducing a fictitious cut in the upper right corner of the idealized wingbox:

𝑞 b ,𝑏 (b) =
∫ b

0

(
−𝑉𝑥 𝐼𝑥𝑥 −𝑉𝑧 𝐼𝑥𝑧
𝐼𝑥𝑥 𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑥(b) + 𝑉𝑧 𝐼𝑧𝑧 −𝑉𝑥 𝐼𝑥𝑧
𝐼𝑥𝑥 𝐼𝑧𝑧 − 𝐼2𝑥𝑧

𝑧(b)
)
𝑡 (b) db, b ∈ [0, 2(𝑤 + ℎ)] (45)

where b is the coordinate that parameterizes the cross section shape by arc length, 𝑉𝑥 and 𝑉𝑦 are the shear force resolved
in the cross sectional local coordinate frame, and 𝐼𝑥𝑥 , 𝐼𝑧𝑧 , 𝐼𝑥𝑧 are the moments of area of the cross section. These
moments are obtained by dividing the stiffness matrix of the condensed beam model by the material Young’s modulus
and not by a direct calculation from the cross section shape.

Finally, the closed-section shear flow is obtained by enforcing the relation between shear flow and torsion, i.e.,

^𝑦 =
1

2𝑤ℎ𝐺

∮
𝑞(b)
𝑡 (b) d𝑠 (46)

Applying this relation to the idealized cross section and solving for 𝑞 b ,0 yields

𝑞 b ,0 = 2𝑤ℎ𝐺^𝑦

∮
𝑞 b ,𝑏 (b)/𝑡 (b) db∮

1/𝑡 (b) d𝑠
(47)

Then the shear stresses in each skin are obtained from the shear flow by the relation

𝜏 =
𝑞 b

𝑡
(48)

Integrals (45) to (47) were solved analytically using the symbolic algebra system SymPy‡ and the resulting closed
form solution for shear stress was sampled at the corners and the center of each wall, resulting in a total of 12 points for
each cross section. These points are chosen because they are at the extrema of the piecewise parabolic distribution of
shear stress that results from this calculation. Eight different cross sections were considered, corresponding to the root
of the beam elements used in the UM/NAST model.

Due to the symmetries of the parameterization, the stress value at some of the points will be repeated, but the amount
of points was not changed in order to demonstrate the capacity of the approach to handle many sampling points for stress.

These sampled values are then combined with the normal stress from (43) using the von Mises criterion:

𝜎VM =

√︃
𝜎2
𝑦 + 3𝜏2 (49)

C. Packaging constraint
The shape and position of the rectangular wingbox are also used as design variables, namely the wingbox height

ℎ, width 𝑤, and the distance of its geometric center to the leading edge of the airfoil, denoted by 𝑟𝑎. It is, therefore,
necessary to define constraints that ensure that the wingbox cross section fits inside the airfoil.

‡https://www.sympy.org
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A symmetric airfoil is fully defined by a function that maps the chord to the thickness, i.e., 𝑡𝑐 (𝑥/𝑐) : [0, 1] → R,
where 𝑡 is the airfoil thickness, 𝑐 is its chord and 𝑥 is the coordinate that runs along the chord. For a NACA0012 airfoil,
this function is

𝑡𝑐 (𝑥/𝑐) = 0.12/0.20[0.2969
√︁
𝑥/𝑐 − 0.1260𝑥/𝑐 − 0.3516(𝑥/𝑐)2 + 0.2843(𝑥/𝑐)3 − 0.1015(𝑥/𝑐)4] (50)

The chordwise limits of the wingbox parameterized as described above are 𝑥 = 𝑟𝑎 ± 𝑤/2, both at a perpendicular
distance of ℎ/2 from the chord. The vertical excesses of these two points, normalized by the chord, are then given by

ℏfore ≜ ℎ
2𝑐 − 𝑡𝑐 (𝑟𝑎 −

𝑤
2𝑐 ) (51)

ℏaft ≜ ℎ
2𝑐 − 𝑡𝑐 (𝑟𝑎 +

𝑤
2𝑐 ) (52)

Furthermore, the linear constraints 𝑟𝑎 − 𝑤
2𝑐 ≥ 0.05 and 𝑟𝑎 + 𝑤

2𝑐 ≤ 0.8 are included to prevent computing 𝑡𝑐 outside
of the interior of its domain, where it is differentiable. The derivatives of these constraints are calculated using the
complex-step method [44] for precision and ease of implementation.

V. Results

A. Verification of derivatives of the proposed gust analysis
In order to numerically verify the procedure for derivative calculation described in Sections II and III, the total

derivatives of the proposed constraints with respect to the design variables were calculated using the adjoint method for
the arbitrary design point given by: ℎ = 55 mm, 𝑤 = 165 mm, 𝑡ℎ = 1.0 mm, 𝑡𝑤 = 1.0 mm, 𝑟𝑎 = 0.30, 𝛼1g = 1.0 deg,
𝜔𝑐 = 0.002 Hz, 𝜔0 = 8.0 Hz, 𝑔0 = 2.0, 𝑞0 = 3.0. These total derivatives were then compared against ones calculated
using finite differences (Table 3) and using the direct method (Table 4). For the case of the flutter metric, KSflutter, the
derivatives calculated using the direct method were also included in Table 3 due to the poor matching between direct and
adjoint analytical derivatives. A relative step size of 1 · 10−6 was used when computing the forward finite differences.

The derivative of KSflutter had a poor match between the finite differences approximation, and also between the
direct and adjoint calculations. The sign of the derivative agrees, but it often has no significant digits in agreement. It is
known from the literature [45, 46] that the spectral abscissa (maximum real part of the eigenvalues) is a differentiable
function almost everywhere, with the singularity points being where the eigenvalue with the largest real part (the “active”
eigenvalue) changes and where there are repeated eigenvalues. The use of the KS aggregation deals with the first issue
but not with the second. The steps in the proposed calculation of KSflutter (Section II.E) were verified for small random
matrices (30 × 30), and good agreement was obtained.

For the other constraints, there were at least two significant digits in agreement between the derivatives obtained
using finite differences and the ones obtained using the adjoint method, which was deemed satisfactory given the loss of
precision inherent to finite difference schemes. Agreement of approximately ten significant digits was obtained between
the direct and adjoint calculation of the derivatives.

A more qualitative form of derivative verification is presented in Figure 4 for the flutter metric and Figure 5 for the
other gust metrics. These figures plot sweeps in 𝑟𝑎 of the functions of interest in which the base of the arrow marks
the function value at each point and the tip of each arrow is at the linear approximation for the next sampled point.
Therefore, for a linear function, the tip of one arrow should touch the base of the next arrow, and, for a function with
mild non-linearities, they should be close. The functions in Figure 5 are smooth especially in the stable region, 𝑟𝑎 < 0.8,
as is the behavior of the individual eigenvalues shown in Figure 4b. However, the aggregated flutter metric, shown in
Figure 4a shows strong non-linearities due to the eigenvalues close to the origin contributing the most to the aggregated
value until very close to flutter, when the “active” eigenvalue changes and this causes a sharp change in the slope of
KSflutter.

B. Optimization results
Two simplified versions of the optimization problem proposed in (42) converged successfully to a tolerance of

1 · 10−6, both in open-loop (𝑆( 𝑗𝜔) = 1 ∀𝜔) and in closed-loop (𝑆( 𝑗𝜔) given by (37)). They are summarized in Table 5,
which shows an over five times increase in computational cost when the sensitivity function is designed. This suggests
that the parameterization of the sensitivity function proposed leads to a hard optimization problem.
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Table 3 Verification of exact derivatives against finite differences (not matching digits are underlined)

(a) Derivatives with respect to physical variables

wrt ℎ (m) 𝑤 (m) 𝑡ℎ (mm) 𝑡𝑤 (mm) 𝑟𝑎 (chord fr.) 𝛼1g (deg)
of mode

KS peak
stress

Adjoint -50.13202772 -14.33102859 -0.41305936 -2.08192256 2.49292277 0.29274164
FD -50.10366989 -14.32064796 -0.41284357 -2.08149928 2.49432521 0.28969245

KSfatigue Adjoint -67.02255179 -19.10264589 -0.47102252 -2.90887711 3.68266921 0.03308077
FD -66.97753730 -19.08519747 -0.47072755 -2.90829519 3.68514846 0.02794816

KSflutter Adjoint 0.02622839 0.00431653 0.00010136 0.00066053 -0.00117842 -0.00026081
Direct 0.01871342 0.00288407 0.00006185 0.00047869 -0.00107073 -0.00013206
FD 0.01906667 0.00288560 0.00005308 0.00047050 -0.00105289 -0.00207511

𝐹𝑧,1g (kN) Adjoint -0.36771291 -1.31224912 -0.07095762 -0.03193474 0.61907804 1.69712136
FD -0.36771793 -1.31224835 -0.07095741 -0.03193466 0.61907809 1.69712117

(b) Derivatives with respect to control-related variables

wrt 𝜔𝑐 (rad/s) 𝜔0 (rad/s) 𝑔0 (-) 𝑞0 (-)
of mode

KSpeak stress Exact -0.00009598 -0.00494446 0.09541288 -0.04261832
FD -0.00009597 -0.00494445 0.09541291 -0.04261827

KSfatigue Exact -0.00010181 -0.00967206 0.18211993 -0.07998246
FD -0.00010180 -0.00967300 0.18212893 -0.07998605

Bode integral Exact -58.96978592 0.46865546 24.50766684 -7.86823638
FD -58.96976280 0.46865543 24.50766594 -7.86822896

Table 4 Relative errors between direct and adjoint derivatives

(a) With respect to physical variables

wrt ℎ (m) 𝑤 (m) 𝑡ℎ (mm) 𝑡𝑤 (mm) 𝑟𝑎 (chord fr.) 𝛼1g (deg)
of

KSpeak stress −1.7 · 10−12 −3.4 · 10−11 −3.5 · 10−11 −7.5 · 10−12 −1.7 · 10−10 5.7 · 10−14

KSfatigue 2.1 · 10−12 1.5 · 10−11 2.6 · 10−11 3.3 · 10−12 1.1 · 10−10 1.9 · 10−13

KSflutter −2.9 · 10−1 −3.3 · 10−1 −3.9 · 10−1 −2.8 · 10−1 −9.1 · 10−2 −4.9 · 10−1

(b) With respect to control-related variables

wrt 𝜔𝑐 (rad/s) 𝜔0 (rad/s) 𝑔0 (-) 𝑞0 (-)
of

KSpeak stress 0.0 0.0 1.3 · 10−15 −1.1 · 10−15

KSfatigue −4.0 · 10−16 −1.8 · 10−16 0.0 −6.9 · 10−16

Note: 0.0 indicates identical 64-bit floating point representations
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Fig. 4 Flutter metric with derivatives for varying relative position of the airfoil and wingbox

Table 5 Optimization problems solved

Design variables Constraint # Evaluations

Case ℎ, 𝑤, 𝑟𝑎 𝜔𝑐, 𝜔0, 𝑔0, 𝑞0 KSflutter Function Jacobian

A ✓ 6 6
B ✓ ✓ 42 32
C ✓ 13 10
D ✓ ✓ 85 64
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Fig. 5 Parametric study of the gust stress and trim constraints with varying relative position between the
wingbox and the airfoil

Table 6 Optimization results for problem with fixed wingbox shape (A,B)

(a) Design variables

Open-loop Closed-loop Δ [%] Lower Upper
design design bound bound

𝑡ℎ (mm) 0.657 0.456 −30.6% 0.100 2.000
𝑡𝑤 (mm) 0.851 0.455 −46.5% 0.100 2.000
𝛼1𝑔 (deg) 0.811 0.790 −2.6% −10.00 10.000
𝜔𝑐 (Hz) - 5.000 - 0.000 5.000
𝜔0 (Hz) - 10.00 - 5.000 10.000
𝑔0 (-) - 2.000 - 1.000 2.000
𝑞0 (-) - 1.139 - 1.000 10.000

(b) Response variables

Open-loop Closed-loop Δ [%] Lower Upper
design design bound bound

KSpeak stress 1.1 · 10−8 1.0 · 10−7 - - 0
KSflutter −0.048 -0.048 - - 0
KSfatigue −0.346 −0.938 - - 0
𝐹𝑧,1𝑔 (N) 3.5 · 10−7 −3.2 · 10−6 - 0 0
Bode integral - −8.5 · 10−14 - 0 0
Mass (kg) 2.591 1.470 −43.3% - -
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Table 7 Optimization results for problem without the flutter constraint (C, D)

(a) Design variables

Open-loop Closed-loop Δ [%] Lower Upper
design design bound bound

ℎ (m) 0.061 0.050 −18.0% 0.027 0.066
𝑤 (m) 0.159 0.092 −42.1% 0.005 0.549
𝑡ℎ (mm) 0.590 0.522 −11.5% 0.100 2.000
𝑡𝑤 (mm) 0.807 0.563 −22.2% 0.100 2.000
𝑟𝑎 (chord fr.) 0.315 0.175 −30.2% 0.100 2.000
𝛼1𝑔 (deg) 0.796 0.785 −1.4% −10.00 10.000
𝜔𝑐 (Hz) - 7.451 - 0.000 10.000
𝜔0 (Hz) - 15.00 - 10.000 15.000
𝑔0 (-) - 2.000 - 1.000 2.000
𝑞0 (-) - 1.000 - 1.000 10.000

(b) Response variables

Open-loop Closed-loop Δ [%] Lower Upper
design design bound bound

KSpeak stress 4.9 · 10−8 1.6 · 10−7 - - 0
KSfatigue −0.354 −2.157 - - 0
𝐹𝑧,1𝑔 (N) 6.5 · 10−6 −4.2 · 10−5 - 0 0
Bode integral - −8.5 · 10−14 - 0 0
ℏfore (chord fr.) 1.8 · 10−13 2.0 · 10−8 - - 0
ℏaft (chord fr.) 1.2 · 10−13 −0.014 - - 0
Mass (kg) 2.421 1.144 −52.7% - -
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The first simplified version of the optimization problem (cases A and B) includes all constraints but drops the
design variables that position shape the wingbox, i.e., ℎ, 𝑤, and 𝑟𝑎. These variables are fixed at the values described
in Section V.A. The optimum design and response for this version of the problem are shown in Table 6. The second
version of the problem (cases C and D) includes all the design variables but drops the flutter constraint, KSflutter. The
optimum design and response for this version of the problem are shown in Table 7. Adding the design variables for the
wingbox shape caused a reduction in mass for the open-loop designs (i.e., between cases A and C) of 6.6%. Cases B
and D are not directly comparable because of changes in the bounds for 𝜔𝑐 and 𝜔0, which corresponds to different
assumed bandwidths for the control systems.
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(a) Optimal design with wingbox shape fixed (A, B)
(b) Optimal design without the flutter
constraint (C, D)

Fig. 6 Stress PSD for the critical point in peak stress

Figure 6 shows the von Mises stress PSD for the optimal designs found. The closed-loop design exhibits a reduction
in the first peak in the PSD (around 2 Hz) thanks to the sensitivity function, which in turn allows the peak between
10–20 Hz to be moved closer to 10 Hz, where the von Kármán PSD has more energy and therefore makes the peak
higher, while maintaining the same level of peak stress.

In all cases the peak stress constraint is active while the fatigue constraint is not, despite the stress having greater
magnitudes at higher frequencies for the closed-loop cases (B and D). The open-loop poles for the various designs are
shown in Figure 7. Designs A, B, and C are open-loop stable but D is not. This highlights the desirability of including
the flutter constraint in the problem.

C. Sensitivity analysis
Since the Jacobian of the optimization problems is readily available, a sensitivity analysis was conducted at the

optimum and the results are shown in Tables 8 and 9, normalized by the optimum value of the design variables (denoted
by an ★ superscript. These figures are color coded based on the value of the derivatives, with stronger shades of reds
denoting larger positive values and shades of blue denoting negative values.

These derivatives show that an increase in the dimensions of the wingbox causes reduction of peak stress and increase
in mass. However, increasing the height and width of the wingbox decreases the fatigue damage in the open-loop
optimum design of case C, but mildly increases it in the closed-loop optimum design of case D. This is likely due to the
competing effects that increasing stiffness shifts the stresses to higher frequencies, while adding material decreases
the stresses in all frequencies. Moving the wingbox towards the leading edge is favorable for both peak stresses and
fatigue metrics. Finally, the flutter metric is largely insensitive to changes in the design because the designs A and B are
flutter-free, and therefore the eigenvalues with largest real part are the ones fixed at the origin, related to the position and
heading of the aircraft reference frame, and they dominate the KS aggregation.
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Fig. 7 Pole map for the different designs, with insets zooming in close to the origin
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Table 8 Derivatives at the optimum point with fixed wingbox shape

(a) Open-loop design (case A)

w.r.t. 𝑡ℎ/𝑡★ℎ 𝑡𝑤/𝑡★𝑤 𝛼1g/𝛼★1g
of

KSdynamic stress −0.422 −1.594 0.164
KSfatigue −0.450 −2.990 0.031
KSflutter 0.000 0.000 0.000
𝐹𝑧,1g (kN) −0.107 −0.026 1.341
Mass (kg) 0.530 2.061 0.000

(b) Closed-loop design (case B)

w.r.t. 𝑡ℎ/𝑡★ℎ 𝑡𝑤/𝑡★𝑤 𝛼1g/𝛼★1g
of

KSdynamic stress −0.392 −1.128 0.216
KSfatigue −0.547 −1.798 0.031
KSflutter 0.000 −0.001 0.000
𝐹𝑧,1g (kN) −0.078 0.034 1.197
Mass (kg) 0.368 1.103 0.000

w.r.t. 𝜔𝑐/𝜔★𝑐 𝜔0/𝜔★0 𝑔0/𝑔★0 𝑞0/𝑞★0
of

KSdynamic stress −1.229 −0.139 0.321 −0.178
KSfatigue −3.252 −0.273 1.037 −0.543
Bode integral −69.755 57.538 135.074 −58.296
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Table 9 Derivatives at the optimum point without the flutter constraint

(a) Open-loop design (case C)

w.r.t. ℎ/ℎ★ 𝑤/𝑤★ 𝑡ℎ/𝑡★ℎ 𝑡𝑤/𝑡★𝑤 𝑟𝑎/𝑟★𝑎 𝛼1g/𝛼★1g
of

KSdynamic stress −2.505 −2.130 −0.478 −1.665 0.846 0.169
KSfatigue −4.391 −3.648 −0.522 −3.185 1.596 0.036
𝐹𝑧,1g (kN) −0.102 −0.330 −0.129 −0.032 0.210 1.344
Mass (kg) 0.526 1.895 0.526 1.895 0.000 0.000

(b) Closed-loop design (case D)

w.r.t. ℎ/ℎ★ 𝑤/𝑤★ 𝑡ℎ/𝑡★ℎ 𝑡𝑤/𝑡★𝑤 𝑟𝑎/𝑟★𝑎 𝛼1g/𝛼★1g
of

KSdynamic stress −0.835 −0.988 −0.404 −0.732 0.399 0.208
KSfatigue 0.196 0.227 0.012 −0.768 0.862 0.036
𝐹𝑧,1g (kN) 0.341 −0.230 −0.111 0.142 0.151 1.084
Mass (kg) 0.382 0.762 0.382 0.762 0.000 0.000

w.r.t. 𝜔𝑐/𝜔★𝑐 𝜔0/𝜔★0 𝑔0/𝑔★0 𝑞0/𝑞★0
of

KSdynamic stress −0.347 −0.132 0.340 −0.044
KSfatigue −1.430 −0.683 1.958 −0.243
Bode integral −103.882 65.774 189.270 −70.346
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Notably, the open-loop designs (cases A and C) are more sensitive to changes in the structural design variables than
the closed-loop designs (cases B and D), supporting the well-known idea that adding feedback control to the system
makes its performance less sensitive to variations in the plant.

VI. Conclusion and future work
This paper presented an approach to include stochastic gust constraints for peak stress and fatigue into an MDO

problem, complete with matrix-free derivatives for the direct and adjoint (reverse) modes. A constraint for ensuring
the stability of the system (i.e., preventing flutter) developed in previous work was used but presented some problems
with its derivatives, which were discussed. An approach for including control considerations into the design, without
explicitly designing the controller was proposed, and it consists of designing the sensitivity to stress transfer function of
the closed-loop system as part of the MDO problem.

A simplified MDO problem was proposed and solved to show the effect of applying the approach. The use of the
parameterized sensitivity function was able to reduce the mass of the wing (objective), while still satisfying the other
constraints. The need for having a working flutter constraint was highlighted. The sensitivity of the optimum design
with respect to changes in the design variables was calculated, and it was shown that the performance of the closed-loop
design is more robust to changes in the structural variables.

For future work, the problems with the flutter constraint will be investigated further. The assumption of a uniform
wingbox will be dropped, adding distributed design variables to the problem, which will highlight the performance
advantage of calculating the derivatives in the adjoint mode. The sensitivity of the optimum design with respect to
changes in the constraints will be calculated using the Lagrange multipliers, as well as the sensitivity of the optimum
design with respect to changes in the design variables but still respecting the physical constraints, namely the trim and
the Bode integral relation.
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