
Project 3
Using Modern C++ in the Micro Meeting Manager

Due: Friday, Oct. 25, 2019, 11:59 PM
Notice:

Corrections and clarifications posted on the course web site become part of the specifications for this project. You should check this
page for the project frequently while you are working on it. Check also the FAQs for the project. At a minimum, check the project web
pages at the start of every work session.

Introduction
Purpose

The purpose of this project is to provide review or first experience with the following:

• Using the Standard Library strings and containers instead of your own classes.
• Using the Standard Library algorithms, inserters, iterators, bind, function, lambdas, and other modern techniques to work

with the containers.
• Using function objects with the containers and algorithms.
• Narrow scoping of auxiliary class, function, or constant declarations in header files.
• Using object-oriented programming principles to improve the design of a set of classes, and to design new functionality.

Problem Domain
The functionality of this program is almost identical to that on Project 2. Unless stated otherwise, your Project 3 solution is

supposed to behave exactly like Project 1 and 2 (as amended by the Corrections and Clarifications). Except for a few additional and
different output strings in the strings.txt file, there are no supplied "starter" or skeleton files for this project — you will be using
your Project 2 solution as your "starter".

There is a major new piece of functionality, which is that the program will keep track of each person's commitments — what
meetings they are participants in. Any changes to the schedule that conflict with a person's commitments can then be detected. Thus no
longer will it be possible for a person to be scheduled in two meetings at the same time! In addition, there will be a new command that
will print out a brief summary of a person's commitments.

Overview of this Document
There are two main sections: The Program Specifications covers only how this project is different from Project 2. The second

section presents the Programming Requirements — this how you have to program the project in terms of the structure and
organization of the code, and which specific techniques you must apply — remember the goal is to learn and apply some concepts and
techniques for programming, not just hack together some code that behaves right. This section is in two Steps, described below. At the
end is a section of advice on How to Build this Project Easily.

This project will be specified in two steps: Step 1 involves switching over from the DIY Ordered_list and String classes in Project 2
to using the Standard Library string class, containers, algorithms, iterators, inserters, bind, function, and lambda expressions. This
involves a couple of small design changes, and rewriting various bits of your code, such as using a Standard Library container instead
of Ordered_list. To make sure you practice using a variety of containers and algorithms, the specifications will require that you use a
variety of containers and algorithms for parts of your functionality. These are not necessarily the best choices in all places, and in a
few places it might seem like more work than it is worth, but the idea is become familiar with a variety of Standard Library facilities.
Then when they are worthwhile in your future work, you will be familiar with the ideas. You are expected to make thorough use of
Standard Library facilities, not just the grudging minimum. I will be examining and scoring your code for both quality and how
completely and how well you followed the specifications to use the Standard Library facilities.

Step 2 involves design work, in two parts: fixing the design problems noted in Project 2, and implementing the commitment-
tracking functionality. It is strongly recommended that you complete Step 1 before embarking on Step 2. I will test the old
functionality separately from the new. So if you first get your Step 1 work completely done, you can check this with an early
submission to the grading system, and be assured that you have successfully altered the program without damaging its functionality.
Step 2 can then focus on fixing the design problem and adding the commitment-tracking functionality. You will have to modify some
aspects of the design in your Step 1 solution, but it will be easier to modify something that works correctly and is written properly
rather than try to do both Steps at the same time.

�1

Program Specifications

What Stays the Same
Unless stated otherwise, your Project 3 solution is supposed to behave exactly like Project 2 (as amended by the Project 2

Corrections and Clarifications).

Changes to the Commands
For convenience, here in one place is a description of the command changes for both steps.

pa — print allocations; output the information on how many people, meetings, and rooms currently exist — this is
only a change in the kind of information produced and its labels. See the sample outputs and the strings.txt file.

There is one new command:
pc <lastname> — print commitments for an individual — prints a short description of each meeting that the
person is a participant in. If the person is not scheduled in any meetings, a "no commitments" message appears.
The meeting description consists of room number, meeting time, and meeting topic; the descriptions appear
ordered first by room, then by time. Error behavior is the same as the pi command. See the sample outputs and the
strings.txt file.

Other commands involve additional checks for errors. In general, any command that changes what Meetings a Person is committed
to, or would be affected by a Person's commitments, must be modified for Step 2. For example, as in Project 1 and 2, deleting a room
deletes all of the meetings in it, which frees the participants from all the meetings originally scheduled there. There are some
modifications of the effects of specific commands:

ap — after collecting and validating the room number, meeting time, and that the person exists, check for whether
the person is whether the person is already in the meeting, then checks to make sure the person is not already
scheduled for another meeting at the same time, and outputs an error message if so. See the sample outputs and
the strings.txt file.
rm — Let the first room number and time be called the old room number and time, and the second room number
and time, the new room number and time, and note that the old and new room number might be the same or
different, and the old and new time might be the same or different. The program now does something sensible for
all four combinations of the new room being the same or different from the old room, and the new time being the
same or different from the old time.
Do the error checks as follows: First, check that the old room number can be read, is in range, and that there is a
room of that number, and second, that the old meeting time can be read, is in range, and that there is a meeting at
that time in the old room. Third, check that the new room number can be read, is in range, and that there is a room
with that number. Fourth, check that the new meeting time can be read and is in range. Each of these checks, if
failed, results in an error message as in Project 2.
At this point, if the new room and time is the same as the old room and time, output a message that no change was
made to the schedule and do nothing further — note this is not an error, simply an information message.
Otherwise, check that the new time is available for a meeting in the new room, and output an error message if
not. Finally, check for whether a change in meeting time causes a commitment conflict for a participant; if so,
output an error message, and make no change. Note that changing the room and not the time should not cause a
commitment conflict — all of the participants should be able to meet at the same time in a different room!

See the sample outputs for demos, and the strings.txt file for the new message strings.
Notice that except for the additional "already committed" errors and the pc command, the effects of the Step 2 commitment

functionality are invisible — which is why correctly written code can pass Step 1 tests that don't involve commitment problems
without implementing the Step 2 requirements.

Programming Requirements
For all projects in this course, you will be supplied with specific requirements for how the code is to be written and structured. The

purpose of these specifications is to get you to learn certain things and to make the projects uniform enough for meaningful and
reliable grading. If the project specifications state that a certain thing is to be used and done, then your code must use it and do it that
way. If you don't understand the specification, or believe it is ambiguous or incorrect, please ask for clarification, but if you ask
whether you really have to do it the specified way, the answer will always be "yes." If something is not specified, you are free to to it
any way you choose, within the constraints of good programming practice and the general requirements such as following the Coding
Standards.

�2

Design: (somewhat) free at last! In this project, you are allowed to include additional declarations in the header files, and make
modifications to the public interfaces of the classes. Consequently, I will not be testing your modules separately. However:

• You must follow anything this project document specifically requires or inherits from the Project 2 specification — like using
the Error exception class. If not specifically exempted in this document, the Project 2 specifications must be followed.

• Any modifications to the classes must follow the guidelines for good design presented in the course.
• In general, although you can change the public interfaces, responsibilities, and collaborations of the classes, the basic program

organization and classes should be recognizable as being based on those in Project 2. For example, you should not entertain
solutions in which there are no Person objects anymore, or the Meeting class has radically different responsibilities such as
creating and destroying Rooms. A fundamental redesign should not be necessary. If you are thinking otherwise, ask for help or
clarification well ahead of time.

Step 1. Using the Standard Library Facilities
Program Modules — Changes from Project 2

The project consists of the following modules, described below in terms of the involved header and source files. Your header files
can be modified from those you used in Project 2. But the Project 2 files for String and Ordered_list will not be part of your final
project. There is no longer any need for p2_globals or any globals. Due to the similarity of the remaining modules with Project 2's, no
skeleton header files are needed. Just make the changes specified below to your Project 2 header files.

All modules. Everywhere you used a String, use a std::string instead. Remove all references to any of the Project 2 globals, and
remove the p2_globals files from your project; no global variables are allowed, not even those that are file-scoped. While you might
find it useful to phase out Ordered_list gradually, before you submit the project, remove all references and #includes for String and
Ordered_list, and make sure you do not accidentally submit their files with your project.

Important: As in Project 2, you need to be sure that new dynamically-allocated objects are destroyed if their pointers cannot be
added to containers.

Utility.h, .cpp. These files have the same specifications as in Project 2. However, Utility.h should #include only headers that
Utility.h needs in order to be compiled by itself; for example, if you want to declare a type alias for std::vector<Person *> to use
throughout the program, the <vector> header will have to be included, and is also required for that alias to be compilable. But
Utility.h should not #include headers for nothing more than the convenience of other components, even if more than one other
component needs to include them. The principle, as described in the Header File Guidelines, is that header files should #include the
minimum number of other header files.

Person, Meeting, Room.h, .cpp. You can add to the Person, Meeting, or Room header files some declarations of functions or
function object classes to be used by client code for ordering the containers of the corresponding objects. Put only the declaration in a
header file and the definition in the .cpp file, if it makes it possible to #include fewer other headers in the header file. You must put
these declarations in the narrowest possible scope: prefer making them private to the Person, Meeting, or Room class to making them
public to a class; only if absolutely essential should they be scoped outside a class. Try to design these so that they work in a narrow
scope.

However: You must follow the principles of the Header File Guidelines. Do not clutter header files for Person, Meeting, or
Room with publicly accessible function object classes, functions, or declarations that are not part of or required for the public
interface of these classes. For example, if a function object class will only be used in the main module or the Room class's .cpp
file, it is far better to put its declaration in the main module or the Room.cpp file just before the function that first uses it, or in
the function that uses it (allowed since C++11). Check carefully that your #includes and header files follow the course
guidelines.

p3_main.cpp. The main function and its subfunctions must be in a file named p3_main.cpp.
• The file should contain function prototypes for the subfunctions, then the main function, followed by the subfunctions in a

reasonable human-readable order.
• A function template can be placed before the first call if the compiler requires it.
• Put function object class declarations immediately before the function that first uses them, or inside the function that uses them,

if only one does. Placing them at the beginning of the file helps the human reader not at all — don't put them there.
• All input text strings should be read from cin or a file directly into a std::string variable or member variable using its input

operator.
• Single characters must still be read into single character variables.
• As in Project 1 and 2, the main() function should define two containers, one for Rooms, and one for People. The exact type of

these containers is your choice (see below).

�3

Top Level and Error Handling
The top level of your program is basically like that of Project 2: it should consist of a loop that prompts for and reads a command

into two simple char variables, and then calls a function that handles the processing for the command. There should be a try-block
wrapped around this followed by a catch(Error& x) which outputs the message in the Error object, skips the rest of the input line,
and then allows the loop to prompt for a new command. All error messages must be packed up in Error objects and then thrown,
caught, and the messages printed out from a single location — the catch at the base of the command loop. The catch for Error& must
be followed by catches for bad_alloc and all exceptions as in Project 2. The possible errors, and error-handling behavior, for Step 1
are identical to those of Project 2, amended as described above. See strings.txt and the samples.

Command functions must be const-correct. In preparation for the requirement in the next paragraph, each command function
should take as reference arguments both the Rooms container and the People container, and promise not to modify the containers if it
does not need to modify them. Examples: the print-individual command function should promise not to modify either of these
containers, and so should take both of them by const reference; the add-room command function must modify the Rooms container,
but should promise not to modify the People container. The delete-all command function must modify both containers. You should
declare and define the command functions to use const reference parameters for these containers wherever the function will not be
modifying them.

If your Project 2 code had command functions that were not const-correct, or did not take both Rooms and People as parameters , 1

modify them before going any further; remember you have to change both the declarations and definitions. To avoid near-duplicate
code in const-correctness helper functions, you can define the helpers as templates, as described for Project 2.

Be sure your program builds and behaves correctly before going further.
Use a map<> instead of a switch! Replace the Project 1 and 2 top-level switch with the following to map between commands and

functions that do the commands: Concatenate the two characters of the command into a single std::string, and then use this as the
key value for a map container that gives you the command function. Before processing any commands, the program loads the map
container. Unrecognized command strings should not be allowed to fill up the container, either by not putting them in, or immediately
erasing them. Because of its special status, the quit command should be tested for directly; it does not need to have a command
function, nor does it need to be called using the map container, because it is awkward for a command function to arrange to return
from main().

Note: In C++, calling exit() should not be done except in an emergency because it bails out to the OS immediately, bypassing
any destructors that would be called in a return from main(). For this course, your C++ programs should always terminate
with a normal return (0) from main().

What do we map to? Recall that the Standard Library containers always hold objects of the same type. So if the map contains
function pointers for the command functions, all of the command functions have to match a single function pointer type, so they
would have to have identical parameter lists and return types. The only non-horrible way to do this is to have them all take the Rooms
and People containers as modifiable reference arguments, even for functions that don't modify them. But this contradicts the important
goal of making the command functions const-correct. So we can't just do the following:

pi_command_func(const Rooms_t& rooms const People_t& people); // const correct
ar_command_func(Rooms_t& rooms, const People_t& people); // const correct
// etc.

// below fails to compile because the function pointer types are incompatible
map<string, void (*)(Rooms_t&, People_t&)> command_map =

{ {"pi", pi_command_func}, {"ar", ar_command_func}, etc };

But if we define some wrapper functions that take reference parameters and simply call the actual command function, then we could
keep the command functions const-correct, and still have identical signatures to populate the map container. For example:

// wrappers for const-correct command functions
void call_pi(Rooms_t& rooms, People_t& people) {pi_command_function(rooms, people);}
void call_ar(Rooms_t& rooms, People_t& people) {ar_command_function(rooms, people);}
// etc.

map<string, void (*)(Rooms_t&, People_t&)> command_map =
{ {"pi", call_pi}, {"ar", call_ar}, etc };

This works because you can always pass non-const objects to a function that promises not to modify them — this is never a
problem, and the language rules allow it. (What is disallowed is passing const objects to a function that might modify them.)

! Tip: If you do not need to use a parameter in a function, do not give it a name in the parameter list — this means "unused parameter" 1
and the compiler will not pester you with an "unused variable" warning.

�4

Do not take this approach! Coding up a wrapper for every command function is remarkably ugly — this suggests that using a map
in place of the switch is a bad idea, except that the goal of this project is to get familiar with the Standard Library.

A better Standard Library idea: We'll double down with the Standard Library by using std::function<> to automatically
generate these wrappers for us in the form of function objects that take the by-reference parameters and call the const-correct
functions. Recall that a std::function<> function object can hold any object that can be called like a function using the specified
parameters, and the type of the function object is always the same, regardless of the type of the called object. This gives us the same
effect as the above wrapper functions, but the std::function<> template generates them for us. So instead of a map of strings to
function pointers, declare

map<string, std::function<void (Rooms_t&, People_t&)>>

Because the constructor for std::function will take a function pointer argument, the initialization for this map is just as simple as
the function pointer map in the above examples.

Basic Programming Restrictions
This project is to be programmed in pure and idiomatic Standard C++ only. Everything must be done with typesafe C++ I/O, new/

delete, Standard Library facilities and the classes and any templates that you write. Standard C Library facilities are not needed
anywhere and must not be used in this project. You do not need, and must not try to use, any declared or dynamically allocated built-in
arrays anywhere in this program. This prohibition does not apply to the good practice of defining constant char* const variables
pointing to C-string literals for output messages.

There are still some C++ facilities that you may not use yet:

• You may not use inheritance in your classes for this project. In fact, it would add no value.
• You may not use the Standard Library smart pointers, nor may you use your own implementation of smart pointers. Using the

Standard Library smart pointers will be required in a later project. Getting more practice with "raw" plain pointers is valuable.
• If you discover and want to use a C++17 facility that has not been covered, check with us first to make sure it doesn't bypass the

learning goals of this project.
Your code is expected to follow the C++ Coding Standards document for the course.

Container Requirements
You will choose which kind of Standard Library container to use for each collection of objects or pointers. However, you must have

some variety in your containers and the algorithms used with them. The map<> container is already being used for the command map,
but in addition to this, you must use each of {map<>, set<>, vector<>, list<>} at least once each in the code, and with the
following restrictions:

• The map<> container is thus used at least twice in the whole project.
• At least one of the uses of vector<> must be used with binary_search and/or lower_bound to search for items and the

locations of where to insert them.
• At least one of the uses of list<> must be used with an appropriate algorithm that is linear in time to search for items and the

locations of where to insert them.
• Except for the above linear search exception, your code should use efficient searches on containers where the Standard Library

provides them.
• You must use heterogenous lookup for at least one container to avoid constructing probe objects, if it is compatible and

applicable to your choice of container (a vector<> or set<>).
• As in the previous project, the Person objects must be referred to with pointers in the containers. You can use either pointers or

objects in the containers that hold Meetings and Rooms; your choice.
• Important: As in the previous projects, the containers that hold the current Meetings, Rooms, and Persons must persist from

command to command — for example, you can't generate the contents of the people list "on demand" for the pg command.
These container requirements apply to the final version of the project that incorporates both Step 1 and Step 2, so you don't have to

meet them with only the Step 1 version of your code. In fact, you may want to change your Step 1 choices in light of what you
discover when you do Step 2. If your code is well organized (e.g. well-designed "helpers" in the main module) and you use some good
typedefs or type aliases, changing containers can be easy. There are choices that make the project code very simple and smooth.

Note: map<> and set<> assume a default ordering using less<T>, an STL function object class that simply applies
T::operator<. This is used by default to order the key values in the map<>, or the objects in the set<>, respectively. You can
supply your own function object class to use as an ordering as the optional third template parameter for map<> and the optional second
template parameter for set<>. Compare this to Project 2’s Ordered_list template and the default Less_than_ref templated function
object class — this was modeled after the STL approach. See the code examples on the course website for examples.

�5

Note: do not use a binary_search or lower_bound algorithm on the list<> container; in typical applications the complexity of
a binary search of a linked list tends to be linear and slower than a simple front-to-back linear search. If tempted or curious, read the
handout, “Why std::binary_search of std::list Works, But You Shouldn't Use It!”

Note: The other Standard Library containers may not be used in this project; they are all relatively specialized variations on the
containers required and allowed above; this focus maximizes the learning benefit.

Algorithm Requirements
You may NOT use explicit for, range for, while, or do-while loops in this project; you must use a Standard Library algorithm

instead. Use Standard Library (STL) algorithms like find, copy, and for_each to operate on the containers instead of writing out
explicit loops like
for(it = people.begin(); it != people.end(), ++it) {crunch crunch}

This will require using some of the STL iterators, inserters , bind, lambda expressions, and writing some additional simple
functions and/or function objects. The result might be unnecessarily fancy at times, but it is good to get the practice so you will know
how to do it in more complex cases where the technique can save tons of messy coding. In short, now is the time to climb the learning
curve on getting acquainted with the Standard Library facilities. If you get stuck on a particular situation, check the code examples
(follow the link on the course home page), and then ask for help.

• There are exactly four exceptions to this restriction:
1. Your top-level command loop that reads in the two command letters and dispatches the command must be an

explicit while or do-while.
2. Your file restore code for implementing the ld command in the main module, Room, and Meeting classes, must

use explicit loops to control the creation of the objects and reading the data. Note that the save file contents and
format are unchanged from Project 2 — all the commitment-related information is logically present already.

3. You should have a function that skips the rest of the line for error recovery, and this must use either an explicit
while loop or the ignore() function (see the handout).

4. Exactly once in the project, you must use a range for with a container to get a bit of practice using it. To get
credit for this, you must put a comment before it that contains the string “the one range for” so that I can find it
easily. The body of the range for must be plain code (as opposed to using a function object, bind, or a lambda).
Consult the lecture notes and example code about range for. The reason for this one-use restriction is to force you
to practice using the algorithms even when they are clunky. No such restriction in future projects! Choose this one
place wisely — a range for is sometimes much, much, simpler than the permitted alternatives — don't waste it!

• No credit will be given for trying to use an algorithm in the first three exceptions, and in fact, trying to do so will result in
convoluted code, detracting from the code quality — that's why the exceptions are specified.

Specific Requirements for Algorithms and Other Facilities
• You must use the copy algorithm with an output stream iterator at least once (check Stroustrup, lecture notes, and example

code). Remember you can define additional operator<< overloads to make this easy (see the Operator Overloading Handout).
• You must use std::bind with bound values with an algorithm at least once; to meet this requirement, your call to std::bind

must have at least one bound value that is not a placeholder.
• You must use a custom function object class in combination with an algorithm and a container at least once in the project. Hint:

Consider part of the pa command.
• You must use a lambda expression with a captured variable with an algorithm at least once.

Note: If the code in a lambda is complicated enough to take several or many lines to be readable, prefer a function
or function object instead. Ideally, lambdas are supposed to be in-place, short, and simple. Likewise, if you need it
in more than one place in the code, consider a function or function object class instead — passing lambdas around
in variables is an unusual thing to do because their rationale is their value as "in-place unnamed functions." To
emphasize this concept, you may not store a lambda in a variable if it is only going to be used in a single
algorithm call.

• In all other places in your code where you use a Standard Library algorithm, you must not use your own helper function or
custom function object class if bind, mem_fn, a lambda expression, an inserter, a stream iterator, or some other Standard
Library facility will work just as well. The goal is to practice using these facilities everywhere they work well.

• Don't use the C++98 adapters and binders like bind1st, bind2nd, mem_fun, mem_fun_ref, ptr_fun. These have been deprecated
because the C++11 bind and lambda facilities work so much better; they are now historical curiosities, and in fact are now
removed from the C++17 Standard Library.

�6

Step 2. Design Problems
There are two design problems — one is to improve the Project 2 design, the other is to design and implement the commitment

functionality. It is useful to consider them together at first because they might interact. Keep clear that working with the design means
that you should expect to modify the Project 2 classes and their public interfaces. So not only are you allowed to do this, but you
should expect to do it: a design solution that preserves the Project 2 interfaces at the expense of design quality is a poor solution.

Design improvement. You should redesign the classes to fix the major design problems in Project 2. These were described in the
Project 2 Document— reread that discussion. The most important problem was that although Room was responsible for keeping track
of its Meetings, it could not protect its Meetings container from getting disordered because it was possible to change the time of a
Meeting while it was in a Room's container. This means Room could not be responsible for keeping its Meetings in order. The second
problem was a fuzziness of responsibilities associated with whether Rooms dealt with participants or only Meetings. Your design
should alleviate these problems. The changes are expected to be relatively small modifications of the Project 2 classes. Check with me
well ahead of time if you think you need to do a major overhaul.

Commitment implementation. It is up to you to figure out how to implement the commitment-tracking and the pc command, but
with the following restrictions:

• You must keep track of a Person's commitments as the ap, dp, and rm commands are executed — you can't wait for the pc
command, ap command, etc. to figure it out. For example, your code may not simply scan the whole schedule looking for the
person in every meeting! This means you need some kind of container(s) somewhere to retain the information about which
meetings a person is in. You will access and update the container(s) when a person is added or removed from a meeting, or a
meeting is rescheduled or deleted.

• The save file will have exactly the same information in it as before, so the container(s) will have to be restored somehow during
the ld command processing as well.

• You are allowed to modify the Person, Meeting, or Room classes, including their public interfaces, to arrive at a good solution.
Only a very few additional member functions or variables should be required; the interface and members from Step 1 should not
be changed very much. If you discover a need to make drastic changes, you might be pursuing a poor solution — get some sleep
or discuss it with me.

A good solution will have a simple and clear code structure, be compact and economical (such as not duplicating data with no
compensating advantage), and retain a good class design. Remember that the key to a good design is a clear concept of what
responsibilities belong to each class and the main module; each component must be responsible for the data that it is in the best
position to manage. A component (especially the main module) should not be doing things for other components that they could do for
themselves.

It is expected that your solution will take advantage of the Standard Library containers and algorithms within the requirements
stated above.

Project Grading
I will announce when the autograder is ready to accept project submissions. There will be two sets of autograder tests. The first set

will be similar to those of Project 2, and will not involve any commitment conflicts, or use of the pc command. Thus your program
should be able to pass these tests without any of the commitment-tracking capability at all. The second set will involve the
commitment-tracking capability.

Since you are allowed to modify the public interfaces of the classes, I will not be testing individual components of your code by
mixing them with my own, so only input/output behavior will be tested by the autograder.

This project will be both autograder tested and hand-graded, and the Syllabus rules apply, so study the Syllabus information on how
the autograder and code quality scores will be determined and weighted. Pay attention to commenting, organization, clarity, and
efficiency consistent with good organization and clarity. Study and apply the C++ Coding Standards handout. Review the feedback
you got on your Project 1 solution. Do not expect to do well on code quality by slapping the project together at the last minute.

The evaluation will include:
• Quality issues similar to the Project 1 evaluation (in their C++ version). Be sure you modified your code to follow C++ idioms

instead of C idioms (e.g. using nullptr instead of NULL; bool instead of int where appropriate). The C++ Coding Standards
handout covers many of these issues. Be sure to assess your code against the C++ Coding Standards before your final
submission.

• Whether your code met the above specifications for using the Standard Library facilities and how well you used them. Check
the project specifications carefully.

• How good your design solution in Step 2 is, both in how well it follows the course concepts, and whether it results in a simple
and clear code structure with good division of responsibilities and collaborations.

�7

How to Build this Project Easily
Step 1.

If you were thinking of getting a copy of Josuttis, now is the time. Otherwise, keep your Stroustrup handy and open to the containers
and algorithms discussion, along with the handouts, lecture notes, and posted code examples to see how to use the Standard Library
facilities. Remember: don't going dumpster-diving on the web; use the EECS 381 resources first (check the recommended reference
website on the course web page), and then ask for help.

Follow the Steps by first converting your Project 2 over to use Standard Library facilities. Changing over to std::string instead
of String is trivial, so get that out of the way first. Most IDE's have a multiple-file search and replace that makes this a minute's work.
Change the top-level command dispatching. Next, choose your containers; choose wisely! You can change them one at a time and
verify your program still behaves correctly.

Gentle introduction to algorithms and gizmos. To get gently introduced to using the algorithms and gizmos like lambda, bind,
function objects, stream iterators, etc, I suggest keeping your explicit loops from Project 2 (after modifying them as needed to suit the
container), and then change them one at a time to use the Standard Library algorithms and facilities. Recompile and check the program
after you change each one. This will mean you have to deal with crazy template error messages on only one thing at a time. It will get
easier as you learn more.

Change the container type if it helps. As you work through the project, you may discover that a choice you made for the container
was not a good one — while it worked well in one place, it was too awkward in another. Don't hesitate to change the container type for
a better overall result. If your code is well organized, and you used typedefs or type aliases, changing the container will be very easy
— for example, much of the code using STL algorithms will stay the same! If this isn't true, your code is poorly written — fix it!

Key algorithm concept. The STL algorithms like for_each all run an iterator over a container and call a function that takes the
dereferenced iterator. The key to using them easily is to keep in mind what kind of a thing the dereferenced iterator is. Your function/
function object/bind object/mem_fn object/lambda object must accept a parameter of this type. If you have an existing function that
takes one parameter of this type, then it is trivial to arrange. Otherwise, the bind or mem_fn facility is often helpful.

However, getting an algorithm to work with the std::map<> container, which holds std::pairs, can be awkward. If you
dereference a std::map<>::iterator, you get a std::pair. To use an algorithm that traverses the map you often need a way to
pick out the .second member. Sometimes you can do this easily, such as writing an operator<< that takes a pair and outputs only
the .second member, or a lambda, helper function, or custom function object that takes a pair parameter. Remember that
std::map declares a type alias value_type which is the type of the pair; use it instead of writing out your guess of the exact type
of the pair.

Choose helper return types wisely. Consider alternatives to returning only iterators from helper functions — while often handy, the
problem with a function returning an iterator is that the client usually has to declare the iterator type (now simplified with auto) or
access the container to interpret the iterator (e.g. to tell whether it is == .end()). Of course, if you need to modify a container, you
need the iterator to do it. But in cases where the container is read-only, you can write elegant and more useful helper functions that
return Room, Meeting, or Person objects as references or pointers to those objects. Remember that if something has gone wrong, the
function will throw an error exception, so you generally don't have to worry about how to make the returned value mean "not good"
nor check the returned value for validity. The calling code won't be getting a returned value if the function threw an exception!

Keep const promises. A std::set<> container has a simpler interface than std::map<>, but its items are supposed to be
unmodifiable so that the contents cannot be changed in ways that will invalidate the order in the container. Using a set<> container
for modifiable objects is a poor choice because it requires extra code and time to change the object while it is not in the container. If
you keep pointers in the container, then the pointers cannot be changed, but you can point to the objects with non-const pointers. But
in this case, it is up to you to ensure that the changes you make will not result in disordering the container. Review the lecture notes
summary on this issue. Using a const_cast is a sign of design failure — if you need to change something, why was it const to start
with? — and don't abuse mutable (see the Coding Standards for the only acceptable use in this course). Correct the design rather than
making a mess!

Using a vector? Use binary search! The binary_search and lower_bound algorithms provide a fast log-time search when used
with vector<>, but their behavior is somewhat puzzling. When applied to a sorted sequence container, the binary_search algorithm
will tell you whether the matching item is present, but not where it is! lower_bound also does a binary search and returns an iterator,
but it doesn't necessarily tell you whether the item is present! If you need to know both whether the item is present, and where to find
it or insert it, here's how to use lower_bound:

• If the matching item is present, lower_bound returns an iterator that points to the matching item in the sequence.
• If the matching item is not present, the iterator points to where the sought-for item should be inserted (e.g. with a call to the

insert member function that takes an iterator argument).

�8

• So a returned value of .end() means either that the item is not present, or it should be inserted at the end (which the insert
function would automatically do if given this iterator value). So a .end() result is unambiguous: if you are looking for the
item, it is not there; if you want to know where to put it as a new item, it's at the end.

• The problem is that a non-.end() value doesn't tell you whether or not it is there — it means either "here it is" or "here is
where to put it". How do you tell? Test to see if the iterator is pointing to an item that matches what you are looking for (such as
a Person* that has the sought-for last name). If it matches, then "here it is." If not, it means "here is where to put it."

Consider writing your own template function that calls lower_bound and returns both a true/false for present/not present, and an
iterator that shows where it is if present, or where to insert it if not.

• The equal_range algorithm might look tempting because it returns iterators for both the lower and upper bound. By
comparing them, you can get both pieces of information. However, equal_range is normally implemented in terms of a
lower_bound call followed by an upper_bound call, which is double the (logarithmic) time for a single one of them. Thus for
our case of the vector containing only unique values, the using lower_bound as described above should be more efficient
because it entails at most one comparison after the lower_bound call. Save equal_range for the case where your sorted
vector can contain values that are not unique.

Step 2.
A seductively appealing idea for the commitments functionality is to make the main module primarily responsible for maintaining

the commitment information. But it is a bad idea because it is likely to result in complex code and involves stripping responsibilities
and encapsulation from Rooms, Meetings, and Persons, and so is not much of an object-oriented solution — don't go there. Instead,
think about how object-oriented programming problems are normally solved: class objects cooperate to solve the problem, with each
object being responsible for its own data. The design question then becomes "which objects are in the best position to handle what
parts of the problem, and how do they cooperate?"

When you start on Step 2, keep an open mind about modifying your Step 1 solution. For example, if you did Step 1 with containers
of Room and Meeting objects, you might discover that everything works better if some of these containers hold pointers to the objects
instead (or vice versa). If you did a good job in Step 1, you will find it relatively easy to make whatever design changes will help you
do Step 2. The point: don't let your Step 1 solution prevent you from arriving at a really nice Step 2 solution. Again, the key is to be
able to spend some prime time thinking about the design for Step 2.

Think carefully about commitments. The commitment problem has neat design solutions which you can invent with some thought
and then implement very easily, and ugly, awful designs that you can invent with little or no thought, but which will require a lot of
work to implement (and may not even work). Moral: Give this some prime thinking time! A good question to start your thinking with:

• What does a commitment mean in terms of objects in the domain of meetings?
By "objects in the domain of meetings" is meant Persons, Meetings, or Rooms, not ints, strings, etc. — these are data types, not

objects in the domain of meetings.
Consider and act on the Rule of Five. For the domain classes of Person, Meeting, and Room, consider whether the compiler-

supplied versions of the Five functions (destructor, copy construction/assignment, move construction/assignment) will work correctly,
or do you need to define some of them yourself, or specify them with =delete or =default? Actually some gurus propose the Rule of
Five or Zero: You should define or specify either all five, or none (which means the compiler-supplied ones are correct). You must not
define these functions unnecessarily (which is wasteful, confusing, and unreliable), but if you fail to rule some of them out, it means
that future modifications of the code might crash because your design for the class is not clearly expressed.

Don't just jump in and start coding. Think about the design and sleep on it.

• Design Tip #1: Design the public interface(s) first; don't worry, or even think, about the private implementation. Getting
distracted about how you will code stuff before you are even sure what you need is the main enemy of creative design.

• Design Tip #2: Delay writing code for as long as you can stand it. For example, sketch out how the public interfaces will be
used in pseudocode. Actual code often sets your thinking in concrete; you need an open mind.

• Design Tip #3: If your design idea turns out to be a bad one, throw it away and start over. This is almost always faster than
trying to get a bad design working properly. One reason is that you now understand the problem better, so the better idea
should develop and code faster. Another reason is that good designs code easily because it is clear what needs to be done, and
where it will be done.

A final suggestion: Spend some time thinking about the Step 2 design before you start on Step 1, and whenever you take a break
while working on Step 1. Doing this thinking before you actually start on Step 2 will help you follow Tips #1 and #2 above.

�9

